验证牛二定律实验
牛顿第二定律的实验验证报告

牛顿第二定律的实验验证报告一、实验目的本实验旨在通过实际操作验证牛顿第二定律,并观察物体在受力作用下的加速度与受力的关系。
二、实验仪器与材料1. 水平光滑桌面2. 牵引绳3. 悬挂于牵引绳上的滑轮4. 不同质量的物体5. 弹簧测力计6. 计时器7. 尺子三、实验步骤与结果1. 将水平光滑桌面放置平稳,并在桌边悬挂一个滑轮。
2. 将牵引绳绕过滑轮,一端系于待测物体上,并将其保持在静止状态。
3. 另一端的牵引绳通过弹簧测力计,并固定在桌子上方。
4. 释放物体,观察物体受力作用下的运动情况,并记录运动时间。
5. 重复实验5次,使用不同质量的物体。
四、实验数据分析1. 实验数据记录表|试验次数 |物体质量(kg)| 物体加速度(m/s^2)||--------|--------|------------|| 1 | m_1 | a_1 || 2 | m_2 | a_2 || 3 | m_3 | a_3 || 4 | m_4 | a_4 || 5 | m_5 | a_5 |2. 实验数据处理根据实验记录的数据,我们可以计算每组实验的物体加速度。
实验数据得出的物体质量分别为:m_1, m_2, m_3, m_4, m_5。
实验数据得出的物体加速度分别为:a_1, a_2, a_3, a_4, a_5。
五、实验结果分析通过实验数据处理,我们可以绘制物体质量与物体加速度的关系图,并通过该图来验证牛顿第二定律。
六、结论通过本次实验,我们验证了牛顿第二定律,即物体在受力作用下的加速度与受力成正比,与物体质量成反比。
实验数据的结果与理论预期相符,说明牛顿第二定律在实验中得到了验证。
七、实验小结本次实验通过实际操作验证了牛顿第二定律,并通过数据分析和结果分析得到了符合预期的实验结果。
实验过程中我们注意了实验数据的准确记录和实验环境的控制,确保了实验结果的可靠性。
实验的成功进行不仅加深了我们对牛顿第二定律的理解,也提高了我们的实验操作能力。
牛顿第二定律的验证实验

牛顿第二定律的验证实验牛顿第二定律是经典力学的基础定律之一,它描述了物体的运动与外力之间的关系。
根据牛顿第二定律,物体所受的净力等于物体质量与加速度的乘积,即F=ma,其中F是物体所受的净力,m是物体的质量,a是物体的加速度。
为了验证牛顿第二定律,我们可以进行如下的实验。
首先,我们需要准备一台平滑的、无摩擦的水平桌面。
在桌面上放置一块光滑的小物体,比如一个小木块。
然后,我们需要一个弹性绳,一段绳子的一端绑在小木块上,另一端则固定在桌子上的一个固定点。
还需要一个质量盘,可以向小木块施加一个恒定的水平拉力。
接下来,我们需要测量小木块的质量,并记录下来。
然后,我们需要测量质量盘的质量,并记录下来。
根据牛顿第二定律的公式F=ma,我们可以解出所需施加的净力F。
接下来,我们开始实验。
首先,我们在质量盘上加上一个适当的质量,使其施加的拉力F恒定不变。
然后,我们可以用一个计时器来测量小木块从静止开始加速到一定速度所经过的时间。
记录下测量结果。
通过测量小木块的加速度,我们可以使用牛顿第二定律的公式F=ma来计算施加在小木块上的净力。
比如,如果小木块的质量为m,加速度为a,那么净力F=ma。
将这个净力与之前计算得到的净力值进行比较,如果两个净力值非常接近,那就可以说明牛顿第二定律被验证了。
为了提高实验的准确性,我们可以重复多次实验,并计算出它们的平均值。
还可以通过增加或减小施加在小木块上的质量盘的质量来改变净力的大小,以验证牛顿第二定律在不同净力条件下的可靠性。
这个实验不仅验证了牛顿第二定律,还给我们提供了一种测量物体质量和加速度的方法。
同时,还可以通过施加不同大小的外力,研究物体质量、加速度和净力之间的关系,进一步深入理解牛顿第二定律。
在实际应用中,牛顿第二定律的验证对于物理学、工程学等领域具有重要意义。
例如,在汽车行驶过程中,通过测量车辆的一些参数,如质量、加速度和施加在车辆上的净力,可以得到车辆的动力学特性,进而优化车辆设计,提高行驶的安全性和舒适性。
牛顿第二定律的实验

牛顿第二定律的实验引言:牛顿第二定律是经典力学中的重要定律之一,它表明物体的加速度与作用于物体上的力成正比,与物体的质量成反比。
为了验证牛顿第二定律,科学家们进行了许多实验。
本文将介绍其中几个经典的牛顿第二定律实验,并解释实验结果与定律之间的关系。
实验一:斜面实验在斜面实验中,我们将一块小木块放在一个倾斜的平面上。
通过测量木块下滑的加速度和斜面的倾角,可以验证牛顿第二定律。
实验装置:- 斜面:具有一定倾角的平面。
- 小木块:质量为m的物体。
- 测量工具:包括测量斜面倾角的仪器和测量小木块加速度的装置。
实验步骤:1. 调整斜面的倾角,确保斜面保持稳定。
2. 将小木块放在斜面的顶端,并松开。
3. 记录木块下滑的时间t。
4. 根据木块的下滑距离和时间,计算出木块的加速度a。
实验结果:根据实验数据的分析,我们可以得到木块的加速度与斜面倾角成正比。
这与牛顿第二定律的预测相符,即物体的加速度与作用于物体上的力成正比。
实验二:弹簧实验在弹簧实验中,我们将一块质量为m的物体挂在弹簧上,并通过测量弹簧的伸长量和物体的加速度来验证牛顿第二定律。
实验装置:- 弹簧:具有一定的弹性系数。
- 物体:质量为m的物体。
- 测量工具:包括测量弹簧伸长量和物体加速度的装置。
实验步骤:1. 将物体挂在弹簧上,使其达到平衡位置。
2. 施加一个水平方向的力F,使物体开始运动。
3. 记录物体的加速度a和弹簧的伸长量x。
4. 根据弹簧的弹性系数k和伸长量x,计算出物体所受的力F。
实验结果:实验数据的分析显示,物体的加速度与所受的力成正比。
这与牛顿第二定律的预测一致,即物体的加速度与作用于物体上的力成正比。
实验三:自由落体实验在自由落体实验中,我们通过测量物体自由下落的加速度来验证牛顿第二定律。
实验装置:- 物体:质量为m的物体。
- 测量工具:包括计时器和测量下落距离的装置。
实验步骤:1. 将物体从一定高度h自由下落。
2. 记录物体下落的时间t。
牛顿第二定律的验证

牛顿第二定律的验证【实验目的】1. 熟悉气垫导轨的构造,掌握正确的调整方法。
2. 熟悉用光电测量系统测量短时间的方法。
3. 验证牛顿第二定律。
【实验仪器】气垫导轨、气源、存贮式数字毫秒计、砝码、砝码盘、细线【实验原理】设一物体的质量为M ,运动的加速度为a ,所受的合外力为F ,则按牛顿第二定律有如下关系:ma F = (1)此定律分两步验证:(1)验证物体质量M 一定时,所获得的加速度a 与所受的合外力F 成正比。
(2)验证物体所受合外力F 一定时,物体运动的质量M 与加速度a 成反比。
实验时,如图1,将滑块和砝码盘相连并挂在滑轮上,对于滑块、砝码盘、砝码这一运动系统,其所受合外力G 的大小等于砝码和砝码盘的重力减去阻力的总和,在此实验中由于应用了水平气垫导轨,所以摩擦阻力较小,可略去不计,因此作用在运动系统上的合外力G 的大小为砝码和砝码盘的重力之和。
图1 验证牛顿第二定律系统因此按牛顿第二定律:a m n n m m Ma g m n m G ])([)(22110220+++==+= (2)其中砝码盘的质量为m 0,加在砝码盘中砝码的质量为n 2m 2(每个砝码的质量为m 2,共加了n 2个),滑块的质量为m 1,加在滑块上砝码的质量为n 1m 2(共加了n 1个)。
则运动系统的总质量M 为上述各部分质量之和。
从(2)式看,由于各部分质量均可精确测量,因此只需精确测量出加速度a 即可验证牛顿第二定律。
现给出加速度a 的测量方法:在导轨上相距为s 的两处,放置两光电门K 1和K 2,测出此系统在合外力G 作用下滑块通过两光电门时的速度分别为v 1和v 2。
则系统的加速度a 等于sv v a 22122-=(3) 因此,问题简化为测量出滑块通过两光电门时的速度,滑块的速度按以下原理测量:挡光片的形状如图2所示,把挡光片固定在滑块上,挡光片两次挡光的前缘'11和'22之间的距离为x ∆。
验证牛顿第二定律的实验方法以及原理说明

验证牛顿第二定律的实验方法以及原理说明1、实验方法采用控制变量法,即当研究的某个物理量与两个以上的其他物理量的变化有关时,分别研究该物理量与其中一个物理量之间的变化关系,而设法控制其他物理量不发生变化的一种方法;本实验中,小车加速度a的大小、方向由外力F、小车质量M共同确定;研究加速度a 与F及M的关系时:1控制小车的质量M不变,讨论a与F的关系;2再控制砂和砂桶的质量不变即F不变,改变小车的质量M,讨论a与M的关系;3综合起来,得出a与F、M之间的定量关系;2、实验思想方法等效法小车在长木板上运动时由于要受到摩擦阻力作用,且在改变小车质量时摩擦阻力随之改变,这将给实验带来很多麻烦;例如,要测知动摩擦因数,计算每改变小车质量后的摩擦阻力,或每改变小车质量后都用“牵引法”调试平衡;本实验中,巧妙地采用了平衡摩擦阻力的方法:将长木板一端垫起,让小车重力沿斜面的分力把摩擦阻力平衡掉,即等效于小车不受擦擦阻力作用,绳对小车的拉力即为车所受的合外力;同时小车质量改变后无需重新调试,从而简化了实验程序及计算过程;3、实验的必要条件1小车质量M远大于砂及桶的总质量m,从而近似认为对小车的拉力T等于砂及桶的重力mg;注意:严格地说,细绳对小车的拉力T并不等于砂和砂桶的重力mg,而是;推导如下:对砂桶、小车整个系统有:①对小车:②由①②得:由于因此;若允许实验误差在5%之内,则由由此,在实验中控制一般说:时,则可认为,由此造成的系统误差小于5%;4、数据处理图像法在画和图像时,多取点、均分布,达到一种统计平均以减小误差的目的;同时注意不分析图像,因为两者成不成反比关系不易直接观察;5、实验的进一步改进本实验以小车为研究对象,以砂桶重力替代牵引力,产生了系统误差;要消除这种误差,可以以小车与砂桶组成的系统为研究对象;则该系统质量,系统所受拉力;验证a与F关系时,要保证恒定,可最初在小车上放几个小砝码,逐一把小砝码移至砂桶中,以改变每次的外力;验证a与总质量的关系时,要保证砂、桶重力不变,可在小车上逐一加放小砝码,以改变每次总质量;其他方法步骤同原来一样;。
验证牛顿第二定律

验证牛顿第二定律一、实验原理与方法1.验证牛顿运动定律的实验依据是F=Ma.本实验中有力F、质量M和加速度a三个变量,研究加速度a与F及M的关系时,先控制质量M不变,讨论加速度a与力F的关系;然后再控制力F不变,讨论加速度a与质量M的关系.2.实验中需要测量的物理量和测量方法是小车及砝码的总质量M,用天平测出.小车受到的拉力F认为等于重物的重力mg.小车的加速度a利用纸带根据Δs=aT2计算.二、实验器材打点计时器、纸带、小车、一端附有定滑轮的长木板、重物、细绳、低压交流电源、导线、天平(带有一套砝码)、刻度尺、砝码.三、实验步骤及数据处理1.用天平测出小车和砝码的总质量M,重物的质量m,把数值记录下来.2.按如图所示把实验器材安装好,只是不把悬挂重物的细绳系在车上,即不给小车加牵引力.3.平衡摩擦力:在长木板不带定滑轮的一端下面垫一块木板.反复移动木板的位置,直至小车在斜面上运动时可以保持匀速直线运动状态.这时,小车拖着纸带运动时受到的摩擦阻力恰好与小车所受的重力沿斜面方向上的分力平衡.4.把细绳系在小车上并绕过滑轮悬挂重物,先接通电源再放开小车,打点计时器在纸带上打下一系列的点,打完点后切断电源,取下纸带,在纸带上标上纸带号码.5.保持小车和砝码的质量不变,在小盘里放入适量的砝码,把小盘和砝码的总质量m′记录下来,重复步骤4.6.重复步骤5两次,得到三条纸带.7.在每条纸带上都选取一段比较理想的部分,标明计数点,测量计数点间的距离,算出每条纸带上的加速度的值.8.用纵坐标表示加速度a,横坐标表示作用力F,作用力的大小F等于小盘和砝码的总重力,根据实验结果在坐标平面上画出相应的点,如果这些点是在一条过原点的直线上,便证明了加速度与作用力成正比.9.保持小盘和砝码的质量不变,在小车上加砝码,重复上面的实验,用纵坐标表示加速度a,横坐标表示小车和砝码总质量的倒数,根据实验结果在坐标平面上画出相应的点.如果这些点是在一条过原点的直线上,就证明了加速度与质量成反比.四、注意事项1.平衡摩擦力时,不要将悬挂重物的细线系在小车上,即不要给小车施加牵引力,并且让小车拖着打点的纸带运动.2.平衡摩擦力后,无论如何改变重物或小车和砝码的质量,都不需要重新平衡摩擦力.但必须保证细绳与长木板平行.3.每条纸带必须在满足小车与车上所加砝码的总质量远大于重物的质量的条件下打出.只有如此,重物的重力才可视为小车受到的拉力.4.改变拉力和小车质量后,每次开始时小车应尽量靠近打点计时器,并应先接通电源,再放开小车,且应在小车到达滑轮前按住小车.5.作图时两轴标度比例要选择适当,各量采用国际单位,要使尽可能多的点在所作直线上,其余点尽可能均匀分布在直线两侧,舍去个别误差较大的点.五、误差分析1质量的测量误差、纸带上打点计时器打点间隔距离的测量误差、拉线或纸带不与木板平行等都会造成差.2.因实验原理不完善造成误差本实验中用重物的重力代替小车受到的拉力(实际上小车受到的拉力要小于重物的重力),存在系统误差.重物的质量越接近小车的质量,误差就越大;反之,重物的质量越小于小车的质量,误差就越小.3.平衡摩擦力不准造成误差:平衡摩擦力不好,会使小车受到的拉力不是合外力,造成实验结果有误差.【例1】(2010年北京西城抽测)某同学采用如图(甲)所示的装置验证规律:“物体质量一定,其加速度与所受合力成正比”.a.按图(甲)把实验器材安装好,不挂配重,反复移动垫木直到小车做匀速直线运动;b.把细线系在小车上并绕过定滑轮悬挂配重,接通电源,放开小车,打点计时器在被小车带动的纸带上打下一系列点,取下纸带,在纸带上写上编号;c.保持小车的质量M不变,多次改变配重的质量m,重复步骤b;d.算出每条纸带对应的加速度的值;e.用纵坐标表示加速度a,横坐标表示配重受的重力mg(作为小车受到的合力F),作出a-F图象.(1)在步骤d中,该同学是采用vt图象来求加速度的.图(乙)为实验中打出的一条纸带的一部分,纸带上标出了连续的3个计数点,依次为B、C、D,相邻计数点之间还有4个计数点没有标出.打点计时器接在频率为50 Hz的交流电源上.打点计时器打C点时,小车的速度为______ m/s;(2)其余各点的速度都标在了vt坐标系中,如图(丙)所示.t=0.10s时,打点计时器恰好打B点.请你将(乙)中所得结果标在图(丙)所示的坐标系中,并作出小车运动的vt图线;利用图线求出小车此次运动的加速度a=______ m/s2.【例2】(2009年上海卷)如图为“用DIS(位移传感器、数据采集器、计算机)研究加速度与力的关系”的实验装置.(1)在该实验中必须采用控制变量法,应保持________不变,用钩码所受的重力作为________,用DIS测小车的加速度.(2)改变所挂钩码的数量,多次重复测量.在某次实验中根据测得的多组数据可画出aF关系图线(如图所示).①分析此图线的OA段可得出的实验结论是②此图线的AB段明显偏离直线,造成此误差的主要原因是()A.小车与轨道之间存在摩擦B.导轨保持了水平状态C.所挂钩码的总质量太大D.所用小车的质量太大1、现要验证“当质量一定时,物体运动的加速度与它所受的合外力成正比”这一物理规律。
验证牛顿第二定律实验(经典实用)

验证牛顿第二定律实验(经典实用)牛顿第二定律是物理学中最基本的定律之一,它描述了力、质量和加速度之间的关系。
根据牛顿第二定律,当一个物体受到某个力时,它将产生一个与该力成正比的加速度。
为了验证这个定律,我们进行了以下实验。
材料和设备:1. 测力计2. 密度计3. 弹簧锁定器4. 钩子5. 不同质量的球(如网球、篮球等)6. 直尺7. 计时器实验步骤:1. 将测力计连接到弹簧锁定器上,并挂在墙上。
确保测力计在水平位置上。
2. 将一个球放在钩子上,用密度计测量球的质量,记录下来。
3. 将钩子连接到测力计上,并使球悬挂在测力计下部。
4. 确保测力计和球都处于静止状态,开始记录时间。
5. 用手推动球,使其产生运动,同时用计时器记录球的运动时间。
6. 通过观察测力计的读数,记录下球运动时受到的力。
7. 重复以上步骤,使用不同质量的球进行实验。
8. 将记录的数据绘制成图表,将加速度与受力之间的关系进行对比。
实验结果:根据实验数据,我们得出以下结论:1. 受力和球质量之间具有线性关系,即受力越大,球的加速度越大。
这符合牛顿第二定律的描述。
2. 每种球的加速度都不相同,这是由于不同球的质量不同,受到的力也不同。
3. 当球的质量增加时,受到的力也相应增加,但加速度的增长速度较慢。
这与牛顿第二定律中的质量项有关。
结论:实验结果证实了牛顿第二定律的正确性。
根据实验数据,受力和加速度具有线性关系,为F=ma。
这个定律被广泛应用于物理学、工程学和其他领域,对于理解运动的本质和设计新技术发挥重要作用。
牛顿第二定律的实验验证

牛顿第二定律的实验验证牛顿第二定律是经典力学的基本定律之一,描述了物体所受力与物体加速度之间的关系。
为了验证牛顿第二定律的有效性,科学家们进行了一系列精确而详尽的实验。
本文将介绍其中几个重要的实验,并阐述其对牛顿第二定律的验证。
实验一:自由落体实验自由落体实验是验证牛顿第二定律的经典实验之一。
实验的基本原理是,当物体在重力作用下自由下落时,其加速度恒定且与物体的质量无关。
实验中,我们可以通过测量下落物体的加速度和质量来验证牛顿第二定律。
为了进行自由落体实验,我们可以选择一个平滑的斜面,在其上方固定一个轻质滑轮。
将一轻质物体(例如小球)系于滑轮上的细线上,使其通过轻质滑轮自由下落。
通过测量小球下落的时间和下落距离,我们可以得到加速度。
然后,我们可以通过改变小球的质量(例如更换不同重量的小球)来进一步验证牛顿第二定律的成立。
实验二:拉力实验拉力实验也是验证牛顿第二定律的重要实验之一。
在这个实验中,我们通过测量施加在物体上的拉力和物体的加速度来验证牛顿第二定律。
为了进行拉力实验,我们可以通过固定一个滑轮和一根细线将物体连接在一起。
在细线的另一端,我们可以施加一个恒定的拉力。
通过测量物体的加速度,并记录施加在物体上的拉力和物体的质量,我们可以得到拉力与加速度之间的关系。
实验结果将表明,牛顿第二定律在这种情况下成立。
实验三:弹簧实验弹簧实验也是验证牛顿第二定律的一种常见实验方法。
在这个实验中,我们通过测量受力物体的位移和加速度,以及弹簧的劲度系数来验证牛顿第二定律。
为了进行弹簧实验,我们可以利用一根弹簧,并将其固定在水平支架上。
通过将物体连接在弹簧的一端,并对物体施加一个恒定的力,我们可以观察到物体受力后的反弹位移,进而测量物体的加速度。
通过记录施加的力、物体的质量和位移,我们可以计算得到弹簧的劲度系数。
实验结果将进一步验证牛顿第二定律的有效性。
总结通过进行自由落体实验、拉力实验和弹簧实验等一系列实验,我们可以确信牛顿第二定律的真实性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
车和车内砝码总质量的倒数
,在坐标平面上根据实验结果描出相
应的点并作图线,若M图线1 M为一条过原点的直线,就证明了研究对象所受
作用力不变时其加速度与它的质量成反比。
注意事项: 1.砂和小桶的总质量不要超过小车和砝码的总质量的1/10,为什么?
2.在平衡摩擦力时,不要悬挂小桶,但小车应连着纸带且接通电源。 用手给小车一个初速度,如果在纸带上打出的点的间隔是均匀的,表明 小车受到的阻力跟它的重力沿斜面向下的分力平衡。
木块的质量应远大于重物的质量 ;
实验前将木板右端稍垫高,直至木块在细线未挂上重物时能沿木 板匀速下滑 。
11.在探究加速度与物体所受合外力和质量间的关系时,采用如图所 示的实验装置,小车及车中的砝码质量用M表示,盘及盘中的砝码 质量用m表示,小车的加速度可由小车后拖动的纸带由打点计数器打 上的点计算出:
验证牛顿第二定律
实验目的: 验证牛顿第二定律。
实验原理:
1.如图所示装置,保持小车质量M不变,改变小桶内砂的质量m,从 而改变细线对小车的牵引力F(当m<<M时,F=mg近似成立),测出小车
的对应加速度a,由多组a、F数据作出加速度和力的关系a-F图线,验证
加速度是否与外力成正比。
M 纸带 打点计时器
实验步骤: 1.用调整好的天平测出小车和小桶的质量M和m ,把数据记录下来。
2.按如图装置把实验器材安装好,只是不把挂小桶用的细线系在小车上 ,即不给小车加牵引力。 3.平衡摩擦力:在长木板的不带定滑轮的一端下面垫上垫块,反复移动 垫块的位置,直至小车在斜面上运动时可以保持匀速直线运动状态(可以 从纸带上打的点是否均匀来判断)。
7.用纵坐标表示加速度a,横坐标表示作用力F,即砂和桶的总重力 (m+m')g,根据实验结果在坐标平面上描出相应的点,作图线。若图线 为一条过原点的直线,就证明了研究对象质量不变时其加速度与它所 受作用力成正比。
8.保持砂和小桶的质量不变,在小车上加放砝码,重复上面的实验,
并做好记录,求出相应的加速度,用纵坐标表示加速度a,横坐标表示小
(1)当M与m的大小关系满足 拉力大小等于盘和砝码的重力。
时,才可以认为绳子对小车的 m<<M
M
打点计数器
纸带
m
(2)一组同学在先保持盘及盘中的砝码质量一定,探究做加速度与质量的关系,
以下做法错误的是:(
)
ACD
A.平衡摩擦力时,应将盘及盘中的砝码用细绳通过定滑轮系在小车上
B.每次改变小车的质量时,不需要重新平衡摩擦力
单位:(cm)
s1 s2 s3
s4 甲
s5
s6
重物
电源插头
木块 纸带
打点计时器
乙
解: (1)木块的加速度,
a
(S4
S5
S6) ( S1 9T0 2
S2
S3
)
(2)细线对木块的拉力
T
mg
ma
mg
m
(
S4
S5
S6 ) ( 9T0 2
S1
S3
S3
)
(3)为了减少误差, 应采取的措施:
C.实验时,先放开小车,再接通打点计时器电源
D.小车运动的加速度可用天平测出m以及小车质量M,直接用公式 a=
mg/M求Байду номын сангаас。
(3)在保持小车及车中的砝码质量质量M一定,探究加速度与所受合外力的
关系时,由于平衡摩擦力时操作不当,二位同学得到的a―F关系
分别如下图C、D所示(a是小车
的加速度.F是细线作用于小车
2.保持小桶和砂的质量不变,
在小车上加减砝码, 改变小车
m
的质量M,测出小车的对应加速度a, 由多组a、M数据作出加速度和质量
倒数的关系a-M-1图线, 验证加速度是否与质量成反比。
实验器材:小车,砝码,小桶,砂, 细线,附有定滑轮的长木板,垫块, 打点计时器,低压交流电源, 导线两根, 纸带,托盘天平及砝码,刻度尺 。
a
a
的拉力)。其原因分别是:
F
0C
0
F D
C图: 平衡摩擦力时,长木板的倾角过大了 ,
D图: 没有平衡摩擦力或木板的倾角过小 。
3.作图时应该使所作的直线通过尽可能多的点,不在直线上的点也要尽 可能对称地分布在直线的两侧,但如遇个别特别偏离的点可舍去。
11.(10分)在探究加速度与物体质量、物体受力的关系实验中,实验装
置如图乙所示:一木块放在水平光滑长木板上,左侧拴有一不可伸长的 细软线,跨过固定在木板边缘的滑轮与一重物相连,重物的质量为m .木
块右侧与穿过打点计时器的纸带相连,在重物牵引下,木块在木板上向 左做匀加速运动.图甲给出了打点计时器在纸带上打出的一些连续的点, 它们之间的距离分别为S1、S2、S3、S4、S5、S6,打点计时器所用交流电 周期为T0. 根据给以上数据求:
(1)木块的加速度a=
.
(2)细线对木块的拉力T=
.
(3)为了减少误差,你认为应采取什么措施?
4.在小车上加放砝码,小桶里放入适量的砂,把砝码和砂的质量M'和 m'记录下来。把细线系在小车上并绕过滑轮悬挂小桶,接通电源,放开小 车,打点计时器在纸带上打下一系列点,取下纸带,在纸带上写上编号.
5.保持小车的质量不变,改变砂的质量(要用天平称量),按步骤4再 做5次实验。
6.算出每条纸带对应的加速度的值。