中考数学方程与方程组典型例题讲解,初中数学方程与方程组的解法试题及答案解析

中考数学方程与方程组典型例题讲解,初中数学方程与方程组的解法试题及答案解析
中考数学方程与方程组典型例题讲解,初中数学方程与方程组的解法试题及答案解析

线性代数第3章_线性方程组习题解答

习题3 3-1.求下列齐次线性方程组的通解: (1)?? ? ??=--=--=+-087305302z y x z y x z y x . 解 对系数矩阵施行行初等变换,得 ???? ? ??-----?→?????? ??-----=144072021 1873153211A )(000720211阶梯形矩阵B =???? ? ??-?→? ??? ?? ??-?→?0002720211)(000271021101行最简形矩阵C =????? ? ???→? , 与原方程组同解的齐次线性方程组为 ??? ??? ?=+=+02702 11 z y z x , 即 ??? ??? ?-=-=z y z x 272 11(其中z 是自由未知量), 令1=z ,得到方程组的一个基础解系 T )1,2 7,211(-- =ξ, 所以,方程组的通解为

,)1,2 7,211(T k k -- =ξk 为任意常数. (2)??? ??=+++=+++=++++0 86530543207224321 432154321x x x x x x x x x x x x x . 解 对系数矩阵施行行初等变换,得 ???? ? ??--?→?????? ??=21202014101072211086530543272211A )(7000014101072211阶梯形矩阵B =????? ??-?→? ???? ? ??-?→?70000141010211201 )(100000101001201行最简形矩阵C =???? ? ???→?, 与原方程组同解的齐次线性方程组为 ??? ??==+=++00 025 42431x x x x x x , 即 ??? ??=-=--=025 4 2431x x x x x x (其中43,x x 是自由未知量), 令34(,)T x x =(1,0)T ,(0,1)T ,得到方程组的一个基础解系 T )0,0,1,0,2(1-=ξ,T )0,1,0,1,1(2--=ξ, 所以,方程组的通解为

初中数学最值问题典型例题

初中数学《最值问题》典型例题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 轴 对 称 最 值 图形 l P B A N M l B A A P B l 原理两点之间线段最短两点之间线段最短三角形三边关系 特征 A,B为定点,l为定直 线,P为直线l上的一 个动点,求AP+BP的 最小值 A,B为定点,l为定直线, MN为直线l上的一条动线 段,求AM+BN的最小值 A,B为定点,l为定直线, P为直线l上的一个动 点,求|AP-BP|的最大值转化 作其中一个定点关于定 直线l的对称点 先平移AM或BN使M,N 重合,然后作其中一个定 点关于定直线l的对称点 作其中一个定点关于定 直线l的对称点 折 叠 最 值 图形 B' N M C A B 原理两点之间线段最短 特征 在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折, B点的对应点为B',连接AB',求AB'的最小值. 转化转化成求AB'+B'N+NC的最小值 1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN 的周长的最小值为. 【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN 的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵PC关于OA对称, ∴∠COP=2∠AOP,OC=OP 同理,∠DOP=2∠BOP,OP=OD ∴∠COD=∠COP+∠DOP=2(∠AOP+∠BOP)=2∠AOB=90°,OC=OD.

初中数学10大解题方法及典型例题详解

初中数学10大解题方法及典型例题详解 1、配方法 所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。 例题: 用配方法解方程x2+4x+1=0,经过配方,得到( ) A.(x+2) 2=5 B.(x-2) 2=5 C.(x-2) 2=3 D.(x+2) 2=3 【分析】配方法:若二次项系数为1,则常数项是一次项系数的一半的平方,若二次项系数不为1,则可先提取二次项系数,将其化为1后再计算。【解】将方程x2+4x+1=0, 移向得:x2+4x=-1, 配方得:x2+4x+4=-1+4, 即(x+2) 2=3; 因此选D。 2、因式分解法 因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 例题: 若多项式x2+mx-3因式分解的结果为(x-1)(x+3),则m的值为()A.-2 B.2 C.0 D.1 【分析】根据因式分解与整式乘法是相反方向的变形,先将(x-1)(x+3)乘法公式展开,再根据对应项系数相等求出m的值。

【解】∵x2+mx-3因式分解的结果为(x-1)(x+3), 即x2+mx-3=(x-1)(x+3), ∴x2+mx-3=(x-1)(x+3)=x2+2x-3, ∴m=2; 因此选B。 3、换元法 换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。 例题: 已知(x2+y2+1)(x2+y2+3)=8,则x2+y2的值为() A.-5或1 B.1 C.5 D.5或-1 【分析】解题时把x2+y2当成一个整体来考虑,再运用因式分解法就比较简单【解】设x2+y2=t,t≥0,则原方程变形得 (t+1)(t+3)=8,化简得: (t+5)(t-1)=0, 解得:t 1=-5,t 2 =1 又t≥0 ∴t=1 ∴x2+y2的值为只能是1. 因此选B. 4、判别式法与韦达定理 一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。 韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求

初中数学专题典型例题训练

第一讲:实数与代数专题典型例题讲解 一实数 1. 例:在14-和15 -之间,请写出两个有理数: . 2. 有理数2 2 3 1 2, (2), 2, 2 ---- 按从小到大的顺序排列是( ) A .322122< (2) 2-<--<-, B . 223 12< (2) 22 -<--<- C . 22312< (2) 22-<--<-, D . 232 12< 2(2)2 -<--<- 3. 将一刻度尺如图所示放在数轴上 (数轴的单位长度是1CM ),刻度尺上的“0cm ”和 “15cm ”分别对应数轴上的-3.6和x ,则( ) A .9<x <10; B .10<x <11; C .11<x <12; D .12<x <13; 4. 下列说法正确的是( ) A .互为相反数的两个数一定不相等; B .互为倒数的两个数一定不相等; C .互为相反数的两个数的绝对值相等; D .互为倒数的两个数的绝对值相等; 5. 若3x -和7x -是某个实数的平方根,则x = . 6. 若函数()f x 、()g x 满足()()0f x g x +=,当2()f x x x =-+,则函数()g x 的最小值为: 7. 有理数A 、B 、C 在数轴上的位置如图所示,则式子|A |+|B |+|A +B |+|B -C |化简结果为.[ ]. .A .2A +3B -C...B .3B -C..C .B +C....D .C -- 8. 若|A -2|=2-A ,求A 的取值范围。 9. 已知:|x -2|+x -2=0,.求:(1)x +2的最大值; 10. 单项式3x y π - 的系数是_______,次数是_____。 11. 如果21 13 m n a b +--与5 4a b 的同类项,则M =_____,N =_________。 12. 如图.在正方形ABCD 的边长为3,以A 为圆心,2为半径作圆弧.以D 为圆心, 3为半径作圆弧.若图中阴影部分的面积分为S 1、S 2.则S 1-S 2= . 13. 以Rt △ACB 两条直角边为直径向外作半圆,如图,其面积分别为1S 和2S ,若△ABC 的面积为S ,则12,S S 与S 的关系为 . 14. 若2 2(3)16x m x +-+是完全平方式,则m 的值为: . 15. 若m 2+m -1=0,求m 3+2m 2+2015的值. 16. 若0,0,x xy <<则15y x x y -+---=

线性方程组典型习题及解答

线性方程组 1. 用消元法解方程组?????? ?=- +-+=-- + - =-+-+ =- -+-5 2522220 21 22325 4 321 53 2 154321 5 4321x x x x x x x x x x x x x x x x x x x . 解: 方程组的增广矩阵 : ????? ???????---------→????????????---------→????????????---------420200110100112430211321312630202530112430211321512522110112121111211321? ??? ????? ???--------→60000 0110100112430211321,可知,系数矩阵的秩为3,增广矩阵的秩为4,系数矩阵的秩不等于增广矩阵的秩,从而方程组无解. 2. 讨论λ为何值时,方程组??? ??=++ = + +=++2 3 2 1 3 2 1 321 1 λλλλλx x x x x x x x x 有唯一解、无解和有无穷多解。 解:将方程组的增广矩阵进行初等行变换,变为行阶梯矩阵。 ()() ()()B A =??? ? ???? ? ?+------→→???? ????? ?→?? ??? ?????=22 2 2211210 1101 111 1 11111 1 1 1 111λλλλλλλ λλλ λλλλλλλ λλ λΛ于是,当2,1-≠λ时,系数矩阵的秩等于增广矩阵的秩,都等于3,等于未知量的个数,此 时方程组有唯一解;2 )1(,21,213 321++-=+=++- =λλλλλx x x 当2-=λ时,系数矩阵的秩为2,增广矩阵的秩为3,此时方程组无解; 当1=λ时,系数矩阵的秩等于增广矩阵的秩,都等于1,小于未知量的个数,此时方程组有无穷多解,即3211x x x --=,其中32,x x 为自由未知量。

初中数学知识要点及典型例题

初中数学知识要点及典型例题 第一章实数 第一讲实数的有关概念 【回顾与思考】 知识点:有理数、无理数、实数、非负数、相反数、倒数、数的绝对值 课标要求: 1.使学生复习巩固有理数、实数的有关概念. 2.了解有理数、无理数以及实数的有关概念;理解数轴、相反数、绝对值等概念,了解数的绝对值的几何意义。 3.会求一个数的相反数和绝对值,会比较实数的大小 4.画数轴,了解实数与数轴上的点一一对应,能用数轴上的点表示实数,会利用数轴比较大小。 考查重点: 1.有理数、无理数、实数、非负数概念; 2.相反数、倒数、数的绝对值概念; 3.在已知中,以非负数a2、|a|、 a (a≥0)之和为零作为条件,解决有关问题。 实数的有关概念

(1)实数的组成 {} ?????????????????????????????????正整数整数零负整数有理数有尽小数或无尽循环小数正分数实数分数负分数正无理数无理数无尽不循环小数 负无理数 (2)数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴 时,要注童上述规定的三要素缺一个不可),实数与数轴上的点是一 一对应的。数轴上任一点对应的数总大于这个点左边的点对应的数, (3)相反数 实数的相反数是一对数(只有符号不同的两个数,叫做互为相反 数,零的相反数是零). 从数轴上看,互为相反数的两个数所对应的点关于原点对称. (4)绝对值 ?? ???<-=>=)0()0(0)0(||a a a a a a 从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离 (5)倒数 实数a(a ≠0)的倒数是a 1(乘积为1的两个数,叫做互为倒数); 零没有倒数. 【例题经典】 理解实数的有关概念

麦克斯韦方程组浅析

麦克斯韦方程 摘要:本文对麦克斯韦方程组作了全面的分析和阐述,主要包括:麦克斯韦方程组的建立与推导,麦克斯韦方程组的表现形式及其意义,麦克斯韦方程组的应用等三个方面的内容。 关键词:麦克斯韦方程组 库仑定律 毕奥—萨伐尔定律 法拉第定律 引言:麦克斯韦方程组是英国物理学家詹姆斯·麦克斯韦在1865年英国皇家学会上发表的《电磁场的动力学理论》中提出来的。麦克斯韦在全面深入的审视了库仑定律、毕奥—萨伐尔定律和法拉第定律的基础上,经过长达十年的研究后才得到的成果。可以说,麦克斯韦方程组概括了电磁场的基本性质和规律,构成完整的经典电磁场理论体系。它与洛伦磁力方程共同组成经典电磁学的基础方程,其重要性不言而喻。 一 、麦克斯韦方程组的建立与推导 1、麦克斯韦方程组的建立 麦克斯韦方程组是经典电磁学理论的核心,因此麦克斯韦方程组的建立过程实际上就是经典电磁学理论的建立过程。 到1845年,关于电磁现象的三个基本实验定律:库仑定律、毕奥—萨伐尔定律和法拉第定律已经被总结出来,这为麦克斯韦方程组的建立提供了理论基础。此外,19世纪30年代,法拉第创造性的提出了场和场线的概念,结束了长期以来科学历史上关于超距作用与近距作用的争论。随后,场的思想逐渐完善,科学家们建立了较为成熟的电磁场概念,这对麦克斯韦的工作具有极大的帮助。 1855年,麦克斯韦开始了电磁学基础理论方面的研究。在随后的十年里,他相继发表了《论法拉第力线》、《论物理力线》、《电磁场的动力学理论》等三篇论文。麦克斯韦建立电磁理论的过程大致可分为三步:第一步,麦克斯韦分析总结了电磁学已有的成果,提出感生电场的概念;第二步,他设计了电磁作用的力学模型,对已经确立的电学量和磁学量之间的关系给以物理解释。第三步,他把近距作用理论引向深入,明确地提出了电磁场的概念,并且全面阐述了电磁场的含义,建立了电磁场的普遍方程即麦克斯韦方程组。【1】 2、麦克斯韦方程组的推导 我们先来考察一下库仑定律: r e F 2 00 14r q q πε= 因为q F E =,所以E = r e 2 004r q πε。 (1)电场高斯定律推导 (a) 对于真空中静止的单个点电荷,作任意的高斯面,电荷位于面内。则有:

齐次和非齐次线性方程组的解法(整理定稿)

线性方程组解的结构(解法) 一、齐次线性方程组的解法 【定义】 r (A )= r 时,若()r A n ≤,则存在齐次线性方程组的同解方程组; $ 若()r A n >,则齐次线性方程组无解。 1、求AX = 0(A 为m n ?矩阵)通解的三步骤 (1)?? →A C 行 (行最简形); 写出同解方程组CX =0. (2) 求出CX =0的基础解系,,,n r -12ξξξ; (3) 写出通解n r n r k k k --=++ +1122X ξξξ其中k 1,k 2,…, k n-r 为任意常数.

初中数学几何证明经典题(含答案)

初中几何证明题 经典题(一) 1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150. 求证:△PBC是正三角形.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 A P C D B A F G C E B O D

3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 B

关于麦克斯韦方程组

麦克斯韦方程组▽-----乐天10518 关于热力学的方程,详见“麦克斯韦关系式”。麦克斯韦方程组(英语:Maxwell's equations)是英国物理学家麦克斯韦在19世纪建立的描述电磁场的基本方程组。它含有四个方程,不仅分别描述了电场和磁场的行为,也描述了它们之间的关系。 麦克斯韦方程组Maxwell's equations 麦克斯韦方程组是英国物理学家麦克斯韦在19世纪建立的描述电场与的四个基 本方程。 方程组的微分形式,通常称为麦克斯韦方程。在方程组中,电场和磁场已经成 为一个不可分割的整体。该方程组系统而完整地概括了电磁场的基本规律,并预言了 电磁波的存在。 麦克斯韦提出的涡旋电场和假说的核心思想是:变化的磁场可以激发涡旋电场, 变化的电场可以激发涡旋磁场;电场和磁场不是彼此孤立的,它们相互联系、相互激 发组成一个统一的电磁场。麦克斯韦进一步将电场和磁场的所有规律综合起来,建立 了完整的体系。这个电磁场理论体系的核心就是麦克斯韦方程组。 麦克斯韦方程组在中的地位,如同牛顿运动定律在力学中的地位一样。以麦克斯韦方 程组为核心的电磁理论,是经典物理学最引以自豪的成就之一。它所揭示出的的完美 统一,为物理学家树立了这样一种信念:物质的各种相互作用在更高层次上应该是统 一的。另外,这个理论被广泛地应用到技术领域。 [] 历史背景

1845年,关于电磁现象的三个最基本的实验定律:库仑定律(1785年),安培—毕奥—萨伐尔定律(1820年),法拉第定律(1831-1845年)已被总结出来,法拉第的“电力线”和“磁力线”概念已发展成“电磁场概念”。 概念的产生,也有麦克斯韦的一份功劳,这是当时物理学中一个伟大的创举,因为正是场概念的出现,使当时许多物理学家得以从牛顿“超距观念”的束缚中摆脱出来,普遍地接受了电磁作用和引力作用都是“近距作用”的思想。 1855年至1865年,麦克斯韦在全面地审视了、—毕奥—萨伐尔定律和法拉第定律的基础上,把数学分析方法带进了电磁学的研究领域,由此导致麦克斯韦电磁理论的诞生。 [] 积分形式 麦克斯韦方程组的积分形式: 麦克斯韦方程组的积分形式: 这是1873年前后,麦克斯韦提出的表述电磁场普遍规律的四个方程。 (1)描述了电场的性质。在一般情况下,电场可以是库仑电场也可以是变化磁场激发的感应电场,而感应电场是涡旋场,它的电位移线是闭合的,对封闭曲面的通量无贡献。 (2)描述了磁场的性质。磁场可以由传导电流激发,也可以由变化电场的位移电流所激发,它们的磁场都是涡旋场,磁感应线都是闭合线,对封闭曲面的通量无贡献。 (3)描述了变化的磁场激发电场的规律。 (4)描述了变化的电场激发磁场的规律。 变化场与稳恒场的关系: 当 时, 方程组就还原为静电场和稳恒磁场的方程:

初中数学最值问题典型例题(含答案分析)

中考数学最值问题总结 考查知识点:1、“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。 (2、代数计算最值问题3、二次函数中最值问题) 问题原型:饮马问题造桥选址问题(完全平方公式配方求多项式取值二次函数顶点)出题背景变式:角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。 解题总思路:找点关于线的对称点实现“折”转“直” 几何基本模型: 条件:如下左图,A、B是直线l同旁的两个定点. 问题:在直线l上确定一点P,使PA PB +的值最小. 方法:作点A关于直线l的对称点A',连结A B'交l于 点P,则PA PB A B' +=的值最小 例1、如图,四边形ABCD是正方形,△ABE是等边三 角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM. (1)求证:△AMB≌△ENB; (2)①当M点在何处时,AM+CM的值最小; ②当M点在何处时,AM+BM+CM的值最小,并说明理由; (3)当AM+BM+CM的最小值为 时,求正方形的边长。 A B A' ′ P l

例2、如图13,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0) (1)求抛物线的解析式 (2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由. (3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线M N∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.

线性方程组-练习

1.设向量组123,,ααα线性无关,向量1β可由123,,ααα线性表示,而向量2β不能由123,,ααα线性表示,则对于任意常数k ,必有( )A (A) 12312,,,k αααββ+线性无关; (B )12312,,,k αααββ+线性相关; ( C) 12312,,,k αααββ+线性无关; (D) 12312,,,k αααββ+线性相关 2.n 维向量组)1(,,,21n s s ≤≤ααα 线性无关的充要条件是 ( D ) (A) 存在一组不全为零的s k k k ,,21 ,使得02211=+++s s k k k ααα (B) s ααα ,,21 中的任何两个向量都线性无关 (C) s ααα ,,21 中存在一个向量,它不能被其余向量线性表示 (D) s ααα ,,21 中的任何一个向量都不能被其余向量线性表示 3. (1)若两个向量组等价,则它们所含向量的个数相同; (2)若向量组}{21r ααα,,, 线性无关,1+r α可由r ααα ,21,线性表出,则向量组}{121+r ααα,,, 也线性无关; (3)设}{21r ααα,,, 线性无关,则}{121-r ααα,,, 也线性无关; (4)}{21r ααα,,, 线性相关,则r α一定可由121,-r ααα ,线性表出;以上说法正确的有( A )个。 A .1 个 B .2 个 C .3 个 D .4个 4.向量组A :12,,,n ααα 与B :12,,,m βββ 等价的充要条件为( C ). A .()()R A R B =; B .()R A n =且()R B m =; C .()()(,)R A R B R A B ==; D .m n = 5.讨论a ,b 取什么值时,下面方程组有解,对有解的情形,求出一般解。 1234123423412341322235433x x x x x x x x a x x x x x x x b +++=??+++=??++=??+++=?。 答案:a =0,b =2有解;其他无解。 (-2,3,0,0)’+k1(1,-2,1,0)’+k2(1,-2,0,1)’ 6.试就k 的取值情况讨论以下线性方程组的解,并在有无穷的解时求出通解:

解线性方程组

课程设计阶段性报告 班级:学号:姓名:申报等级: 题目:线性方程组求解 1.题目要求:输入是N(N<256)元线性方程组Ax=B,输出是方程组的解,也可能无解或有多组解。可以用高斯消去法求解,也可以采用其它方法。 2.设计内容描述:将线性方程组做成增广矩阵,对增广矩阵进行变换然后采用高斯消元法消去元素,从而得到上三角矩阵,再对得到的上三角矩阵进行回代操作,即可以得到方程组的解。 3.编译环境及子函数介绍:我使用Dev-C++环境编译的,调用uptrbk() FindMax()和ExchangeRow(),uptrbk是上三角变换函数,FindMax()用于找出列向量中绝对值最大项的标号,ExchangeRow()用于交换两行 4. 程序源代码: #include #include #include //在列向量中寻找绝对值最大的项,并返回该项的标号 int FindMax(int p,int N,double *A) { int i=0,j=0; double max=0.0; for(i=p;imax) { j=i; max=fabs(A[i*(N+1)+p]); } } return j;

//交换矩阵中的两行 void ExchangeRow(int p,int j,double *A,int N) { int i=0; double C=0.0; for(i=0;i

深入浅出讲解麦克斯韦方程组

深入浅出讲解麦克斯韦方程组 前一段时间给大家发过一篇《世界上最伟大的十个公式》,排在第一位的是麦克斯韦方程,它是电磁学理论的基础,也是相对论假定光速不变的依据,可见排在十大公式之首,理所应当!为了让大家更好地理解该方程,我们找到了一篇由孙研发表在知乎上的关于麦克斯韦方程的非常完美的讲解,呈现个大家。在文章的最后,我们还为大家附上了一段讲解麦克斯韦方程的英文动画视频,如果你英文比较好,不妨看一下。以下是正文: 有人要求不讲微积分来讲解一下麦克斯韦方程组?感觉到基本不太可能啊,你不知道麦克斯韦方程组里面每个方程都是一个积分或者微分么??那既然这样,我只能躲躲闪闪,不细谈任何具体的推导和数学关系,纯粹挥挥手扯扯淡地说一说电磁学里的概念和思想。 1. 力、能、场、势 经典物理研究的一个重要对象就是力force。比如牛顿力学的核心就是F=m a这个公式,剩下的什么平抛圆周简谐运动都可以用这货加上微积分推出来。但是力有一点不好,它是个向量vector(既有大小又有方向),所以即便是简单的受力分析,想解出运动方程却难得要死。很多时候,从能量的角度出发反而问题会变得简单很多。能量energy说到底就是力在空间上的积分(能量=功=力×距离),所以和力是有紧密联系的,而且能量是个标量scalar,加减乘除十分方便。分析力学中的拉格朗日力学和哈密顿力学就绕开了力,从能量出发,算运动方程比牛顿力学要简便得多。 在电磁学里,我们通过力定义出了场field的概念。我们注意到洛仑兹力总有着F=q(E+v×B) 的形式,具体不谈,单看这个公式就会发现力和电荷(或电荷×速度)程正比。那么我们便可以刨去电荷(或电荷×速度)的部分,仅仅看剩下的这个“系数”有着怎样的动力学性质。也就是说,场是某种遍布在空间中的东西,当电荷置于场中时便会受力。具体到两个电荷间的库仑力的例子,就可以理解为一个电荷制造了电场,而另一个电荷在这个电场中受到了力,反之亦然。类似地我们也可以对能量做相同的事情,刨去能量中的电荷(或电荷×速度),剩下的部分便是势potential。 一张图表明关系: 积分 力--->能 || 场<---势 微分

线性方程组习题课

线性方程组求解 习题课

一、给定方程组123211*********x x x -???????????? =? ???????????-?????? 试考察用Jacobi 迭代法和Seidel 迭代法求解的收敛性。 解:对Jacobi 迭代法,迭代矩阵为 -1J 00.50.5B =I-D A=1010.50.50-?? ??--?????? 因为3 5 04 J I B λλλ-=+=,得特征值 1230,,22i i λλλ===- 得( )12J B ρ=> ,由定理知 Jacobi 迭代法发散。 对Seidel 迭代法,迭代矩阵为 ()1 S B D L U -=-=1 20001100.50.511000100.50.5112000000.5---?????? ??????-=--?? ??????????--?? ???? 显然,其特征值为1230,0.5λλλ===-

故()0.51s B ρ=<,由定理知Seidel 迭代法收敛。 二、设线性方程组111211212222a a x b a a x b ?????? = ??? ??????? ,11220a a ≠, 112221120a a a a -≠。证明:解线性方程组的Jacobi 迭代法和Gauss-Seidel 迭代法同时收敛或不收敛。 证明: 121 1111 122221 21 22 0000 00J a a a a B a a a a -??- ?-???? ?== ? ? ?-????- ??? ()2 1221 1122det J a a I B a a λλ-=-,故( )J B λ= ( )J B ρ= 。 1211111 1221 2212211122000000S a a a a B a a a a a a -??- ?-???? ?== ? ? ????? ?? ?

3线性方程组典型习题解析

3 线性方程组 3、1 知识要点解析(关于线性方程组的常用表达形式) 3.1.1 基本概念 1、方程组1111221n 1211222 2n 2m11m22mn m x x b x x b x x b a a a a a a a a a +++=??+++=? *???++ +=? 称为含n 个未知量m 个方程的线性方程组, i)倘若12m b ,b ,....,b 不全为零,则该线性方程组称为非齐次线性方程组; ii)若12m b =b = =b 0=,则该线性方程组就就是齐次线性方程组, 这时,我们也把该方程组称为1111221n 1211222 2n 2m11m22mn m x x x x x x a a a a a a a a a ++ +=??+++=? ???++ +=?c c c 的导出组, (其中12m c ,c ,...c 不全为零) 2、记1111 1221 n m x b x b ,x ,b x b n m mn a a A a a ???? ?? ? ? ? ? ?== ? ? ? ? ? ??? ???? = 则线性方程组(*)又可以表示为矩阵形式 x b A =** 3、又若记 1j 2j j mj ,j 1,2, n a a a α?? ? ? == ? ? ??? 则上述方程游客一写成向量形式 1122n n x x x b. ααα++ +=***。 同时,为了方便,我们记(,b)A A =,称为线性方程组(*)的增广矩阵。 3.1.2 线性方程组解的判断

1、齐次线性方程组x 0A =,(n=线性方程组中未知量的个数 对于齐次线性方程组,它就是一定有解的(至少零就就是它的解), i)那么,当r n A =秩()=时,有唯一零解; ii)当r n A =秩()<时,又非零解,且线性无关解向量的个数为n-r 、 2、非齐次线性方程组x b A = ()<() ()=()=n, ()=()()=()() A A A A A A A A A A A ?? ???????? ? ?秩秩无解;秩秩有唯一解, 秩秩秩秩有无穷多解,且基础解系个数为 -秩秩秩不可能 3.1.3 线性方程组的解空间 1、齐次线性方程组的解空间 (作为线性方程组的一个特殊情形,在根据其次线性方程与非齐次线性方程组解 的关系,我们这里首先讨论齐次线性方程组的解空间) 定理:对于数域K 上的n 元齐次线性方程组的解空间W 的维数为 A dim(W)=n-秩()=n-r , 其中A 就是方程组的系数矩阵。那么,当齐次线性方程组[(*)--ii)] 有 非零解时,它的每个基础解系所含解向量的数目都等于A n-秩()。 2、 非齐次线性方程组的解空间 我们已知线性方程组的解与非齐次线性方程组的解的关系,那么我们可 首先求出非齐次线性方程组的一个解γ0(称其为方程组特解);然后在求对应的导出组的解空间(设该解空间的基础解系为ηηη12n-r ,,...),则(*)解空间的维数为n-r,且非齐次线性方程组的每一个解都可以表示为: 2.................()k k k γηηη+?0112n-r n-r ++...+ 我们称其为该非齐次线性方程组(*)的通解、

麦克斯韦方程组的理解

麦克斯韦方程组的积分形式: 麦克斯韦方程组的积分形式: (in matter) 这是1873年前后,麦克斯韦提出的表述电磁场普遍规律的四个方程。 其中:(1)描述了电场的性质。在一般情况下,电场可以是库仑电场也可以是变化磁场激发的感应电场,而感应电场是涡旋场,它的电位移线是闭合的,对封闭曲面的通量无贡献。 (2)描述了磁场的性质。磁场可以由传导电流激发,也可以由变化电场的位移电流所激发,它们的磁场都是涡旋场,磁感应线都是闭合线,对封闭曲面的通量无贡献。 (3)描述了变化的磁场激发电场的规律。 (4)描述了变化的电场激发磁场的规律。 变化场与稳恒场的关系: 当 变化场与稳恒场的关系 时, 方程组就还原为静电场和稳恒磁场的方程: (in matter) 在没有场源的自由空间,即q=0, I=0,方程组就成为如下形式:

(in matter) 麦克斯韦方程组的积分形式反映了空间某区域的电磁场量(D、E、B、H)和场源(电荷q、电流I)之间的关系。 编辑本段 微分形式 麦克斯韦方程组微分形式:在电磁场的实际应用中,经常要知道空间逐点的电磁场量和电荷、电流之间的关系。从数学形式上,就是将麦克斯韦方程组的积分形式化为微分形式。利用矢量分析方法,可得: (in matter) 注意:(1)在不同的惯性参照系中,麦克斯韦方程有同样的形式。 (2) 应用麦克斯韦方程组解决实际问题,还要考虑介质对电磁场的影响。例如在各向同性介质中,电磁场量与介质特性量有下列关系: 在非均匀介质中,还要考虑电磁场量在界面上的边值关系。在利用t=0时场量的初值条件,原则上可以求出任一时刻空间任一点的电磁场,即E(x,y,z,t)和B(x,y,z,t)。 编辑本段 科学意义 (一)经典场论是19世纪后期麦克斯韦在总结电

线性方程组练习题

线性方程组练习题 §1 向量的线性关系 1.判断下列向量组是否线性无关: (1)????? ??-11 2,????? ??-840,????? ??-311; (2)??????? ??01014,??????? ??1521,??????? ??1202,?????? ? ??7024。 2.讨论下面向量组的线性相关性: ???????? ??12211,???????? ??-15120,???????? ??-141b a 。 3.设????? ??=1111a ,????? ??=3211a ,???? ? ??=t 311a 。 (1)问当t 为何值时,321,,a a a 线性相关? (2)问当t 为何值时,321,,a a a 线性无关? (3)当321,,a a a 线性相关时,问3a 是否可以由1a ,2a 线性表示?若能,写出具体表达式。 4.设有向量组 ??????? ??+=11111t a ,??????? ??+=22222t a ,??????? ??+=33333t a ,?????? ? ??+=t 44444a 。 问:(1)当t 为何值时,4321,,,a a a a 线性相关? (2)当t 为何值时,4321,,,a a a a 线性无关? 5.设321,,a a a 线性无关,问当参数l ,m 满足何种关系时,12a a -l ,23a a -m ,31a a -也线性无关? 6.设m a a a ,,,21 线性无关,作 211a a b +=,322a a b +=,…,m m m a a b +=--11,1a a b +=m m 。 判别m b b b ,,,21 的线性相关性。 7.设21,a a 线性无关,b a b a ++21,线性相关,问b 能否由21,a a 线性表示? 8.设321,,a a a 线性相关,432,,a a a 线性无关。问: (1)1a 能否由32,a a 线性表示; (2)4a 能否由321,,a a a 线性表示。 9.若T k k ),,0(2=b 能由T k )1,1,1(1+=a ,T k )1,1,1(2+=a ,T k )1,1,1(3+=a 唯一

线性方程组练习题(免费下载)

《线性代数》第三章练习题 一、思考题 1、设有线性方程组b AX =,其中A 为n 阶方阵,j A 为A 中第j 列元素换为b 所得行列式的值,判断下列命题是否正确? (1)若0≠A ,则b AX =有唯一解; (2)若0=A ,且至少有一)1(0n j A j ≤≤≠,则b AX =无解; (3)若0=A ,且),,2,1(0n j A j ==,则b AX =有无穷多解。 2、判断下列命题是否正确?其中A 为n m ?矩阵。 (1)非齐次线性方程组b AX =,当n m <时,有无穷多解;当n m =时,有唯一解;当n m >时,无解; (2)齐次线性方程组0=AX ,当n m <时,必有非零解; (3)非齐次线性方程组b AX =,当m A r =)(时,必相容。 3、设向量组4321,,,αααα线性无关,判断向量组14433221,,,αααααααα++++是否也线性无关。 4、判断下列命题是否正确? (1)若向量组m ααα,,,21 线性相关,则存在全不为零的数m k k k ,,,21 ,使得 02211=+++m m k k k ααα ; (2)若向量组m ααα,,,21 线性相关,且有02211=+++m m k k k ααα ,则 m k k k ,,,21 必不全为零; (3)若当数021====m k k k 时,02211=+++m m k k k ααα ,则向量组m ααα,,,21 线性无关; (4)若02211=+++m m k k k ααα ,必有021====m k k k ,则向量组m ααα,,,21 线性无关; (5)向量β不能由m ααα,,,21 表示,则βααα,,,,21m 线性无关; (6)若向量组m ααα,,,21 线性无关,则其中每一个向量都不能表示成其余向量的线性组合; (7)若向量组m ααα,,,21 线性无关,向量组s βββ,,,21 线性无关,则向量组 m ααα,,,21 ,s βββ,,,21 线性无关。 二、单项选择题 1. 设321,,X X X 是b AX =的三个特解,则下列哪个也是b AX =的解 ( ) (A )332211X k X k X k ++; (B )332211X k X k X k ++,1321=++k k k ; (C )321)(X X X k ++ ; (D ) 32211)(X k X X k +-。 2.设321,,ξξξ是0=AX 的一组基础解系,则下列哪组也是0=AX 的一基础解系( ) (A )133221,,,ξξξξξξ+-; (B )312321,,ξξξξξξ++-; (C ) 13321,ξξξξξ-++ ; (D ) 3121,,ξξξξ- 。 3.设A 是n 阶矩阵,并且0=A ,则A 的列向量中 ( ) (A )必有一个向量为零向量 ; (B)必有两个向量的对应分量成比例; (C )必有一个向量是其余向量的线性组合 ; (D )任一向量是其余向量的线性组合。 4.如果4),,,(21=m r ααα ,则下列正确的是 ( ) (A )如果 m ααα,,,21 的一个部分组线性无关 ,则该部分组包含的向量个数一定不超过4;

相关文档
最新文档