单自由度及多自由度系统模态分析概述

合集下载

汽车振动基础第4章-多自由度(定稿)

汽车振动基础第4章-多自由度(定稿)
j 1
k11 k1 x1 k2 x1 k1 k2
k21 k12 k2 x1 k2
k22 k2 x2 k3 x2 k2 k3
j2
k31 k13 0
k32 k23 k3 x2 k3
0 k1 k 2 k 2 K k 2 k 2 k3 k3 0 k3 k3
– 拉格朗日法
• 方程的形式
广义坐标
qi (i 1, 2,3,, n)
T:系统的总动能
d T T ( ) Qi 0 dt qi qi
i 1, 2,3, , n
对应于第i个广义 坐标的广义力
– 保守系统
» 系统作用的主动力仅为势力 Qi
d T T U ( ) 0 dt qi qi qi
m2 m22 m3 4
④柔度矩阵的影响系数法
F ij
柔度影响系数 ij 的意义是在第j个坐标上施加单位力作用时,在第i个坐 标上引起的位移。 例题4-8 用影响系数法求图示系统的柔度矩阵
11 F 21 31
12 22 32
13 23 33
也可写成 其中


MX KX 0
力方程 位移方程
K 1MX X 0
m x 0 或 x
称为柔度,而
FMX X 0
1 称为柔度矩阵
1 k
FK
②刚度矩阵的影响系数法
K kij
刚度影响系数 k 的意义是使系统的第j个坐标产生单位位移,而其它的 ij 坐标位移为零时,在第i个坐标上所施加的作用力的大小。
仅代表外部激励 广义力

工程振动——模态分析、多自由度系统振动响应

工程振动——模态分析、多自由度系统振动响应

1.复习模态分析理论1.1单自由度系统频响函数(幅频、相频、实频与虚频、品质因子等)系统的脉冲响应函数h(t)与系统的频响函数H()是一对傅里叶变换对,与系统的传递函数H(s)是一对拉普拉斯变换对。

即有:复频率响应的实部复频率响应的虚部单自由度系统频响函数的各种表达式及其特征,对频响函数特征的描述采用的几种表达式1)幅频图:幅值与频率之间的关系曲线2)相频图:相位与频率之间的关系曲线3)实频图:实部与频率之间的关系曲线4)虚频图:虚部与频率之间的关系曲线5)矢端轨迹图(Nyquist图)1.2单自由度结构阻尼系统频响函数的各种表达形式频响函数的基本表达式:频响函数的极坐标表达式:,—幅频特性,—相频特性。

频响函数的直角坐标表达式:,—实频特性,—虚频特性频响函数的矢量表达式:1.3单自由度结构阻尼系统频响函数各种表达式图形及数字特征Nyquist图:无论阻尼多大,半功率点总位于水平直径两端,半功率点之间的曲线范围相当大,共振区在Nyquist图上最易反映出来,故用Nyquist图作参数识别较好。

对数幅频图:Bode图不仅能在很宽频段内反映系统的幅频特性而且能将低频段和高频段内幅频特性用最突出的特征反映出来。

2.预习多自由度系统振动响应2.1实模态分析对一个有n个自由度的振动系统,需用n个独立的物理坐标描述其物理参数模型。

在线性范围内,物理坐标系中的自由振动响应为n个主振动的线性叠加,每个主振动都是一种特定形态的自由振动(简谐振动或衰减振动),振动频率即系统的主频率(固有频率或阻尼固有频率),振动形态即系统的主振型(模态或固有振型),对应每个阻尼系统的主振型有相应的模态阻尼。

本节用模态坐标法研究模态参数模型和非参数模型。

坐标变换法的基础是求解系统特征值问题。

特征值与模态频率和模态阻尼有关(不一定就是模态频率)特征矢量与模态矢量相联系(不一定就是模态矢量)。

对无阻尼和比例阻尼系统,表示系统主振型的模态矢量实数矢量,故称实模态系统,相应的模态分析过程是实模态分析。

随机振动系统的建模与分析

随机振动系统的建模与分析

随机振动系统的建模与分析随机振动是指振动的激励力和/或系统自身的固有参数具有不确定性的振动。

随机振动系统普遍存在于许多领域,如航空航天、土木结构、能源、环境和生物医药等。

因此,研究随机振动现象具有重要的理论和实际意义。

本文将介绍随机振动系统的建模与分析方法。

一、随机振动系统的特点随机振动系统相比于确定性振动系统而言,其具有以下几个显著的特点:1. 激励力的随机性。

激励力通常是噪声、风、地震、电磁干扰等不稳定因素,其具有随机性和不可预测性。

2. 系统特性参数的随机性。

振动系统的特性参数,如质量、刚度、阻尼等都有可能受到制造和安装误差的影响而产生随机性。

3. 振动响应的随机性。

由于振动系统存在着上述两种随机因素的影响,其振动响应也具有随机性。

二、建模方法随机振动系统建模的主要方法有两种,即时域方法和频域方法。

1. 时域方法时域是指由时间t表示的振动信号的域。

时域方法是指通过时间t和振动响应x(t)或速度v(t)、加速度a(t)等时域信号进行随机振动系统的建模和分析。

其中常用的时域方法包括统计时域分析、偏微分方程映射(PDE)方法和随机分析方法等。

2. 频域方法频域是指通过频率f表示的振动信号的域。

频域方法是指通过频率f和振动响应X(f)、速度V(f)、加速度A(f)等频域信号进行随机振动系统的建模和分析。

其中常用的频域方法包括功率谱密度(PSD)分析、阻尼比分析和极值理论等。

不同的振动系统建模方法适用于不同的振动系统类型,选择适当的方法进行建模和分析非常重要。

三、分析方法1. 单自由度(SDOF)系统SDOF系统是指具有一个自由度的振动系统,例如简谐振子、单摆等。

对于SDOF系统,可通过阻尼比和显著性水平等简易参数来描述其振动响应特性。

SDOF系统的分析可以采用传递函数、相关函数、频率响应函数等方法。

2. 多自由度(MDOF)系统MDOF系统是指具有多个自由度的振动系统,例如桥梁、建筑物等。

由于振动系统的振动响应受到多种因素的影响,其分析复杂度较高。

单自由度模态分析理论

单自由度模态分析理论

要点二
非线性模态分析的研 究
目前,大多数模态分析研究都集中在 线性系统上。然而,在许多工程应用 中,非线性因素对结构振动的影响是 不可忽视的。因此,未来可以进一步 研究非线性模态分析方法,以更准确 地描述这些非线性效应。
要点三
智能材料和结构的应 用
随着智能材料和结构的发展,它们在 许多领域的应用越来越广泛。这些材 料和结构具有独特的动态特性,需要 新的模态分析方法来描述。因此,未 来的研究可以探索适用于智能材料和 结构的模态分析方法。
背景
随着工程结构的日益复杂化,模态分析在结构健康监测、振 动控制、地震工程等领域的应用越来越广泛。单自由度模态 分析作为模态分析的基础,为多自由度模态分析提供了理论 支持。
模态分析的定义
模态
模态是结构的固有振动特性,包 括频率、阻尼比和振型。
模态分析
模态分析是通过试验或数值方法 识别结构的模态参数的过程。
模态振型之间具有正交性, 即不同模态的振动不会相 互干扰。
选择性
在实际工程中,可以根据需要 选择特定的模态进行分析,以 简化计算和提高分析效率。
Part
03
单自由度系统的01
激振器激励
STEP 02
自由衰减振动
通过激振器对系统施加激励 ,使其产生振动响应,然后 采集响应信号进行分析。
04
单自由度系统的模态特性分析
模态正交性分析
模态正交性是指在模态空间中,不同的模态之间相互独立, 没有耦合关系。在单自由度系统中,模态正交性表现为各模 态振型函数的正交性,即它们的内积为零。
模态正交性的意义在于,它使得各模态之间互不干扰,各自 独立地响应外部激励,从而使得系统的响应可以通过叠加各 模态的响应得到。

多自由度系统的振动模态分析

多自由度系统的振动模态分析

多自由度系统的振动模态分析振动是物体在受到外界作用力或受到初始扰动后产生的周期性运动。

在工程领域中,多自由度系统的振动模态分析是一项重要的研究内容。

本文将介绍多自由度系统的振动模态分析的基本原理和方法。

一、多自由度系统的定义多自由度系统是指由多个相互连接的质点组成的系统。

每个质点都可以在三个坐标方向上自由运动,因此系统的自由度就是质点的个数乘以每个质点的自由度。

多自由度系统的振动模态分析可以帮助我们了解系统的固有振动特性,为工程设计和结构优化提供依据。

二、振动模态的概念振动模态是指多自由度系统在固有频率下的振动形态。

每个固有频率对应一个振动模态,振动模态的数量等于系统的自由度。

振动模态分析可以帮助我们确定系统在不同频率下的振动特性,从而预测系统的响应和寻找可能的共振点。

三、振动模态分析的方法1. 模态分析方法模态分析是一种通过数学方法求解系统的固有频率和振动模态的方法。

常用的模态分析方法包括有限元法、模态超级位置法等。

有限元法是一种基于离散化的方法,将系统分割成有限个小单元,通过求解每个单元的振动特性,最终得到整个系统的振动模态。

模态超级位置法是一种基于物理原理的方法,通过测量系统在不同频率下的振动响应,推导出系统的振动模态。

2. 模态参数的计算模态参数是指描述振动模态特性的参数,包括固有频率、振型、振幅等。

模态参数的计算可以通过实验测量和数值模拟两种方法。

实验测量是通过激励系统,测量系统在不同频率下的振动响应,并通过信号处理和频谱分析等方法计算出模态参数。

数值模拟是通过建立系统的数学模型,利用计算机仿真软件求解系统的振动模态。

四、振动模态分析的应用振动模态分析在工程领域有广泛的应用。

首先,振动模态分析可以帮助工程师了解系统的固有振动特性,从而优化设计和改善结构。

其次,振动模态分析可以用于故障诊断和预测,通过对系统的振动模态进行监测和分析,可以判断系统是否存在异常或潜在故障。

此外,振动模态分析还可以应用于声学工程、航天工程、汽车工程等领域。

第2讲 多自由度系统实模态分析

第2讲 多自由度系统实模态分析

若 K 是正定矩阵,则 U 0 ,系统没有刚体位移, 称为正定振动系统;若是半正定矩阵,则 U 0 ,系 统将出现刚体位移,称为半正定系统。 一个振动系统是正定或半正定,与结构的边界条件 有关。
1 T 1 x Mx 0,U xT Kx 0 2 2
无阻尼系统的实模态
自由振动时,令 f (t ) 0 则 Μx + Kx = 0 (1)特征值问题 设特解 x = Φe jt Φ —系统自由响应幅值阵列。 jt 将 x = Φe 代入式 Μx + Kx = 0 ,得 ( K 2 M )Φ 0 当 Φ 为零时,这是一个广义特征值问题, 为特征 值, Φ 为特征矢量。上式也是以 Φ 中元素为变量 的n阶代数齐次方程组, K 2 M 为其系数矩阵。该 方程有非零解的充要条件是其系数矩阵行列式为零, 即 K 2 M 0
2014/9/7
桥梁结构振动与抗震 (结构动力学部分)
第2讲 多自由度系统 实模态分析
多自由度系统实模态
绝大多数振动结构可离散成为有限个自由度 的多自由度系统。对一个有个自由度的振动系统, 需用个独立的物理坐标描述其物理参数模型。在 线性范围内,物理坐标系中的自由振动响应为个 振动的线性叠加,每个主振动都是一种特定形态 的自由振动(简谐振动或衰减振动),振动频率 即系统的主频率(固有频率或阻尼固有频率), 振动形态即系统的主振型(模态),对应每个阻 尼系统的主振动有相应的模态阻尼。
X ΦU Φ diag[
n ΦiΦiT 1 ]ΦT F F 2 ki 2 mi k i 1 i mi
将它代入强迫振动方程,并考虑式 f (t ) Fe jt ,得 则
diag[ki 2 mi ]U ΦT F

振动学知识点总结

振动学知识点总结

振动学知识点总结振动学知识点总结如下:一、振动的基本概念1. 振动的定义:指物体在某一平衡位置附近作来回运动的现象。

2. 振幅:振动物体在做往复运动时,离开平衡位置的最远距离。

3. 周期:振动物体完成一个完整的往复运动所需要的时间。

4. 频率:振动物体每秒钟完成的往复运动次数。

5. 相位:描述振动物体在振动周期中的位置关系。

二、单自由度振动系统1. 单自由度振动系统的概念:由一个自由度由一个自由度运动的质点和它的运动机构构成。

2. 自由振动:指单自由度振动系统在没有外力作用下的振动。

3. 阻尼振动:指单自由度振动系统的振动受到阻尼力的影响。

4. 强迫振动:指单自由度振动系统受到外力作用的振动。

三、非线性振动1. 非线性振动的概念:指振动系统的振动特性不满足线性振动方程的振动现象。

2. 非线性系统的分类:按系统的非线性特征分为几何非线性、材料非线性和边界非线性等。

3. 非线性振动的分析方法:包括解析法和数值法等。

四、多自由度振动系统1. 多自由度振动系统的概念:由多个自由度组成的振动系统。

2. 自由振动:指多自由度振动系统在没有外力作用下的振动。

3. 阻尼振动:指多自由度振动系统的振动受到阻尼力的影响。

4. 特征值问题:多自由度振动系统的固有振动特征。

5. 模态分析:多自由度振动系统振动特征的分析方法。

五、控制振动1. 振动控制的目的:减小系统振动、防止系统振动引起的损伤。

2. 主动振动控制:通过主动装置对系统进行振动控制。

3. 被动振动控制:通过被动装置对系统进行振动控制。

4. 半主动振动控制:融合了主动和被动振动控制的特点。

六、振动信号与分析1. 振动信号的特点:包括时间域特征、频域特征和相位特征等。

2. 振动信号采集与处理:使用传感器采集振动信号,并通过信号处理方法对其进行分析。

3. 振动分析方法:包括频谱分析、波形分析、振动模态分析和振动信号诊断分析等。

七、振动与工程应用1. 振动在机械领域的应用:包括减振、振动吸收、振动监测及振动诊断等。

多自由度模态分析理论

多自由度模态分析理论
量的数值计算,如何在保证计算精度的 前提下提高计算效率是一个重要的问题。
针对大规模系统,可以采用高效的数值算法和并行计算技术 来提高计算效率。同时,也可以采用适当的模型简化方法来 平衡计算效率和精度。
05 多自由度模态分析的未来 发展方向
混合模态分析方法
混合模态分析方法是一种结合了线性与非线性理论的分析方法,旨在更全面地描述系统的动态特性。 这种方法结合了线性模态分析的准确性和非线性模态分析的实用性,能够更好地处理复杂系统的振动 问题。
THANKS FOR WATCHING
感谢您的观看
通过建立系统的有限元模型,利用 数值方法求解特征方程得到模态参 数。
参数识别方法
包括频域法和时域法,其中频域法 通过频率响应函数识别模态参数, 时域法通过时间历程数据识别模态 参数。
03 多自由度模态分析在工程 中的应用
结构健康监测
结构损伤识别
01
多自由度模态分析能够通过比较结构在不同模态下的振动特性,
智能优化算法在模态分析中的应用
智能优化算法是一类基于人工智能的 优化算法,如遗传算法、粒子群算法 和蚁群算法等。这些算法在解决复杂 优化问题方面具有高效性和鲁棒性。
VS
在模态分析中,智能优化算法可以用 于求解系统的最优模态参数,如模态 频率、模态阻尼比和模态振型等。通 过智能优化算法,可以自动搜索系统 的最优模态参数,提高模态分析的效 率和准确性。
多自由度模态分析理论
目录
• 引言 • 多自由度模态分析理论概述 • 多自由度模态分析在工程中的应用 • 多自由度模态分析的局限性与挑战 • 多自由度模态分析的未来发展方向 • 结论
01 引言
背景介绍
机械系统振动分析
多自由度模态分析理论起源于机 械系统振动分析,用于研究复杂 机械结构的动态特性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
jt • 稳态速度响应: x j Xe
• 稳态加速度响应: x ( j)2 Xe jt 2 Xe jt
单自由度系统频响函数
• 单自由度系统振动微分方程:
( 2 m jc k ) X F
• 位移频响函数为稳态位移响应与激励幅值之比: X 1 H ( ) F k m 2 jc • 速度频响函数: V j X j HV ( ) F F k m 2 jc • 加速度频响函数:
jk0 t x ( t ) X ( )e k k T X ( ) 1 2 x(t )e jk0t dt T k T 2
系统在周期激励下的频响函数定义为在各倍频点上稳态响应幅值 与激励的幅值之比
X (k ) H (k ) F (k )
H ( )
Gxf ( ) G ff ( )
单自由度系统频响函数曲线(1)
• 由频响函数表达式
H ( ) X 1 F k m 2 jc
• 可得频响函数复指数形式 1 1 H ( ) ei , k (1 2 )2 4 2 2
arctan


j ( t )
h( )d Fe



h( )e- j d
• 已知此时系统稳态输出为 x(t ) Xe jt H () Fe jt • 因此 H ( ) h( )e- j d

h(t ) H ( )
• 脉冲响应函数与频响函数一样是反映振动系统动态特性的量,频 响函数在频域内描述系统固有特性,而脉冲响应函数在时域内描 述系统固有特性。
单自由度系统脉冲响应函数
• 单自由度系统,承受单位脉冲荷载(t)时,响应为h(t)——单位脉 冲响应函数(脉冲响应函数)
mx cx kx (t )
单自由度系统脉冲响应函数
mx cx kx (t )
• 该式的解为
1 t e sin D t , t 0 x(t ) h(t ) mD 0, t 0
A jV 2 H A ( ) F F k m 2 jc
频 响 函 数
单自由度系统频响函数
• 频响函数的倒数称为阻抗
F • 位移阻抗: Z () k m 2 jc X
F k • 速度阻抗: ZV ( ) V c j m j
F k c • 加速度阻抗: Z A ( ) m 2 A j
(k 1,2,
, )
不同激励下频响函数表达式
• 瞬态激励f(t)下响应为x(t) ,一般可做傅里叶变换
F ( ) F[ f (t )]
X ( ) F[ x(t )]
系统在瞬态激励下的频响函数定义为在响应与激励的傅里叶变换 之比
X ( ) H ( ) F ( )
• 随机振动中,无论是激励和响应信号都不能进行傅里叶变换,只 能用概率统计方法来处理。频响函数定义为输出与输入的互功率 谱与输入的自功率谱之比
线性系统的输入与输出关系
• 根据傅里叶变换时域卷积性质,在时域的卷积在频域应为乘积
x(t ) h(t ) * f (t )
单位力作用下 的系统时域与 频域的响应
X ( ) H ( ) F ( )
不同激励下频响函数表达式
• 简谐激励下,频响函数定义为系统的稳态响应幅值与激励的幅值 之比
单自由度及多自由度系统 模态分析
结构振动分析基本理论
• 振动分析的“理论路线”
空间模型 模态模型 响应模型
(质量、阻尼、 刚度)
(固有频率, 模态振型)
(频率响应、 脉冲响应)
• 空间模型——用于描述结构的物理特性,即质量、刚度和阻尼特性。 • 模态模型——一系列固有频率及相应的模态阻尼系数和模态振型。 • 响应模型——一系列响应函数组成 • 在理论分析中,首先从空间模型开始最终到响应模型。 • 在实验分析中,首先从响应特性开始,最终推求空间模型。
X H ( )F
• 周期激励f(t)(周期为T)作用下,稳态位移响应为周期T的函数 x(t),都可写为傅里叶级数的形式
jk0t f ( t ) F ( )e k k T 1 jk0 t F ( ) 2 f ( t )e dt T k T 2
实频特性
虚频特性
单自由度系统频响函数曲线(3)
1 1 2 H ( ) k (1 2 )2 4 2 2
R
H I ( )
线性系统的输入与输出关系
• 频响函数H()是h(t)的傅里叶变换。
x(t ) h(t ) * f (t ) h(t ) f ( )d




f (t )h( )d
jt
• 若系统的激励为 f (t ) Fe jt
x(t )


f (t )h( )d Fe
2 1 2
幅频特性
• 式中 称为频率比
相频特性
单自由度系统频响函数曲线(2)
• 频响函数表示成复数形式:
H () H R () jH I ()
• 其中
1 1 2 H ( ) k (1 ຫໍສະໝຸດ 2 )2 4 2 2R
H I ( )
1 2 k (1 2 )2 4 2 2
• 式中, D 1 2
• 若系统受到任意函数f(t)激励,则响应为(Duhamel积分):
x(t ) h(t ) * f (t ) h(t ) f ( )d


单自由度系统频响函数
• 单自由度系统振动微分方程:
mx cx kx f (t )
• 设系统作用简谐激励 f (t ) Fe jt • 稳态位移响应: x Xe jt
相关文档
最新文档