单自由度系统的振动.ppt

合集下载

单自由度系统的无阻尼自由振动课件

单自由度系统的无阻尼自由振动课件
置开始量取 ),则自由振动的运动微分方程必数有关的常数。令 n2 c/ a
则自由振动的微分方程的标准形式:
xn2x0
方程的通解解为:xAsi nnt()
学习交流PPT
7

力 学或:
xC 1co nts C 2sin n t
C1,C2由初始条件决定
这里A和φ与C1和C2的关系为:
一、自由振动的概念:
学习交流PPT
2

单自由度系统的自由振动


以弹簧质量系统为力学模型
学习交流PPT
3
动 力运动过程中,总指向物体平衡位置的力称为恢复力。 学
物体受到初干扰后,仅在系统的恢复力作用下在其平衡位 置附近的振动称为无阻尼自由振动。
质量—弹簧系统:
令x为位移,以质量块的静平衡位置 为坐标原点,当系统受干扰时,根据 牛顿第二定律,有:
m x m g k(sx)
学习交流PPT
4
动 力在静平衡时有: 学
mg k s
振动微分方程为:
m x m g k(sx)
m x kx
令 n2 k / m g / s xn2x 0
方程的通解为:xAsi nnt()
学习交流PPT
5

力 学
xAsi nnt()
学习交流PPT
6
动 二力、单自由度系统无阻尼自由振动微分方程及其解 学对于任何一个单自由度系统,以x 为广义坐标(从平衡位
学习交流PPT
12
固有频率及固有周期
n
k m
固有圆频率,为了方便也称 为固有频率,是系统的固有 特性,与系统是否振动无关
只与振动系统的弹簧常量k和物块的质量 m 有关, 而与运动的初始条件无关,所以称为固有频率。

单自由度系统在简谐激励下的受迫振动.ppt

单自由度系统在简谐激励下的受迫振动.ppt

Solution of the above equation gives the amplitude and phase angle of the steady state response of the damped mass-spring system under harmonic excitation:
幅频特性与相频特性
ψ 的讨论
1、 = 0 的附近区域 (低频区或弹性控制区) ,β 1 =0,响
应与激励同相;对于不同的 值,曲线密集,阻尼影响不大。
2、 >>1的区域(高频区或惯性控制区), ψ π ,响应与 β 0, 激励反相;阻尼影响也不大。 3、 =1的附近区域(共振区), 急剧增大并在 =1略为偏左 处有峰值。通常将=1,即 = pn 称为共振频率。阻尼影响 显著且阻尼愈小,幅频响应曲线愈陡峭,峰值越大。 4、在相频特性曲线图上,无论阻尼大小, =1时,总有, = /2 ,这也是共振的重要现象。
-曲线族-幅频特性曲线 -曲线族-相频特性曲线
2.1.2 受迫振动的振幅B、相位差 ψ 的讨论
-曲线族-幅频特性曲线;-曲线族-相频特性曲线
在低频区和高频区,当 <<1时,由于阻尼影响不大 , 为了简化计算 ,可将有阻尼系统简化为无阻尼系统。
2.1.2 受迫振动的振幅B、相位差
z Zei ( t ) (Ze i )ei t
Substituting into Eq., we obtain
and
x ( Ze
i
Ze
i
m 2Y k m 2 i c
Y )e
i t
k i c i t ( ) Ye k m 2 i c

第一章(单自由度系统的振动)

第一章(单自由度系统的振动)

单自由度系统的振动方程
c
k
m
s k
c
o
u
m
u
f (t)
mu(t) k[u(t) s ] cu(t) mg f (t)
k (u s ) cu
m
mg
f (t)
mg k s
mu(t) cu(t) k u(t) f (t)(单自由度系统振动方程的一般形式)
结论:只要以系统静平衡位置为坐标原点,那么在列写系统运动方程 时就可以不考虑系统重力的作用。
问题2
k1
k2
k3
m
k4
k1 k3
k2

k4
问题2
k1
k2
k3
m
k4
k1
k3
k2

k4 k1
k3
k2
m
k4
问题3
无质量弹性杆
刚性杆
k
m
等效
k
m
F
k F /
第一章:单自由度系统的振动
第二讲:
无阻尼单自由度系统的自由振动
•正确理解固有频率的概念 •会求单自由度无阻尼系统的固有频率
无阻尼单自由度系统的自由振动
4
o 势能:V mg(R r)(1 cos ) 1 mg(R r) 2
2
R
m 简谐运动: max sin(nt )
B
rC
Tmax
3m 4
(
R
r
)2
(n
max
)
2
A
D
mg
Vmax
1 2
mg
(
R
r
)m2 ax
Tmax Vmax

机械振动基础-单自由度系统-1

机械振动基础-单自由度系统-1

• 速度和加速度也是简谐函数,并与位移具有相同频率; • 在相位上,速度超前位移90,加速度超前位移180°。
• 加速度始终与位移反向: u&&(t) n2u(t) • 速度和加速度的幅值分别是振幅的 n和n2倍。
• 简谐振动过程
最大振幅
最大速度
最大振幅
-A
速度为零, 位移,加速度 绝对值最大, 方向反向。
m
解:系统的动能和势能分别为:
系统的广义力为:
T 1 mx2 , 2
U 1 kx2 2
Q W P(t)x Pt
x
x
代入到拉格朗日方程得:
d dt
Tx
dU dx
Q
mx kx P(t)
例1-3: 如图所示:圆弧形滑道上,有一均质圆柱体 作纯滚动。建立其运动方程。
解:因为纯滚动,所以振动
a) 简谐振动是一种周期振动
周期振动满足条件: u(t T ) u(t)
(1.2.13)
即每经过固定时间间隔,振动将重复原来的过程。最小正 常数 T -振动周期。
Tn
2 n
2
m k
(1.2.14)
— 无阻尼单自由度系统自由振动的固有周期。
固有频率的另一种形式:
fn
n 2
1 Tn
(赫兹)
表示1秒内重复振动的次数。
该矢量在t 时刻在y轴 上的投影 即为位移 响应在同 一时刻的 值.
b) 简谐运动的位移、速度和加速度之间的关系:
• 速度和加速度可分别表达为:
u&(t )
na
cos
nt
na
sin(nt
2
)
(1.2.17)
u&&(t) n2a sin nt n2a sin nt (1.2.18)

《单自由度系的振动》课件

《单自由度系的振动》课件
应用领域
主动控制技术广泛应用于航空航天、机械制造、土木工程等领域, 以减小或消除结构的振动。
优势与局限性
主动控制技术的优点在于能够快速响应并有效抑制振动,但需要外部 能源和复杂的控制系统,增加了系统的复杂性和成本。
被动控制技术
被动控制技术定义
被动控制技术是利用阻尼材料或结构来吸收或耗散振动能量的方 法。
弹性力学模型
描述弹性体的振动特性,适用于弹性体的振动。
振动分析的数值方法
有限元法
将系统离散化为有限个单元,求解每个单元的振动响应。
时域法
在时间域内直接求解系统的振动响应。
频域法
将系统振动问题转化为频率域内的问题,求解系统的振动特性。
04
单自由度系统的振动控 制
主动控制技术
主动控制技术定义
主动控制技术是一种通过向系统提供反向振动来抵消原始振动的方 法。
03
单自由度系统的振动分 析
振动分析的基本方法
解析法
通过数学公式推导,求解系统的振动特性。
实验法
通过实验测量系统的振动响应,分析其特性 。
数值法
利用数值计算方法,求解系统的振动响应。
振动分析的数学模型
线性模型
描述线性系统的振动特性,适用于小振幅振动。
非线性模型
描述非线性系统的振动特性,适用于大振幅振动 。
总结词
在机械系统中,振动控制是提高设备稳定性和延长使用寿命 的关键。
详细描述
机械系统中的许多设备,如发动机、压缩机、机床等,都容 易受到振动的影响。通过采用适当的控制策略,如主动或被 动隔振、阻尼减振等,可以有效减小振动对设备性能的影响 ,提高设备的稳定性和可靠性。
建筑结构中的振动控制

结构动力学 -单自由度体系的振动

结构动力学 -单自由度体系的振动
负号表示等效力的方向和地面加速度方向相反。
13
§2.2 无阻尼自由振动
自由振动(free vibration) :无外界干扰的体系振动形 态称为自由振动(free vibration)。振动是由初始位 移或初始速度或两者共同影响下所引起的。 无阻尼自由振动:如果阻尼系数等于零,则这种自由 振动称为无阻尼自由振动(undamped free vibration)。 假设由于外界干扰,质点离开平衡位置,干扰消失后, 质点将围绕静力平衡点作自由振动。
或:m y ( t) c y ( t) k ( t) y m y g ( t) P e( f t) f
Peff (t ) :等效荷载,即在地面加速度yg (t )影响下,结构的响
应就和在外荷载p (t )作用下的响应一样,只是外荷载 p (t )
等于质量和地面加速度的乘积。
干扰力的大小只能影响振幅A的大小,而对结构自
振周期T的大小没影响。
(2)自振周期与质量平方根成正比,质量越大,则
周期越大;自振周期与刚度的平方根成反比,刚度
越大,则周期越小。要改变结构的自振周期,只有
改变结构的质量或刚度。
24
§2.2 无阻尼自由振动
k g
m
st
(3)把集中质点放在结构上产生最大位移的地方,则可
1、位移以静力平衡位置作为基准的,而这样确定的位移 即为动力响应。
2、在求总挠度和总应力时,要把动力分析的结果与静
力分析结果相加。
9
§2.1运动方程的建立
3、支座运动的影响 结构的动位移和动应力既可以由动荷载引起,也
可以由结构支座的运动而产生。 1)由地震引起建筑物基础的运动; 2)由建筑物的振动而引起安置在建筑物内的设备 基底的运动等等。

单自由度系统的自由振动

单自由度系统的自由振动

固有频率的计算方法
1. 建立微分方程求固有频率 2. 静位移法 3. 能量法
单自由度系统的自由振动 / 无阻尼自由振动
静位移法——求解固有频率
单自由度系统的自由振动 / 无阻尼自由振动 能量法——求解固有频率
单自由度系统的自由振动 / 无阻尼自由振动
特征方程及特征根为
2 s 2 0 0
s1, 2 i0
则式(1-1)的通解为
y e x (c1 cos x c2 sin x)
x C1 cos 0t C2 sin 0t
C1 / C2 为任意积分常数,由运动的初始条件确定。
单自由度系统的自由振动 / 无阻尼自由振动
临界阻尼系数 cc
单自由度系统的自由振动 / 阻尼自由振动
单自由度系统的自由振动 / 阻尼自由振动
单自由度系统的自由振动 / 阻尼自由振动
单自由度系统的自由振动 / 阻尼自由振动
单自由度系统的自由振动 / 阻尼自由振动
单自由度系统的自由振动 / 阻尼自由振动
单自由度系统的自由振动 / 阻尼自由振动
2 0 x x0
当作微幅振动时,可认为sin , cos 1。再由静平衡条件 mgl st ka 则上式可简化为
a 2k 引入符号 2 ,则上式变为 ml
2 0
(1-2)
此为单自由度系统无阻尼自由扭振的微分方程,其解同例(1)。
单自由度系统的自由振动 / 无阻尼自由振动
单自由度系统的自由振动 / 无阻尼自由振动
单自由度系统的自由振动 / 阻尼自由振动
单自由度系统的自由振动 / 阻尼自由振动
单自由度系统的自由振动 / 阻尼自由振动
单自由度系统的自由振动 / 阻尼自由振动

振动理论及工程应用2 第二章 单自由度系统的振动

振动理论及工程应用2 第二章 单自由度系统的振动

刚度系数k。
先将刚度系数k2换算至质量m所在处C的等效刚度系数k。
设在C处作用一力F,按静力平衡的
关系,作用在B处的力为 Fa
C
b
此力使B 弹簧 k2 产生 变形,
而此变形使C点发生的变形为
c

a Fa 2 b k2b2
得到作用在C处而与k2弹簧等效的刚度系数
k F
c

k2
C1 x0
C2

v0 pn
x

x0
cos
pnt

v0 pn
sin
pnt
另一种形式
x Asin( pnt )

振幅
相 两种形式描述的物
A
x02

(
v0 pn
)2
位 块振动,称为无阻 角 尼自由振动,简称
自由振动。


arctg(
pn x0 v0
)
无阻尼的自由振动是以其静平衡位置为振动中心的 简谐振动
b2 a2
k F
c
k2
b2 a2
与弹簧k1串联
C
得系统的等效刚度系数
k
k1k 2
b2 a2

k1k 2 b 2
k1

k2
b2 a2
a 2k1 b2k2
物块的自由振动频率为
pn
k b
k1k2
m
m(a2k1 b2k2 )
弹性梁的等效刚度
例 一个质量为m的物块从 h 的高 处自由落下,与一根抗弯刚度为EI、 长为的简支梁作塑性碰撞,不计梁 的质量,求该系统自由振动的频率、 振幅和最大挠度。
系统振动的周期 T 2π 2π m
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

由 dHI
dt
mI (F )


(
3 2
M

m)Rx

4k xR
振动微分方程:
x
8k 3M
2m
x

0
固有频率:
n
8k 3M 2m
解2 : 用机械能守恒定律 以x为广义坐标(取静平衡位置为 原点)
T 1 Mx2 1 MR2 ( x )2 1 mx2
实际中的振动往往很复杂,为了便于研究,需简化为力 学模型。
振 体
质量—弹 簧系统
运动过程中,使物体回到平衡位置的力称为恢复力
§12-1 单自由度系统无阻尼自由振动
只需用一个独立坐标就可确定振体的位置,这种系统 称为单自由度系统。物体受到初干扰后,仅在恢复力作用 下的振动称为无阻尼自由振动
一、振动的微分方程:
ωn、f 都称为系统的固有频率或自然频率
无阻尼自由振动的特点: (1) 振动规律为简谐振动;
(2) 振幅A和初相位 取决于运动的初始条件(初位移和初速度);
(3)周期T 和固有频率ωn 仅决定于系统本身的固有参数(m,k,J)。 四、其它
1. 如果系统在振动方向上受到某个常力的作用,该常力 只影响静平衡点O的位置,而不影响系统的振动规律,如振动 频率、振幅和相位等。
2. 弹簧并联系


统和弹簧串联系


统的等效刚度

st

F1 k1

F2 k2
, mg F1 F2
mg (k1 k2 ) st
,

st

mg k1 k
2
keq k1 k2
并联
st st1 st2
mg mg mg( 1 1 )
k1 k2
k1 k2
q An cos(nt )
设 t = 0 时,q q0 , q q0 代入上两式得:
A
q02

q02

2 n
,


arctg
n q0
q0
或:
q C1cosn t C2 sinn t
C1,C2由初始条件决定为 C1 q0 , C2 q0 /n

2
22 R 2
1 ( 3 M m)x2 22
以平衡位置为计算势能的零位置,
微分方程。
对于其他类型,同理可得。如
单摆:



2
n

0
(
2 n

g
/l)
复摆:



2
n

0
(
2 n

mga /
J)
对于任何一个单自由度系统,以 q 为广义坐标(从平 衡位置开始量取 ),则自由振动的微分方程的标准形式:
解为:
qn2q 0 q Asin(nt )
振动沉拔桩机等
消耗能量,降低精度等。3. 研 Nhomakorabea振动的目的:消除或减小有害的振动,充分利用振动 为人类服务。
4. 振动的分类:
单自由度系统的振动
按振动系统的自由度分类 多自由度系统的振动
弹性体的振动
按振动产生的原因分类: 自由振动: 无阻尼的自由振动 有阻尼的自由振动(衰减振动) 强迫振动: 无阻尼的强迫振动 有阻尼的强迫振动 自激振动
图示质量——弹簧系统,以平衡位置为 坐标原点,则
mg F mx
F k(x st ) st — 振体静止平衡时弹簧的 变形:mg k st
mx mg F mg k(x st ) kx

2 n

k m
则:x


2 n
x

0
这就是质量——弹簧系统无阻尼自由振动的

st

mg keq

mg(
1 k1

1 k2
)

k
eq

k1k2 k1 k2
串联
二、 求系统固有频率的方法
对于质量——弹簧这类系统,当振体静止平衡时,有:
mg k st
st ——弹簧在全部重力作用下的静变形
于是:
n
g
st
无阻尼自由振动系统为保守系统,机械能守恒。
当振体运动到距静平衡位置最远时,速度为零,即系统 动能等于零,势能达到最大值(取系统的静平衡位置为零势 能点)。
当振体运动到静平衡位置时,系统的势能为零,动能达
到最大值。
如:
设x Asin(nt )
Vmax

1 2
k[(
A


st
)
2
st 2 ] mgA
k st mg

Vmax
1 kA2 2
Tm a x

1 2
mxm2 ax

1 2
mA2
2 n

Tm a x

Vm

ax
静平衡时: mI (F ) 0,
(M m)gR kst 2R 0
st

M m 2k
g
在任意位置x 时:
F

k ( st

2x)

M
2
m
g

2kx
应用动量矩定理x:
HI

mxR
MxR
1 2
MR2
x R
( 3 M m)Rx 2
mI (F ) (M m)gR F 2R 4kxR
第十八章 单自由度系统的振动
振动是日常生活和工程实际中常见的现象。
例如:钟摆的往复摆动,汽车行驶时的颠簸,电动机、机 床等工作时的振动,以及地震时引起的建筑物的振动等。
1. 振动-----系统在平衡位置附近作往复运动。
2. 振动的利弊: 利:振动给料机
弊:磨损,减少寿命,影响强度
振动筛
引起噪声,影响劳动条件
1 2
mA
2
2 n

1 2
k A2
n
k m
由Tmax=Vmax求n的方法称为能量法。
能量法是从机械能守恒定律出发,对于计算较复杂的振 动系统的固有频率,用能量法来求更为简便。
综上所述,求系统固有频率的方法有:
1. 振动微分方程的标准形式
2. 静变形法:
qn2q 0
n
g
st
q

q0
cos nt

q0
n
sin
nt
A——振体离开平衡位置的最大位移,称为振幅
n t + ——相位,决定振体在某瞬时 t 的位置
——初相位,决定振体运动的起始位置
T ——周期,每振动一次所经历的时间
T

2 n
f —— 频率,每秒钟振动的次数,单位:HZ , f = 1 / T ωn—— 圆频率,振体在2秒内振动的次数。 ωn=2πf
st :集中质量在全部重力
作用下的静变形
3. 能量法: 由Tmax=Vmax , 求出 n
例1 图示系统。设轮子无侧向摆动, 且轮子与绳子间无滑动,不计绳子和弹 簧的质量,轮子是均质的,半径为R,质 量为M,重物质量 m ,试列出系统微幅 振动微分方程,求出其固有频率。
解:以 x 为广义坐标,静平衡位置为 坐标原点。
相关文档
最新文档