连续系统状态方程的建立

合集下载

第6章状态变量分析法

第6章状态变量分析法

间变化而描述的路径,称为状态轨迹。
6
通信与信息基础教学部
状态与状态空间(3) 状态变量分析法的一般步骤
用状态变量来描述和分析系统的方法称为状态变量分 析法。当已知系统的模型及激励,用状态变量分析法时, 一般分两步进行:
一是选定状态变量,并列写出用状态变量描述系统特 性的方程,一般是一阶微分(或差分)方程组,它建立了 状态变量与激励之间的关系;同时,还要建立有关响应与 激励、状态变量关系的输出方程,一般是一组代数方程;
M
M
M
M
M
yr (t) cr1x1 (t) cr2 x2 (t) L crn xn (t) dr1 f1 (t) dr2 f2 (t) L drm fm (t)
11
Байду номын сангаас
通信与信息基础教学部
连续系统状态方程的一般形式(4)
状态方程、输出方程(P323)
x1
x
Mxx2n
a11
16
通信与信息基础教学部
由电路图建立状态方程(1) 由电路直接建立状态方程的步骤
(1) 选择独立的电容电压和电感电流作为状态变量;
(2)
对于电容C应用KCL写出该电容的电流
iC
C
dvC dt
与其它状态
变量和输入变量的关系式;
(3)
对于电感L应用KVL写出该电感的电压
vL
L
diL dt
与其它状态
变量和输入变量的关系式;
(4) 消除非状态变量(称为中间变量); (5) 整理成状态方程和输出方程的标准形式。
17
通信与信息基础教学部
由电路图建立状态方程(2)
M
M
M
M

《自动控制原理》线性定常连续系统状态方程的解

《自动控制原理》线性定常连续系统状态方程的解

2
k!
= P −1IP + P −1 APt + 1 P −1 A2 Pt 2 + + 1 P −1 Ak Pt k +
2
k!
= P −1 (I + At + 1 A2t 2 + + 1 Ak t k + )P = P −1e At P
2
k!
因而式(9-39)成立。
性质10: 两种常见的状态转移矩阵。设 A = diag[1, 2 ,,n ],
2. 拉普拉斯变换法。将式(9-22)取拉氏变换有
sX (s) = AX (s) + x(0)

(sI − A) X (s) = x(0)
X (s) = (sI − A)−1 x(0)
(9-27)
进行拉氏反变换有
x(t) = −1[(sI − A)−1]x(0)
(9-28)
与(9-25)相比有
e At = −1[(sI − A)−1 ]
进行拉氏反变换有 x(t) = −1(sI − A)−1 x(0) + −1[(sI − A)−1 BU (s)]
由拉氏变换卷积定理
−1[F1(s)F2 (s)] =
t
0 f1 (t − ) f2 ( )d
=
t
0 f1 ( ) f2 (t − )d
在此将(sI − A)−1 视为F1 (s),将BU (s) 视为 F2 (s) ,则有
x(t) = eA(t) x(0) + t eA(t− )Bu( )d 0 t = (t)x(0) + 0 (t − )Bu( )d
结果与式(9-43)相同。上式又可表示为

8.系统分析的状态变量法_信号与系统

8.系统分析的状态变量法_信号与系统

8 系统分析的状态变量法
8.2.1 连续时间系统状态方程的建立
一个动态连续系统的时域数学模型可利用信号 的各阶导数来描述。 的各阶导数来描述 。 作为连续系统的状态方程表现 为状态变量的联立一阶微分方程组. 为状态变量的联立一阶微分方程组 标准形式的状态方程为
或记为
8 系统分析的状态变量法 表示状态变量, 式中 表示状态变量, 为常数矩阵。 和 为常数矩阵。 是与外加信号有关的项, 是与外加信号有关的项,
8 系统分析的状态变量法 6.状态轨迹 在描述一个动态系统的状态空间中, 在描述一个动态系统的状态空间中,状态向 量的端点随时间变化所经历的路径称为系统的状 态轨迹。一个动态系统的状态轨迹不仅取决于系 态轨迹。 统的内部结构,还与系统的输入有关,因此, 统的内部结构,还与系统的输入有关,因此,系 统的状态轨迹可以形象地描绘出在确定的输入作 用下系统内部的动态过程。 用下系统内部的动态过程。
8 系统分析的状态变量法 【例】 试写出下图所示电路的状态方程。 试写出下图所示电路的状态方程。
ቤተ መጻሕፍቲ ባይዱ
根据电路结构可知,电容电压、 根据电路结构可知,电容电压、电感电流 可作为为状态变量即 . 建立状态变量 之间的方程为 和激励
8 系统分析的状态变量法 状态变量分析法优点: 状态变量分析法优点: (1)便于研究系统内部物理量的变化 (1)便于研究系统内部物理量的变化 (2)适合于多输入多输出系统 (2)适合于多输入多输出系统 (3)也适用于非线性系统或时变系统 (3)也适用于非线性系统或时变系统 (4)便于分析系统的稳定性 (4)便于分析系统的稳定性 (5)便于采用数字解法 便于采用数字解法, (5)便于采用数字解法,为计算机分析系统提供了 有效途径 (6)引出了可观测性和可控制性两个重要概念 引出了可观测性和可控制性两个重要概念。 (6)引出了可观测性和可控制性两个重要概念。

《信号与系统》第八章知识要点+典型例题

《信号与系统》第八章知识要点+典型例题
y(t) 8x1 2x2
再稍作变换,写出矩阵形式的动态方程为

x 1 x 2


0 2
1 3

x1 x2


0 1
f
y 8
2

x1 x2

(8.6) (8.7)
2
3、 连续系统状态方程的求解 求解状态方程有时域解法和变换域解法两种。变换域解法比较简单,其求解步骤如下: 一 n 阶连续系统状态方程与输出方程的一般形式分别为
(8.3)
1
若式(8.3)中仅包含状态变量与输入变量,符合状态方程的标准形式,状态方程的编
写到此完成。若式(8.3)中还含有不需要的中间变量,再应用 KCL、KVL 方程消除中间变
量,整理成状态方程的标准形式。
输出方程的编写,要根据电路的具体输出情况而定。有的,可以由状态变量与输入直接
就能简便写出;有的,需要再应用某些 KCL、KVL 及欧姆定律,消除不需要的中间变量而
相连节点的 KCL 方程、电感 L 所在回路的 KVL 方程,即
ìïïïïíïïïïîiucL((t
) = C duc (t ) dt
t ) = L diL(t ) dt
=+ =+
整理以上方程组,有
ìïïïïíïïïïî
duc (t ) dt
diL (t ) dt
= =
1 C 1 L
( + ) ( + )
【分析】本题主要考察状态方程的求解。
5
【解】 故
(s)

sI

A 1

s
1
1
s 4 2

线性定常连续系统状

线性定常连续系统状

, q k a k q k 1 a k k !q 0
q0=x(0)
○ 因此, x(t)的解表达式可写为
x(t) 1a ta 2 2 !t2 ...a kk !tk . .x .(0 )eaxt(0 )
1. 上述求解标量微分方程的级数展开法,可推广至求解向量状态
方程的解。
○ 为此,设其解为t的向量幂级数,即 ● x(t)=q0+q1t+q2t2+…+qktk+…
直接求解法 点击此处添加正文,请言简意赅的阐述观点。
拉氏变换法 讨论非齐次状态方程的解,以及
解表达式的意义 点击此处添加正文,请言简意赅的阐述观点。
输出方程的解 点击此处添加正文,请言简意赅的阐述观点。
目 录
一.直接求解法
○ 将状态方程x’=Ax+Bu移项,可得 ○ x’-Ax=Bu
将上式两边左乘以e-At,则有
线性定常连续系统状态方程的解 ❖ 求解状态方程是进行动态系统分析与综合的基础,是进行定量分
析的主要方法。
❖ 本节讲授的状态方程求解理论是建立在状态空间上,以矩阵代数 运算来描述的定系数常微分方程解理论。
❖ 下面基于矩阵代数运算的状态方程解理论中,引入了状态转移矩 阵这一基本概念。
❖ 该概念对我们深刻理解系统的动态特性、状态的变迁(动态演变) 等都是非常有帮助的,对该概念必须准确掌握和深入理解。
四.对于n n阶的d 方e 阵A tA 和A Be ,A 下t 式e A 仅tA 当,AB =( BtA)时 才A 成(t立) (t)A d t ○ e(A+B)t=eAteBt
五.[Φ(t)]n=Φ(nt) 六.Φ(t2-t1)Φ(t1-t0)=Φ(t2-t0)

状态变量分析

状态变量分析

RiL (t)
vs
(3)消除中间变量 vC2,将 vC2 vS vC1 代入,得
C1
d vC1 dt
iL
C2
d(vS vC1 ) dt
0
(4)整理,得
diL dt
R L iL
1 L vC1
1 L vS
d
vC1
dt
1 C1 C2
iL
C2 C1 C2
dvS dt
写成矩阵形式,为
diL
x2
dx1 dt
(b1 a1b2 ) f
dy dt
b2
df dt
(b1 a1b2 ) f
正如前面所述,状态变量的选取可以是多种形式的。
输出方程为 y x1 b2 f
写成矩阵形式,为
y 1
0
x1 x2
b2
f
7.2.4 从模拟图建立状态方程
根据系统的输入-输出方程或系统函数可以作出系 统的时域或复频域模拟图,然后选择每一个积分器的输 出端信号作为状态变量,最后得到系统的状态方程和输 出方程。
信号与系统
第七章 状态变量分析
第七章 状态变量分析
状态变量分析概述 7.1 状态与状态空间 7.2 连续系统状态方程的建立 7.3 系连续系统状态方程的 本章要点
状态变量分析概述
系统的描述方法 – 输入-输出描述法、状态变量描述法
输入-输出描述法(端口分析法、外部法) – 用系统的输入-输出变量之间的关系来描述系统的 特性; – 数学模型是 n 阶微分(或差分)方程。
方程。
iS (t)
解 选取 vC (t) 和 iL (t) 为状态变量, 它们都是独立的状态变量。
vC
(t)

现代控制工程-第二章线性系统的状态空间描述

现代控制工程-第二章线性系统的状态空间描述

1 x3 s

1 s

1 x1 s
y(t )
2
3
8 64
解:第一步:化简方框图,使得整个系统只有标准积分器(1/s)、 比例器(k)及加法器组成。 第二步:将上述调整过的结构图中的每个标准积分器(1/s) 的输出作为一个独立的状态变量xi,积分器的输入端就是状态变 量的一阶导数dxi/dt。 第三步:写出每个状态变量的一阶微分方程,从而写出系统 的状态方程。
y Cx Du
图2-2 系统动态方程的方块图结构
状态空间分析法具有下列优越之处:
便于在数字计算机上求解;
容易考虑初始条件; 能了解并利用处于系统内部的状态信息; 数学描述简化;
适于描述多输入-多输出、时变、非线性、随机、离散等各类 系统,是最优控制、最优估计、辨识、自适应控制等现代控制系 统的基本描述方法。
例2.2.3求如图所示系统的动态方程。
(a)系统方块图
u(t )

s 1 s2
1 s3
1 s 2 8s 64
y(t )
(b)第一次等效变换

1 s3

u(t )

1 s2

1 s( s 8)
y(t )
64
(c)由标准积分器组成的等效方块图
u(t )

1 x4 s


(2-5)
y t cx t du(t )
,cn ,d为直接联系输入量、输出量 其中 c c1,c2, 的前向传递(前馈)系数,又称前馈系数。
多输入-多输出(含q个输出变量)线性定 常连续系统的输出方程一般表达形式为:
y1 c11 x1 c1n xn d11u1 d1 pu p yq cq1 x1 cqn xn d q1u1 d qp u p

第八章 状态方程

第八章 状态方程
dt
化简,得
d eAtλ t eAt Bet
dt
两边取积分,并考虑起始条件,有
eAtλ tλ 0
t eA Be( ) d
0
对上式两边左乘 e A,t 并考虑到 eAteAt I ,可得
λ为t方 程eA的tλ 一0般解0t eAt Be d eAtλ 0 eAt B et
求输出方程r(t)
et b1
dk 1 dt k1
et
bk1
d dt
et bket
此系统为k 阶系统,输入信号的最高次导数也为
k 次系统函数为
H
s
b0sk b1sk1 bk1s bk sk a1sk1 ak1s ak
为便于选择状态变量,系统函数表示成
H
s
b0
b1s1
bk
s1k
1
bk sk
d λ t, 输出为 λ t。
dt
若 A,B,C矩, D阵是 的函t数,表明系统是线性时变
的,对于线性时不变系统,A,B,C的, D各元素都为常
数,不随 t改变。
状态变量的特性
每一状态变量的导数是所有状态变量和输 入激励信号的函数;
每一微分方程中只包含有一个状态变量对 时间的导数;
输出信号是状态变量和输入信号的函数;
1 a1s1
ak
s1k
1
ak sk
当用积分器来实现该系统时,其流图如下
et 1
b0
1 s k a1
b1 b2
1 sk1
a2
bk 2
bk 1
3 1 s 2 1 s 1 bk
r t
ak2 ak1
ak
取积分器的输出作为状态变量,如图中所标的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对列出的方程,只保留状态变量和输入激励,设法消 去其它中间的变量,经整理即可给出标准的状态方程。
对于输出方程,通常可用观察法由电路直接列出。


第2页
由电路图直接列写状态方程和输出方程的步骤:
(1)选电路中所有独立的电容电压和电感电流作为 状态变量; (2)对接有所选电容的独立结点列出KCL电流方程, 对含有所选电感的独立回路列写KVL电压方程; (3)若上一步所列的方程中含有除激励以外的非状 态变量,则利用适当的KCL、KVL方程将它们消去, 然后整理给出标准的状态方程形式; (4)用观察法由电路或前面已推导出的一些关系直 接列写输出方程,并整理成标准形式。
§8.2 连续系统状态方程的建立
一、由电路图直接建立状态方程
uC1
首先选择状态变量 。
通常选电容电压和电 感电流为状态变量。
必须保证所选状态变 量为独立的电容电压 和独立的电感电流。
uC2
uC3
(a) 任选两个电容电压 独立
iL1
iL3
iL2
uC1
us
uC2
(b) 任选一个电容电压 独立
iL1
is
iL2
解:由微分方程不难写出其系统函数 方法一:画出直接形式的信号流图
H (s)

2(s 4) s2 3s 2
设状态变量x1(t)、 x2(t) 由后一个积分器,有
x1 x2
由前一个积分器,有
1 f(t)
x2 2x1 3x2 f
系统输出端,有 y(t) =8 x1+2 x2
(t ) (t)


L 0
R2C


0 1


uuss21
(t) (t)
R2C

第4页
二、由输入-输出方程建立状态方程
这里需要解决的问题是:
已知系统的外部描述(输入-输出方程、系统函数、 模拟框图、信号流图等);如何写出其状态方程及输 出方程。
具体方法:
s 4 4s 3
H (s) 1
s
0
3 s2
1 s 4
4s 3
1 1

s
s2
111
4s 3

s2
s
1 4s
3
y+4 y + 3y= f (t) + f (t)


第 12 页
补充内容
• 将例1中的方法2:x1—x2,试试看? • 并联形式:对角阵
sX(s)


4 3
10X(s) 11F (s)
(sI


4 3
1 0)X(s)

1 1
F
(s)
Y(s) 1 0X(s)
X(s)

(sI


4 3
1 0)
1
1 1
F
(s)
Y (s) 1
0(sI

x3 3x3 x2 x3 x2 3x3
输出方程 y1(t) = x2 y2(t) = -x3 + f


第9页
三、由状态方程列输入-输出方程
例3 已知某系统的动态 方程如下,列出描述y(t) 与f(t)之间的微分方程。
x(t)


பைடு நூலகம்
4 3
10x(t) 11[ f (t)]
-1
-2
设中间变量 y1(t) y1 x1 4x1 3x1 f
x2 y1 2x2 3x1 2x2 f

x1 x2

1

3
0 2

x1 x2


1 1[
f
]
系统输出端,有 y(t) =2 x2


第7页
方法三
H (s)

2(s 4) s2 3s 2

s
6 1

4 s2
画出并联形式的信号流图
设状态变量x1(t)、 x2(t)
x1 x1 f
f(t)
x2 2x2 f
x1

x2

1

0
0 2

x1 x2

y+a y + by=(13 –4a +b) x1+(–4+a) x2+ f (t) +(a–3) f (t) a=4,b=3 y+4 y + 3y= f (t) + f (t)


第 10 页
解法二 对方程取拉氏变换,零状态。
x(t
)


4 3
10x(t) 11[ f (t)]
0 1
R2

us1 us2
(t) (t)
C
uS2
R2iR2(t) + uS2(t) - x2(t) = 0
代入整理得 输出方程:
x1(t)

x2
(t
)


R1
L 1
C
uR1(t) = R1x1(t)
1 L
1

1


x1 x2
2
s 1
s1 8
-3 x2 x1
-2


y(t)
第6页
方法二:
H (s)

2(s 4) s2 3s 2

s4 s 1

s
2
2
画出串联形式的信号流图
1
x x 设状态变量x1(t)、 x2(t)
1 1 s1 4 y1 1
f(t)
x1
2 s1 2
x2 y(t)
x1 x1 f
x1 x1 y2
∑ f(t)
1 x1(t) s 4 x2(t)
s 1
s2
y1(t)
其中, y2= f - x3
x3(t) 1
x1 x1 x3 f
s3
x2 2x2 x1 4x1 3x1 x3 f
x2 3x1 2x2 x3 f
y(t) 1 0x(t)
解法一 由输出方程得 y(t)=x1(t)
y (t)=x1(t) = – 4 x1(t) + x2(t)+ f(t)
y(t)=– 4 x1(t) + x2(t)+ f (t) =–4[–4 x1(t) + x2(t)+ f (t)] + [–3 x1(t) + f (t)] + f (t) =13 x1(t) –4x2(t) –3 f (t) + f (t)

11[
f
]
系统输出端,有 y(t) = 6x1 -4 x2
x 1 1 s1
6
x1
-1
x 1 2s1
-4
y(t)
x2
-2
可见H(s)相同的系统, 状态变量的选择并不 唯一。


第8页
例2 某系统框图如图,状态变量如图标示,试列 出其状态方程和输出方程。
解 对三个一阶系统
y2(t)


第3页
例:电路如图,以电阻R1上的电压uR1和电阻R2上的电 流iR2为输出,列写电路的状态方程和输出方程。
解 选状态变量
a R1 iL L a R2 iR2
x1(t) = iL(t), x2(t) = uC(t)
uR1
uS1
uC
LC消uiRxxR去2112((((tttt)i)))R++2R(ti1)Rx,列R210((1tt)右)+=R网x10x22(1孔t()t)Kx=x12V(u(ttSL))1(方t) 程00:
(1)由系统的输入-输出方程或系统函数,首先画出 其信号流图或框图; (2)选一阶子系统(积分器)的输出作为状态变量; (3)根据每个一阶子系统的输入输出关系列状态方 程; (4)在系统的输出端列输出方程。


第5页
例1 某系统的微分方程为
y(t) + 3 y (t) + 2y(t) = 2 f (t) +8 f (t) 试求该系统的状态方程和输出方程。
四种非独立的电路结构 (c) 任选两个电感电流 独立
(d) 任选一个电感电流 独立

第1页
状态方程的建立:
根据电路列出各状态变量的一阶微分方程。
由于
iC
C
d uC dt
uL

L
d iL dt
为使方程中含有状态变量uC的一阶导数 , 可对接有该电容的独立结点列写KCL电流方程;
为使方程中含有状态变量iL的一阶导数 , 可对含有该电感的独立回路列写KVL电压方程。

4 3
10)
1
1 1
F
(s)


第 11 页
H (s) Y (s) 1
F (s)
0(sI


4 3
10)1
1 1
(sI


4 3
1 0
)
1

s
3
4
s 1
1 1
s


3 s2
串联形式:三角阵 重根形式:Jordan阵(任何矩阵都和约当阵 相似)


第 13 页
相关文档
最新文档