第二章单自由度系统自由振动)解析

合集下载

2-单自由度自由振动

2-单自由度自由振动

第2章 单自由度系统自由振动
2.5 具有黏性阻尼的振动系统
31
给出初始条件:t=0时 x x0 , x v0
则可确定系数B和D B v0 ( 2 1)n x0 2n 2 1
D v0 ( 2 1)n x0 2n 2 1
第2章 单自由度系统自由振动
2.5 具有黏性阻尼的振动系统
不大,特别是当阻尼很小(<<1)时,可
以忽略阻尼对振动频率和周期的影响。
第2章 单自由度系统自由振动
2.5 具有黏性阻尼的振动系统
40
2.6 对数衰减率
振幅衰减的快慢程度可用相邻振幅 的比值来表示,称为衰减率或减幅率或 减缩率;也可以用衰减率的自然对数来 表示,称为对数衰减率。
第2章 单自由度系统自由振动
第2章 单自由度系统自由振动
2.3 能量法
22
P15例2-3-2 利用能量法求纯滚动圆盘 系统作微幅振动的固有频率。
第2章 单自由度系统自由振动
2.3 能量法
23
2.4 瑞利法
一般不考虑弹性元件的质量对振动系统的 影响,若这些质量不可忽略的时候,“瑞利法” 的思想,是将这些弹性元件所具有的多个集中 质量或分布质量简化到系统的集中质量上去, 从而变成典型的单自由度振动系统。
T 2 n
周期是系统振动一次所需要的时间,单位 为秒(s)。
周期的倒数称为频率,是系统每秒钟振动 的次数,单位为1/秒(1/s)或赫兹(Hz)。记作 f
f 1 n T 2
第2章 单自由度系统自由振动
2.2 自由振动系统
13
固有频率n和频率 f 只相差常数2,因
此经常通称为固有频率。是振动分析中极
已知质量为m,弹簧的刚 度系数为k。取质量的静平衡 位置为坐标原点,当重物偏离 x 时,利用牛顿定律可得到运 动微分方程:

第二章 单自由度系统振动的理论及应用

第二章 单自由度系统振动的理论及应用

M t
则得
2 .. n 0
通解为:
A sin(n t 0 )
代入:
将振动的初始条件t= 0 , 0 , . 0.
A
.0 2 0 2 n
2
n 0 0 arctan . 0
例: 已知:质量为m=0.5kg的物体沿光滑斜面无初速度滑下。 当物块下落高度h=0.1m时,撞于无质量的弹簧上, 并与弹簧不再分离,弹簧刚度系数k=0.8kN/m。 倾角 30 求:此系统振动的固有频率和振幅并给出物块的运动方程。
计算固有频率的能量法
无阻尼自由振动系统没有能量的损失,振动将永远持续下去. 在振动过程中,系统的动能与弹簧的势能不断转换,但总的机械能 守恒.因此,可以利用能量守恒原理计算系统的固有频率. 如图所示无阻尼振动系统 当系统作自由振动时,运动规律为:
x A sin(0t )
速度为:
dx v 0 A cos(0t ) dt
称为单自由度线性纵向振动系统的运动微分方程式,又称单 自由度有粘性阻尼的受迫振动方程.
可分为如下几种情况进行研究:
(1)当c=0,F(t)=0时, 该方程为单自由度无阻尼自由振动方程.
(2)当F(t)=0时, mx cx kx 0 该方程为单自由度有拈性阻尼的自由振动方程.
.. .
mx .. kx 0
由机械能守恒定律有
Tmax Vmax

1 1 2 2 J 0 Φ ( k1l 2 k 2d 2 )Φ 2 2 2
解得固有频率
0
k1 l 2 k 2 d 2 J
例: 已知:如图表示一质量为m,半径为r的圆柱体,在一半 径为R的圆弧槽上作无滑动的滚动。 求:圆柱体在平衡位置附近作微小振动的固有频率。

第2章 单自由度系统的受迫振动题解

第2章  单自由度系统的受迫振动题解

习 题2-1已知系统的弹簧刚度k =800 N/m ,作自由振动时的阻尼振动周期为1.8s ,相邻两振幅的比值12.41=+i i A A ,若质量块受激振力t t F 3cos 360)(=N 的作用,求系统的稳态响应。

解:由题意,可求出系统的运动微分方程为t mxn x p x n 3cos 36022=++ 得到稳态解)3cos(α-=t B x其中m kB B B 45.03604)1(022220==+-=λζλ222122tg λζλωωα-=-=n p n 由d nT i iA A e 2.41===+η489.3π2797.0ln 8.1ln ======dd dd dT p T n T nT ηη 又22n p p n d -=有579.3222=+=n d n p n p p45.51255.1298.0374.0838.01838.0223.02tg 103.1408.045.0838.0223.04)838.01(45.0223.0579.3797.0838.0579.332222===-⨯⨯===⨯⨯+-=======ααζωλB p n p n n所以 x =1.103 cos(3t -51︒27')2-2一个无阻尼弹簧质量系统受简谐激振力作用,当激振频率ω1 =6rad/s 时,系统发生共振;给质量块增加1 kg 的质量后重新试验,测得共振频率ω2 =5.86rad/s ,试求系统原来的质量及弹簧刚度。

解:设原系统的质量为m ,弹簧常数为k 由m kp n =,共振时m kp n ==1ω 所以 mk =6 ①又由 当 86.512=+==m kp n ω ② ①与②联立解出 m =20.69 kg ,k =744.84 N/m2-3总质量为W 的电机装在弹性梁上,使梁产生静挠度st δ,转子重Q ,重心偏离轴线e ,梁重及阻尼可以不计,求转速为ω时电机在垂直方向上稳态强迫振动的振幅。

第二章(第2,3节)单自由度系统的自由振动

第二章(第2,3节)单自由度系统的自由振动

2
R r 2 2
圆柱体的势能为相对于最低位置O的重力势能。 若选圆柱体中心C在运动过程中的最低点为零势能 点,则系统的势能为 2 U W ( R r )( 1 cos ) 2W ( R r ) sin
2
2.2 能量法
例题:用能量法求解系统的振动微分方程与固有频率(例2.2-1)
2.2 能量法
例题:用能量法求解系统的振动微分方程与固有频率(例2.2-1)
例2.2-1 有一个重量为W,半径为r的实心圆柱体, 在半径为R的圆柱形面上无滑动地滚动,如图2.2-1所示。 假设该滚动的圆柱体进行简谐运动,试求它绕平衡位置作 微小摆动时的固有频率n。 解:圆柱体在摆动时 有两种运动:移动和滚动。 设坐标如图2.2-1示。 摆动时圆柱体中心C点的速度 及圆柱体的角速度分别为
1 k 1 k1 1 k2 1 kn
图 2.3-2
k
i 1
n
1
i
(2.3-2)
2.3 等效刚度系数
串、并联弹簧的等效刚度的计算
图2.3-2(b)是两个并联弹簧,刚度系 数分别为k1和k2。两个弹簧所受的力分别 为k1xB、k2xB 根据静力平衡条件得: F k 1 x B k 2 x B
2.3 等效刚度系数
串、并联弹簧的等效刚度的计算
图2.3-2(a)是两个串联弹簧,刚度系数分 别为k1和k2。B点的位移及等效刚度系数为
xB F k1 F k2
k
F xB

k1k 2 k1 k 2
串联弹簧的作用使系统中的弹簧刚度降低。
如果有n个弹簧串联,刚度系数分别为k1, k2, …, kn,则等效刚度系数k应满足关系式

0723第二章单自由度振动系统(讲)

0723第二章单自由度振动系统(讲)

第二章单自由度系统振动§1-1 概述单自由度系统的振动理论是振动理论的理论基础。

(1)尽管实际的机械都是弹性体或多自由度系统,然而要掌握多自由度振动的基本规律,就必须先掌握单自由度系统的振动理论。

此外,(2)许多工程技术上的具体振动系统在一定条件下,也可以简化为单自由度振动系统来研究。

[举例如下:]例如:(1)悬臂锤削镗杆;(2)外圆磨床的砂轮主轴;(3)安装在地上的床身等。

[力学模型的简化方法]若忽略这些零部件中的镗杆、主轴和转轴的质量,只考虑它们的弹性。

忽略那些支承在弹性元件上的镗刀头、砂轮、床身等惯性元件的弹性,只考虑它们的惯性。

把它们看成是只有惯性而无弹性的集中质点。

于是,实际的机械系统近似地简化为单自由度线性振动系统的动力学模型。

在实际的振动系统中必然存在着各种阻尼,故模型中用一个阻尼器来表示。

阻尼器由一个油缸和活塞、油液组成。

汽车轮悬置系统等等。

[以上为工程实际中的振动系统]单自由度振动系统——指用一个独立参量便可确定系统位置的振动系统。

所有的单自由度振动系统经过简化,都可以抽象成单振子,即将系统中全部起作用的质量都认为集中到质点上,这个质点的质量m 称为当量质量,所有的弹性都集中到弹簧中,这个弹簧刚度k称为当量弹簧刚度。

以后讨论中,质量就是指当量质量,刚度就是指当量弹簧刚度。

在单自由度振动系统中,质量m、弹簧刚度k、阻尼系数C是振动系统的三个基本要素。

有时在振动系统中还作用有一个持续作用的激振力P。

应用牛顿运动定律,作用于一个质点上所有力的合力等于该质点的质量和该合力方向的加速度的乘积。

(牛顿运动定律) (达伦培尔原理)现取所有与坐标x 方向一致的力、速度和加速度为正,则:kx x C t P xm --= ωsin 0 (牛顿运动定律) (达伦培尔原理:在一个振动体上的所有各力的合力必等于零)(动静法分析:作用在振动体上的外力与设想加在此振动体上的惯性力组成平衡力系)上式经整理得,t P kx x C xm ωsin 0=++ (2.1) 该式就是单自由度线性振动系统的运动微分方程式的普遍式。

2-单自由度受迫振动解读

2-单自由度受迫振动解读

F0 / k
17

≈1(激振频率接近固有频率)时,b 迅速增
大,振幅很大,这种现象称为共振;
• 阻尼比z 的影响: 阻尼越小,共振越厉害。因
此加大阻尼可以有效降低共振振幅。
对b 求导数取极值
b
2 (1 2 ) 2 (2z ) 2
(2z 1 )
2 2
令其等于0得
第2章 单自由度系统的受迫振动
4
因此方程的全解为:
x(t ) e
zwn t
( A cos wn 1 z t
2
2
B sin wn 1 z t ) X sin(w t )
系数A和B由初始条件确定。
设 t= 0 时 ,
x 0 x x0 , x
则:
A x0 X sin x0 zwn Xw ( x0 X sin ) cos B wd w d wd
2
2.1 简谐激励下的受迫振动
所谓简谐激励就是正弦或余弦激励。
2.1.1 振动微分方程及其解
设单自由度黏滞阻尼系统受到的激励为 F(t)=F0sinwt ,这里 w为激振频率,利用牛顿 定律并引入阻尼比z 可得到
F0 x 2wnz x w x sin wt m
2 n
第2章 单自由度系统的受迫振动
而强迫振动部分才是我们最关心的。
第2章 单自由度系统的受迫振动
2.1 简谐激励下的受迫振动
7
若为余弦激励, 则响应(解)为:
x0 zwn x0 xe sin wd t x0 cos wd t wd zwnt zwn cos w sin Xe sin wd t cos cos wd t wd

第二章1-单自由度系统无阻尼自由振动上课讲义

第二章1-单自由度系统无阻尼自由振动上课讲义

x&0 0
3 2
,2
结论1
▪ 单自由度无阻尼自由振动为简谐振动—— 位移可以表示为时间的简谐函数(正弦或 余弦)
结论2 响应满足叠加原理
▪ 系统在初始位移单独 x 0 作用下的自由振动,
此时
x&0 , 0
x1 x0cosnt
▪ 系统在初始速度 x& 0 单独作用下的自由振动,
此时
x 0 , 0
x2
x&0
n
sin nt
系统总响应
▪ 振动系统总的响应=上述两部分响应之和
xx1x2x0cosnt x& 0 nsinnt
▪ 叠加性是线性系统的重要特征
数字特征
▪ A ——振幅,振动物体离开静平衡位置的最
大位移

▪T
n
——圆频率 ——振动周期,旋转矢量转动一周
(2 ),振动物体的位移值也就重复一次,
m& x&F
方程化简
▪ 对于无阻尼自由振动,我们有
Fkx
▪ 因此,原方程改写为:
m& x& kx0
确定微分方程的初始条件
▪ 在t=0时,初始位移为 x 0 ,初始速度为 x& 0
▪ 则方程的初始条件为:
x(0) x0 和 x&(0) x&0
完整形式
▪ 单自由度无阻尼自由振动的运动微分方程 为:
第二章1-单自由度系统无阻尼自 由振动
几种单自由度系统的示例
O θ
S
隔离体受 力分析
kx
k
x(t)
m
O
S
O θ J
2-1无阻尼自由振动
▪ 自由振动:系统在初始激励下,或外加激 励消失后的一种振动形态。

振动理论-第2章 单自由度系统的自由振动

振动理论-第2章 单自由度系统的自由振动

c
l
解:梁重物处的静变形为
st
Wc2 (l c)2 3lEI
则:
3lEI k c2 (l c)2
1g f
2 st
例3. 已知:升降机吊笼,以等速 v0 下降,钢丝绳视为弹簧,
若A端突然停止,求钢绳所受到的最大应力。
W 10000lbf l 62 ft A 2.5in2 E 15106lbf / in2
4 等效质量和等效刚度
4 等效质量和等效刚度
4 等效质量和等效刚度
4 等效质量和等效刚度
4 等效质量和等效刚度
平行串联、并联弹簧的等效刚度
4 等效质量和等效刚度
平行串联、并联弹簧的等效刚度
4 等效质量和等效刚度
例1 A suspension system of a freight truck with a parallel-spring arrangement. Find the equivalent spring constant of the suspension if each of the three helical springs is made of G 80109 N / m2
(boom) to deform by an amount x2 x cos 45 and the spring k1
Eat 3 4b3
kr
AE l
d2E
4l
1 keq
1 kb
1 kr
4b3 Eat 3
4l d2
E
keq
E 4
at3d 2
d 2b3 lat3
4 等效质量和等效刚度
斜拉弹簧在某个位移方向上的等效弹簧刚度
Fx F cos F 为弹簧的伸长量
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理特性
模态特性
响应特性
力学模型: 质量、刚度、阻尼
模态模型: 固有频率、模态矢量 模态质量、刚度、阻尼
响应模型: 位移、速度、加速度
时域模型:微分方程描述
频域模型:传递函数描述 频率特性描述
汽车振动学
第二章 单自由度系统的振动
一、单自由度振动系统 1、振动微分方程的建立 2、振动等效系统及外界激励 二、单自由度系统的自由振动 1、无阻尼系统的自由振动 2、有阻尼系统的自由振动 三、单自由度系统在简谐激励作用下的受迫振动 1、简谐激励下的受迫振动响应及频谱分析 2、受迫振动的复数求解法--单位谐函数法 3、支座简谐激励(位移激励)引起的振动与被动隔振 4、偏心质量(力激励)引起的振动与主动隔振 5、测振传感器的原理
a0 = a j cos( jt ) b j sin( jt ) 2 j 1
a0 Aj sin( jt j ) 2 j 1
其中
2 T a0 f (t )dt T 0
2 T a j f (t ) cos( jt )dt T 0
2 T
基频 一个周期函数如果满足如下条件,就可以展成傅立叶级数。
(1)在一个周期内连续或只有有限个间断点,且间断点的左右极限都存在; (2)在一个周期内,具有有限个极大、极小点。
a0 f (t ) a1 cos t a2 cos 2t 2
b1 sin t b2 sin 2t
四、单自由度系统在周期性激励作用下的受迫振动 1、谐波分析与叠加原理 2、傅立叶(Fourier)级数法 五、单自由度系统在任意激励作用下的受迫振动 1、脉冲响应函数法或杜哈梅(Duhamel)积分法 2、傅立叶(Fourier)变换法 3、拉普拉斯(Laplas)变换法
一、单自由度振动系统 1、单自由度系统及其振动微分方程建立 2、振动等效系统及外界激励 3、振动微分方程的求解
当作运动坐标方向上只存在一个质量和弹簧来处理,经简化后得到的质量 和刚度,分别成为原系统的等效质量和等效刚度。 同样,实际振动系统不可避免地存在阻力,因而在一定时间内自由振

i (t )
Ae
x A e
2 i (t )
A e
2 i (t )
在简谐振动中,加速度的方向与位移的方向相反,大小与位移的大 小成正比,始终指向静平衡位置。
④简谐振动的合成
(2)周期振动的谐波分析
f (t ) f (t nT ) n 0, 1, 2,
第一章
一、振动及其研究的问题 1、振动 2、振动研究的问题 振动隔离 在线控制 工具开发 动态性能分析 模态分析
概论
第一章
概论
二、振动分类及研究振动的一般方法 1、振动分类:振动分析、振动环境预测、系统识别 2、研究振动的一般方法 (1)理论分析方法 建立系统的力学模型、建立运动方程、求解方程得到响应 (2)实验研究方法 (3)理论与实验相结合的方法 三、 汽车上的振动问题 四、简谐振动、谐波分析及频谱分析 1、简谐振动 2、谐波分析 3、频谱分析
1、单自由度系统及其振动微分方程建立
(1)单自由度振动系统
(2)单自由度系统振动方程的建立方法 ①牛顿第二定律或达朗贝尔原理
f
mx
f
mx 0
M J M J 0
例题2-1 (教材例题2.10) 建立如图所示振动系统的振动微分方程。
a2 b2 d2 mlx cx k1 k2 x 0 l l l
②能量法
T+U=常数
例题2-2
d T U 0 dt
(教材例题2.11)
半径为r、重力为 mg的圆柱体在半径为R 的圆柱面内滚动而不滑 动,如图所示。试求圆 柱体绕其平衡位置作微 小振动的微分方程。
2g 0 3( R r )Biblioteka 2、等效振动系统及外界激励
在工程上为便于研究,常把一些较为复杂的振动系统进行简化,以便
(1)简谐振动 ①函数表示法
A cos( t ) A sin(t x
2 2
2 x A sin(t ) A sin( t ) A sin( 2ft ) T

2 A sin(t ) A sin(t ) x
)
②旋转矢量表示法
③复数表示法
z A cos(t ) iA sin(t )
z Ae
x iAe
i (t )
i (t )
x Im( Ae
) A sin(t )
i (t ) 2
eit cos t i sin t it e cos t i sin t

sin jt j

4 F0 1 1 sin t sin 3t sin 5t 3 5
(3)振动的频谱分析 频率特性分析是经典控制理论中研究与分析系统特性的主要方法。利用此方 法可以将系统传递函数从复域引到具有明显物理概念的频域来分析系统的特性。 将频率特性分析方法用于振动分析,成为频谱分析。 引入频谱分析的重要性在于: ①可将任意激励函数分解为叠加的谐波信号,即可将周期激励函数分解为叠加 的频谱离散的谐波信号,可将非周期激励函数分解为叠加的频谱连续的谐波信 号。 ②对于无法用分析法求得传递函数或微分方程的振动系统,可以通过实验求 出系统的频率特性,进而得到系统的传递函数或微分方程。 输出和输入的傅氏变换之比等于频率响应函数H ( ) (频响函数)
2 T b j f (t ) sin( jt )dt T 0
Aj a b a j arctan bj
2 j 2 j j
例题1-1 对方波信号
F0 f (t ) F0
T 0t 2 T t T 2

进行谐波分析。
f (t )
4F0

j 1,3,5,
相关文档
最新文档