02-1 单自由度系统的无阻尼自由振动固有频率
02-1 单自由度系统的无阻尼自由振动、固有频率

(1)无阻尼线性系统的自由振动为等幅简谐振动。
(2)无阻尼线性系统自由振动的固有角频率、固有频率、 振动周期仅由系统本身参数所确定,与激励、初始条件 无关。 (3)自由振动的振幅和初相角由初始条件所确定。
弹簧和阻尼器垂直放置 如图。 弹簧静变形量:δst=mg/k
F (t )
弹簧末变形时质块的位置与 静平衡时质块的位置不同
取静平衡位置为坐标原点,向下为坐标 δst=mg/k 正方向, 运动微分方程为:
(t ) F (t ) mg cx (t ) k[ x(t ) s t (t )] m x
单自由度线性系统运动微分方程:
(t ) cx (t ) kx(t ) F (t ) m x
运动微分方程的特点及所解决的问题
燕山大学
Yanshan University
(t ) cx (t ) kx(t ) F (t ) m x
运动微分方程的特点: (1)是二阶常系数、非齐次线性常微分方程; (2)方程左边完全由系统参数m、c与k所决定,反映了振动系统本 身的固有特性; (3)方程右边是振动系统的驱动力F(t),即系统的激励。
A1 x0 v0 A 2 n
结论:
燕山大学
Yanshan University
x(t ) Asin nt
k n m
m T 2 k
1 fn 2 k m
2 v 2 A x0 0 n 1 n x0 tg v0 v0 1 tg n x0
燕山大学
Yanshan University
初始条件:
x (0) x0 x (0) v0
无阻尼固有频率

mx kx 0
2 n
k m
x
2 n
x
0
x C1 cosnt C2 sin nt C1,C2 积分常数
令 : A C12 C22 , tan C1 / C2
x Asin( nt )
A——振幅; n——固有频率; (n + )——相位; ——初相位。
1.自由振动微分方程
l0——弹簧原长; k——弹簧刚性系数; st——弹簧的静变形;
l0
k
l0 k F
W kst st W / k
m
取静平衡位置为坐标原点,x 向下为正,则有:
st
O
x
m
d2x dt 2
W
F
W
k(x
st
)
kx
W x
mx kx 0 单自由度无阻尼自由振动方程
安装设备振动分析
主讲教师:徐向阳
重庆大学网络教育学院 2014年11月8日
目录
一、机械振动基础 二、振动测量及频谱分析 三、安装设备典型振动案例分析
一、机械振动基础
一 机械振动基础
※1 引 言 ※ 2 单自由度系统的自由振动 ※ 3 计算固有频率的能量法 ※ 4 单自由度系统的有阻尼自由振动 ※ 5 单自由度系统的无阻尼受迫振动 ※ 6 单自由度系统的有阻尼受迫振动
k EA 2.312 106 N/m l
v m
l
设钢丝绳被卡住的瞬时t=0,这时重物的位置为 初始平衡位置;以重物在铅垂方向的位移x作为广 义坐标,则系统的振动方程为
mx kx 0
方程的解为
单自由度振动系统固有频率及阻尼的测定-实验报告

4、根据相频特性的测试数据,在同一图上绘出几条相位差频率( 特性曲线,由此分析阻尼的影响并计算系统的固有频率及阻尼比。
5、根据实验现象和绘制的幅频、相频特性曲线,试分析对于不同阻尼的振动系统,几种固有频率和阻尼比测量方法的优劣以及原因。
首先,在水平振动台面上不加任何重物,测量系统在自由衰减振动时的固有频率;之后在水平振动台面上放置一个质量已知的砝码,再次测量系统在自由振动时的固有频率。记录两次测得的固有频率,并根据其估算水平振动台面的等效质量。
4、测定自由衰减振动特性:
撤去水平振动台面上的砝码,调整励磁电流至0.6A。继续使用“自由衰减记录”功能进行测试。操作方法与步骤3基本相同,但需按照数据记录表的提示记录衰减振动的峰值、对应时间和周期数i等数据,以计算系统的阻尼。
假设实验使用的单自由度振动系统中,水平振动台面的等效质量为 ,系统的等效刚度为 ,在无阻尼或阻尼很小时,系统自由振动频率可以写作 。这一频率容易通过实验的方式测得,我们将其记作 ;此时在水平振动台面上加一个已知质量 ,测得新系统的自由振动频率为 。则水平振动台面的等效质量为 可以通过以下关系得到: 。
、 的意义同拾振器。但对激振器说, 的值表示单位电流产生的激振力大小,称为力常数,由厂家提供。JZ-1的力常数约为5N/A。频率可变的简谐电流由信号发生器和功率放大器提供。
4、计算机虚拟设备:
在计算机内部,插有A/D、D/A接口板。按照单自由系统按测试要求,进行专门编程,完成模拟信号输入、显示、信号分析和处理等功能。
6、教师签名的原始数据表附在实验报告最后,原始数据记录纸在实验课上提供,必须每人交一份,可以采用复印、拍照打印等方式进行复制。原始数据上要写清所有人的姓名学号,不得使用铅笔记录。
第二章单自由度系统自由振动)

三、单自由度系统在简谐激励作用下的受迫振动 1、简谐激励下的受迫振动响应及频谱分析 2、受迫振动的复数求解法--单位谐函数法 3、支座简谐激励(位移激励)引起的振动与被动隔振 4、偏心质量(力激励)引起的振动与主动隔振 5、测振传感器的原理
正弦型激励 周期激励 任意激励
k
kx m x
m
F(t)
mx kx F0 sin t
p2 k m
x p2x F0 sin t
第一章 概论
一、振动及其研究的问题 1、振动 2、振动研究的问题 振动隔离 在线控制 工具开发 动态性能分析 模态分析
第一章 概论
二、振动分类及研究振动的一般方法 1、振动分类:振动分析、振动环境预测、系统识别 2、研究振动的一般方法 (1)理论分析方法
建立系统的力学模型、建立运动方程、求解方程得到响应 (2)实验研究方法 (3)理论与实验相结合的方法
②旋转矢量表示法
③复数表示法
z Acos(t ) iAsin(t )
z Aei(t )
eit cost i sin t eit cost i sin t
x Im( Aei(t) ) Asin(t )
x
iAei(t )
振幅
A
x02
x0 p
2
初相位
arctan px0
x0
固有圆频率 p k m
(rad/s)
固有频率 f p 1 k
2 2 m
(HZ)
固有周期 T 1 2 m (s)
f
k
例题2.7 某仪器中一元件为等截面悬臂梁,梁的质 量可忽略。在梁的自由端由磁铁吸住两个集中质量 m1、m2。梁在静止时,断电使m2突然释放,求随 后m1的振动。
《机械振动》课程期终考试卷-答案

一、填空题1、机械振动按不同情况进行分类大致可分成(线性振动)和非线性振动;确定性振动和(随机振动);(自由振动)和强迫振动。
2、周期运动的最简单形式是(简谐运动),它是时间的单一(正弦)或(余弦)函数。
3、单自由度系统无阻尼自由振动的频率只与(质量)和(刚度)有关,与系统受到的激励无关。
4、简谐激励下单自由度系统的响应由(瞬态响应)和(稳态响应)组成。
5、工程上分析随机振动用(数学统计)方法,描述随机过程的最基本的数字特征包括均值、方差、(自相关函数)和(互相关函数)。
6、单位脉冲力激励下,系统的脉冲响应函数和系统的(频响函数)函数是一对傅里叶变换对,和系统的(传递函数)函数是一对拉普拉斯变换对。
2、在离散系统中,弹性元件储存( 势能 ),惯性元件储存(动能 ),(阻尼 )元件耗散能量。
4、叠加原理是分析(线性 )系统的基础。
5、系统固有频率主要与系统的(刚度 )和(质量 )有关,与系统受到的激励无关。
6、系统的脉冲响应函数和(频响函数 )函数是一对傅里叶变换对,和(传递函数 )函数是一对拉普拉斯变换对。
7、机械振动是指机械或结构在平衡位置附近的(往复弹性 )运动。
1.振动基本研究课题中的系统识别是指 根据已知的激励和响应特性分析系统的性质,并可得到振动系统的全部参数。
(本小题2分)2.振动按激励情况可分为 自由振动 和 强迫振动 两类。
(本小题2分)。
3.图(a )所示n 个弹簧串联的等效刚度=k ∑=ni ik111;图(b )所示n 个粘性阻尼串联的等效粘性阻尼系数=e C ∑=ni ic 111。
(本小题3分)(a ) (b )题一 3 题图4.已知简谐振动的物体通过距离静平衡位置为cm x 51=和cm x 102=时的速度分别为s cm x 201= 和s cm x 82= ,则其振动周期=T 2.97s ;振幅=A 10.69cm 。
(本小题4分)5.如图(a )所示扭转振动系统,等效为如图(b )所示以转角2ϕ描述系统运动的单自由度系统后,则系统的等效转动惯量=eq I 221I i I +,等效扭转刚度=teq k 221t t k i k +。
振动理论及工程应用2 第二章 单自由度系统的振动

刚度系数k。
先将刚度系数k2换算至质量m所在处C的等效刚度系数k。
设在C处作用一力F,按静力平衡的
关系,作用在B处的力为 Fa
C
b
此力使B 弹簧 k2 产生 变形,
而此变形使C点发生的变形为
c
a Fa 2 b k2b2
得到作用在C处而与k2弹簧等效的刚度系数
k F
c
k2
C1 x0
C2
v0 pn
x
x0
cos
pnt
v0 pn
sin
pnt
另一种形式
x Asin( pnt )
初
振幅
相 两种形式描述的物
A
x02
(
v0 pn
)2
位 块振动,称为无阻 角 尼自由振动,简称
自由振动。
arctg(
pn x0 v0
)
无阻尼的自由振动是以其静平衡位置为振动中心的 简谐振动
b2 a2
k F
c
k2
b2 a2
与弹簧k1串联
C
得系统的等效刚度系数
k
k1k 2
b2 a2
k1k 2 b 2
k1
k2
b2 a2
a 2k1 b2k2
物块的自由振动频率为
pn
k b
k1k2
m
m(a2k1 b2k2 )
弹性梁的等效刚度
例 一个质量为m的物块从 h 的高 处自由落下,与一根抗弯刚度为EI、 长为的简支梁作塑性碰撞,不计梁 的质量,求该系统自由振动的频率、 振幅和最大挠度。
系统振动的周期 T 2π 2π m
第二章 单自由度系统

M x + c x + kx = meω 2 sin ω t
方程稳态响应可表示为:
M m
x ( t ) = X s in ( ω t )
式中:
m 2 eγ meω M X= = (k ω2M )2 + ω2c2 (1 γ 2 )2 + (2ξγ )2
2
系统的放大因子为:
MX γ2 = me (1 γ 2 ) 2 + (2ξγ ) 2
单自由系统
M
自由振动微分方程
m x + c x + kx = 0
K
无阻尼自由振动方程:
2 x+ ωn x = 0
Hale Waihona Puke C方程解:A=
x x + ωn
2 0 2 0
2
x = A sin (ωn t + ψ )
固有圆频率: 固有圆频率:
ψ = arctan
ω n x0
x0
固有频率: 固有频率:
式中,等效静位移 X 0 = F k 频率比 γ = ω / ωn 振幅放大因子 M = X =
X0
1 (1 γ 2 ) 2 + (2ξγ ) 2
简谐激励下的强迫振动
M= X 1 = X0 (1 γ 2 ) 2 + (2ξγ ) 2
γ = ω / ωn
等效静位移
X0 = F k
简谐激励下的强迫振动
隔振
T 令 TF = TD = TR ,R 叫做传递系数,随 ξ 和 γ 的变化曲线如下图.
位移传递系数 TD和力传递系数 TF 的表达式是完全相同的.
隔振
由图可得到两点结论: 1)无论阻尼比为多少, 只有在 γ > 2 时才有隔振 效果; 2)对于某个给定的 γ > 2 值,当阻尼比减小时,传 递系数也减小.
第二章单自由度系统自由振动)

(1)等效刚度
通常用能量法求复杂系统的等效刚度,即按实际系统要转化的弹簧 的弹性势能与等效系统弹簧势能相等的原则来求系统的等效刚度。
1、单自由度系统及其振动微分方程建立 (1)单自由度振动系统
(2)单自由度系统振动方程的建立方法 ①牛顿第二定律或达朗贝尔原理
f m&x& f m&x& 0 M J&& M J&& 0
例题2-1 (教材例题2.10) 建立如图所示振动系统的振动微分方程。
ml&x&
若动能达到最大Tm ax时取势能为0,则动能为0时,势能必取得最大值U m ax
Tm
ax=U
m
,可由此得到固有频率
ax
例题:求圆轴圆盘扭振系统的振动固有频率
T 1 m(l)2
2
U 1 k(a)2
2
d [1 m(l)2 1 k(a)2 ] 0
dt 2
2
可得 + k ( a )2 0
例题2-3
meq J m1r 2 m2 R2 keq (k1 k3 )r 2 (k2 k4 )R2
例题2-4 (教材例题2.4)
例题2-5 (教材例题2.5)
me
m
L
3
mA
J
mvb2 a2
1 3
msb2
例题2-6 (教材例题2.3、2.6) 求轴向轴转化的单轴系的等效刚度和等效旋转质量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F x ) d f(
线性阻尼器(粘性阻尼):阻尼力Fd是振动速度线性函数的阻尼器。 即: ,c为阻尼系数,N· s/ m 。 F x d c
非线性阻尼器:除线性阻尼以外的各种阻尼 (1)库仑阻尼,亦称干摩擦阻尼 在振动过程中,质块与平面之间产生库 仑摩擦力Fc。库仑摩擦力为常数,方向与质 块运动速度方向相反。
k eq
k
i 1
n
i
结论:并联弹簧的等效刚度是各弹簧刚度的总和。
并联弹簧比各组成弹簧都要硬。
串联弹簧的等效刚度
串联弹簧上各点的作用力Fs相等: Fs= k1 (x0-x1) Fs= k2 (x2-x0) 将以上两式联立,消去x0,得到:
k1k2 1 1 1 keq k1 k2 keq k1 k 2 n 1 1 对于n个刚度分别为ki (i=l,2,…, n) k eq 的串联弹簧系统,等效刚度: i 1 k i
x(t) Asin nt x(t) Acos nt
无阻尼自由振动:x () t A s i nn t 1、固有角频率
x(t)振动的角 频率为ωn。
n
k m
无阻尼自由振动的固 有角频率,rad/s。
2、固角频率与振动周期 固有频率fn:系统每秒钟振动的次数,Hz或1/s。 振动周期T:系统振动一次所需的时间,s。
n 1 k fn 2 2 m
m T 1 fn 2 k
3、振幅与初相角
运动微分方程:
x(t ) A1 cos nt A2 sin nt x(t ) Asin nt x(t ) Acos nt
v 2 A x0 1 n x 0 tg v0 v0 1 tg n x0
0 n
2
(1)无阻尼线性系统的自由振动为等幅简谐振动。
(2)无阻尼线性系统自由振动的固有角频率、固有频率、 振动周期仅由系统本身参数所确定,与激励、初始条件 无关。 (3)自由振动的振幅和初相角由初始条件所确定。
简谐振动
矢量A与垂直轴 x的夹角为 nt- ,A在x轴上的投影就 表示解 x(t)=Acos(nt-) 。当 nt- 角随时间增大时 , 意 味着矢量 A 以角速度 n 按逆时针方向转动,其投影呈谐 波变化。
静位移对系统运动微分方程的影响 当弹簧与阻尼器水平放置时,无重力影响。 系统静平衡位置与弹簧未伸长时的位置一致。
运动微分方程: m x ( t ) c x ( t ) kx ( t ) F ( t )
弹簧和阻尼器垂直放置 如图。 弹簧静变形量:δst=mg/k 取静平衡位置为坐标原点,向下为坐标 δst=mg/k 正方向, 运动微分方程为:
弹簧串并联等效刚度实例 例5 求图示振动系统的等效弹簧刚度。
2.1.2 阻尼器
阻尼器的性质:阻尼器在外力作用下的 响应为其端点产生一定的运动速度。 阻尼器所产生的阻尼力Fd是速度的函数: 阻尼力的方向和速度方向相反。 假设与说明: (1)假设阻尼器的质量忽略不计。 (2)阻尼器消耗能量,以热能、声能等方式耗散系统的机械能。
第2章 单自由度线性系统的自由振动
振动:在一定条件下,振动体在其平衡位置附近所做的
往复性机械运动。
自由振动:系统仅受到初始条件(初始位移、初始速度) 的激励而引起的振动。
强迫振动:系统在持续外力激励下的振动。
2.1 振动系统的理想元件 图示单自由度系统: m表示质块 c表示阻尼器 k表示弹簧
组成振动系统的理想元件: 质量元件——质块
等效弹簧:对于复杂组合形式的弹 性元件,用一个与其具有相同刚度
的弹簧来代替,则该弹簧为等效弹 簧。
简化原则:等效弹簧的刚度与组合弹簧的刚度相等,等效弹簧刚 度记为keq。
并联弹簧的等效刚度
设弹簧k1、k2所受到的力分别为Fs1、Fs2,则有: Fs1= k1 (x2-x1) Fs2= k2 (x2-x1) 总作用力Fs是Fs1与Fs2之和:Fs=Fs1+Fs2=(k1+ k2)(x2-x1)= keq(x2-x1) 则: keq=k1+ k2 对于n个刚度分别为ki (i=l,2,…, n) 的并联弹簧系统,等效刚度:
F mg sgn( x ) c
(2)流体阻尼:当物体以较大速度在粘性较小的流体中运动时,
由流体介质所产生的阻尼。 流体阻尼力FL与速度平方成正比,方向与运动速度方向相反。
2 F x sgn( x ) L
(3)结构阻尼
材料阻尼:由材料内部摩擦所产生的阻尼。 滑移阻尼:结构各部件连接面之间相对滑动而产生的阻尼。 结构阻尼:材料阻尼与滑移阻尼统称为结构阻尼。 试验表明,对材料反复加载和卸载,其应力—应变曲线成一 个滞后曲线。
k m
m x ( t ) k x ( t ) 0
2 x ( t ) x ( t ) 0 n
运动微分方程的通解:
x ( t ) A c o s t A s i n t 1 n 2 n
由初始条件确定! 式中,A1、A2——待定系数; A、 ——待定系数; A、φ——待定系数。
F x ( t) m m
假设:质块为刚体,不消耗能量。
2.2 单自由度线性振动系统的运动微分方程 如图所示的单自由度弹簧—质量振动系统,质块m受到外界激 励力F(t)的作用。
取质块m取脱离体,质块m受力如图所示。
x(t)——质块位移,静平衡位置为位移起点; Fs(t)——作用在质块上的弹簧力; Fd(t)——作用在质块上的阻尼力。
k k 1 2 F ( x x ) k ( x x ) s 2 1 eq 2 1 k k 1 2
结论:串联弹簧等效刚度的倒数等于各弹簧刚度的倒数之和。 串联弹簧等效刚度比原来各弹簧的刚度都要小,即串联弹 簧较其任何一个组成弹簧都要“软”
弹簧串并联等效刚度实例
例1 求图示系统的等效弹簧刚度。
解:取为广义坐标,运动微分方程为:
k m
ml mgl sin
2
微幅振动时,sin, 上式简化为: 固有频率:
g 0 l
g l
n
例2 质量为M、半径为r的均质圆柱体在半径为R的圆柱面内作无滑
动滚动,如图所示。 (1)取θ为广义坐标,应用Lagrange方程建立系统运动微分方程; (2)若系统做微幅振动,将运动微分方程线性化,并求固有频率。
根据牛顿第二定律,得:
m x ( t ) F ( t ) F ( t ) F ( t ) d s
单自由度线性系统运动微分方程:
m x ( t ) c x ( t ) kx ( t ) F ( t )
运动微分方程的特点及所解决的问题
m x ( t ) c x ( t ) kx ( t ) F ( t )
解: 图中,弹簧刚度分别为k1和k2; 质量m1、 m2通过刚性杆相连,相当于一个质块。 是并联弹簧,还是串联弹簧? 并联弹簧的特点:各弹簧变形相同,即共位移。
串联弹簧的特点:各弹簧受力相同,即共力。
图中,弹簧k1、k2是“共位移”的,为并联弹簧。 是并联弹簧?
系统的等效刚度:keq=k1+ k2
还是串联弹 簧?
曲线所围图形面积的物理意义:一个循环 中,单位体积材料所消耗的能量。这部分 能量以热能形式耗散掉,从而对结构振动 产生阻尼。 试验表明,多数金属结构的材料阻力在 一个周期内所稍耗的能量 ΔEs 与振幅的平 方成正比:
Es x
2
2.1.3 质块
质块的性质:质块在外力作用下的响应 为其端点产生一定的加速度。 根据牛顿定理,力F m与加速度成正比:
2.4 无阻尼自由振动固有频率的求解方法
求无阻尼自由振动固有频率的方法:
(1)运动微分方程方法; (2)静变形方法; (3)能量法。
2.4.1 根据运动微分方程求固有频率
运动微分方程:m n 固有频率: x ( t ) k x ( t ) 0
例1 绕水平轴转动的细长杆,下端附有重锤(直杆重量和锤的体 积忽略不计),组成单摆。杆长为l,摆锤质量m,求摆振动的固 有频率。
2.3 单自由度线性系统的无阻尼自由振动
单自由度系统的运动微分方程:
m x ( t ) c x ( t ) kx ( t ) F ( t )
自由振动:当F(t)=0时,系统所产生的振动。
无阻尼自由振动:当F(t)=0、 c =0时,系统所产生的振动。
无阻尼自由振动微分方程: 设: n
弹簧末变形时质块的位置与 静平衡时质块的位置不同
m x ( t ) F ( t ) mg c x ( t ) k [ x ( t ) ( t )] s t
m x ( t ) c x ( t ) kx ( t ) F ( t )
结论:在线性系统的振动分析中,可以忽略 作用于系统上的恒力及其引起的静态位移。
0 n
初始条件:
x (0 ) x0 x (0 ) v0
A1 x0 v0 A 2 n
2
结论:
x () t A s i n t n
n
T 2
k m
m k
1 fn 2
k m
v 2 A x 0 1 n x 0 t g v 0 v 0 1 t g n x 0
弹簧串并联等效刚度实例
例2 确定图示混联弹簧的等效刚度。
解: k1、k2为并联,再与k3串联:
1 1 1 keq k1 k2 k3
k3(k 1 k 2) keq k1 k2 k3