求解系统的状态方程
《自动控制原理》线性定常连续系统状态方程的解

2
k!
= P −1IP + P −1 APt + 1 P −1 A2 Pt 2 + + 1 P −1 Ak Pt k +
2
k!
= P −1 (I + At + 1 A2t 2 + + 1 Ak t k + )P = P −1e At P
2
k!
因而式(9-39)成立。
性质10: 两种常见的状态转移矩阵。设 A = diag[1, 2 ,,n ],
2. 拉普拉斯变换法。将式(9-22)取拉氏变换有
sX (s) = AX (s) + x(0)
则
(sI − A) X (s) = x(0)
X (s) = (sI − A)−1 x(0)
(9-27)
进行拉氏反变换有
x(t) = −1[(sI − A)−1]x(0)
(9-28)
与(9-25)相比有
e At = −1[(sI − A)−1 ]
进行拉氏反变换有 x(t) = −1(sI − A)−1 x(0) + −1[(sI − A)−1 BU (s)]
由拉氏变换卷积定理
−1[F1(s)F2 (s)] =
t
0 f1 (t − ) f2 ( )d
=
t
0 f1 ( ) f2 (t − )d
在此将(sI − A)−1 视为F1 (s),将BU (s) 视为 F2 (s) ,则有
x(t) = eA(t) x(0) + t eA(t− )Bu( )d 0 t = (t)x(0) + 0 (t − )Bu( )d
结果与式(9-43)相同。上式又可表示为
现代控制理论--3控制系统的状态方程求解-离散化

0 1 0 x x u 0 2 1
近似离散化方法(4/6)—例3-12
解 由近似离散化法计算公式,对本例有
T 1 G(T ) I AT 0 1 2 T
于是该连续系统的离散化状态方程为
0 H (T ) BT T
x(( k 1)T ) Φ(T )x(kT )
( k 1)T
kT
Φ[( k 1)T τ ]dτ Bu(kT )
对上式作变量代换,令t=(k+1)T-,则上式可记为
x((k 1)T ) Φ(T )x(kT ) Φ(t )dtBu(kT )
0
T
将上式与线性定常离散系统的状态方程 x((k+1)T)=(I+AT)x(kT)+BTu(kT)
线性定常连续系统的离散化(2/3)
线性定常连续系统状态空间模型的离散化,实际上是指在采 样周期T下,将状态空间模型 x Ax Bu y Cx Du 变换成离散系统的如下状态空间模型:
x(( k 1)T ) G (T )x(kT ) H (T )u(kT ) y (kT ) C (T )x(kT ) D(T )u(kT )
近似离散化方法(2/6)
将上式代入连续系统的状态方程,有 [x((k+1)T)-x(kT)]/T=Ax(kT)+Bx(kT) 即 x((k+1)T)=(I+AT)x(kT)+BTu(kT) 将上式与线性定常离散系统状态空间模型的状态方程比 较,则可得如下近似离散化的计算公式: G(T)=I+AT H(T)=BT 将上述近似离散法和精确离散法比较知,
精确法、
热力学系统的状态方程

热力学系统的状态方程热力学是研究能量传递和转化的科学领域。
在热力学中,我们常常需要描述系统的状态,而热力学系统的状态方程就是用来描述系统状态的数学表达式。
本文将探讨热力学系统的状态方程的概念、重要性以及一些常见的状态方程。
热力学系统的状态是指在一定的温度、压力和组成条件下,系统所具有的物理状态。
常见的热力学系统包括气体、液体和固体等。
了解系统的状态对于理解系统的行为以及进行热力学计算非常重要。
热力学状态方程是通过研究热力学系统在不同的状态下的性质,建立的描述系统状态的方程。
它可以是一个或多个物理量的函数关系,常见的状态方程有理想气体状态方程、范德瓦尔斯方程等。
首先,我们来介绍理想气体状态方程。
理想气体是一种理想化的模型,它假设气体分子之间没有相互作用。
理想气体状态方程描述了理想气体在一定温度和压力下的状态。
它的数学表达式为PV = nRT,其中P是气体的压强,V是体积,n是气体的物质量,R是气体常数,T是绝对温度。
理想气体状态方程在热力学计算中应用广泛。
除了理想气体状态方程,范德瓦尔斯方程也是描述气体状态的重要方程。
范德瓦尔斯方程考虑了气体分子之间有相互作用的情况。
范德瓦尔斯方程修正了理想气体状态方程中的体积和压强两个参数,使之与实际气体更加符合。
范德瓦尔斯方程可以写作(P + a/V^2)(V - b) = nRT,其中a和b是与气体性质相关的常数,具体数值可以通过实验测定得到。
除了气体的状态方程,液体和固体也有相应的状态方程。
例如,对于绝热可压缩的液体,其状态方程可以写作PV^n = 常数。
这个方程描述了液体在不同压力和体积下的状态。
对于固体,弹性模量是描述其状态的重要物理量。
弹性模量是固体的刚度系数,其中包括杨氏模量、剪切模量和泊松比等。
热力学系统的状态方程可以帮助我们理解系统的行为以及进行热力学计算。
通过状态方程,我们可以计算得到系统的各种性质,如体积变化、热量变化等。
这些性质对于工程领域的设计和优化有重要的价值。
现代控制理论第版课后习题答案

现代控制理论第版课后习题答案Prepared on 22 November 2020《现代控制理论参考答案》第一章答案1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。
解:系统的模拟结构图如下: 系统的状态方程如下: 令y s =)(θ,则1x y =所以,系统的状态空间表达式及输出方程表达式为1-2有电路如图1-28所示。
以电压)(t u 为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻2R 上的电压作为输出量的输出方程。
解:由图,令32211,,x u x i x i c ===,输出量22x R y =有电路原理可知:•••+==+=++3213222231111x C x x x x R x L ux x L x R 既得22213322222131111111111x R y x C x C x x L x L R x u L x L x L R x =+-=+-=+--=•••写成矢量矩阵形式为:1-4 两输入1u ,2u ,两输出1y ,2y 的系统,其模拟结构图如图1-30所示,试求其状态空间表达式和传递函数阵。
解:系统的状态空间表达式如下所示: 1-5系统的动态特性由下列微分方程描述列写其相应的状态空间表达式,并画出相应的模拟结构图。
解:令..3.21y x y x y x ===,,,则有相应的模拟结构图如下: 1-6 (2)已知系统传递函数2)3)(2()1(6)(+++=s s s s s W ,试求出系统的约旦标准型的实现,并画出相应的模拟结构图解:ss s s s s s s s W 31233310)3(4)3)(2()1(6)(22++++-++-=+++= 1-7 给定下列状态空间表达式[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321100210311032010x x x y u x x x x x x ‘(1) 画出其模拟结构图 (2) 求系统的传递函数 解:(2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-+-=-=31103201)()(s s s A sI s W 1-8 求下列矩阵的特征矢量(3)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=6712203010A 解:A 的特征方程 061166712230123=+++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+---=-λλλλλλλA I 解之得:3,2,1321-=-=-=λλλ当11-=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---3121113121116712203010p p p p p p 解得: 113121p p p -== 令111=p 得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1113121111p p p P(或令111-=p ,得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1113121111p p p P ) 当21-=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---32221232221226712203010p p p p p p 解得: 1232122221,2p p p p =-= 令212=p 得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1423222122p p p P(或令112=p ,得⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=21213222122p p p P )当31-=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---33231333231336712203010p p p p p p 解得: 133313233,3p p p p =-= 令113=p 得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=3313323133p p p P1-9将下列状态空间表达式化成约旦标准型(并联分解)(2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡32121321321110021357213311201214x x x y y u x x x x x x解:A 的特征方程 0)3)(1(311212142=--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=-λλλλλλA I 当31=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--3121113121113311201214p p p p p p 解之得 113121p p p == 令111=p 得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1113121111p p p P当32=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--1113311201214312111312111p p p p p p 解之得 32222212,1p p p p =+= 令112=p 得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0013222122p p p P当13=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--332313332313311201214p p p p p p 解之得3323132,0p p p == 令133=p 得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1203323133p p p P约旦标准型1-10 已知两系统的传递函数分别为W 1(s)和W 2(s)试求两子系统串联联结和并联连接时,系统的传递函数阵,并讨论所得结果 解:(1)串联联结 (2)并联联结1-11 (第3版教材)已知如图1-22所示的系统,其中子系统1、2的传递函数阵分别为求系统的闭环传递函数解:1-11(第2版教材) 已知如图1-22所示的系统,其中子系统1、2的传递函数阵分别为求系统的闭环传递函数 解:1-12 已知差分方程为试将其用离散状态空间表达式表示,并使驱动函数u 的系数b(即控制列阵)为(1)⎥⎦⎤⎢⎣⎡=11b解法1: 解法2:求T,使得⎥⎦⎤⎢⎣⎡=-111B T 得⎥⎦⎤⎢⎣⎡=-10111T 所以 ⎥⎦⎤⎢⎣⎡-=1011T 所以,状态空间表达式为第二章习题答案2-4 用三种方法计算以下矩阵指数函数At e 。
第3章 控制系统状态方程求解

将式(3-3)代入式(3-1)得:
X t Ab0 b1t b2t 2 bk t k Ab0 Ab1t Ab2t 2 Abk t k
2 k X t b1 2b2t kbk t k 1 Ab0 Ab1t Ab2t Abk t
At 1
e e
At
At
e
At 1
I
I e At I e At
e
At 1
e At
上式可知,矩阵指数函数eAt的逆矩阵始终存在,且等于e-At 。
性质3:若矩阵A,B可交换,即AB=BA,那么e(A+B)t = eAt·Bt , e 否则不成立。 【证】: 根据(3-7)式的定义有:
~ A diag1 2 n
这时有: M e M e , e Me M 1
At
1 At
~ At
~ At
(3 12)
【证】: 由前知道齐次方程 X AX 的解为:X t e At X 0
对齐次方程作线性变换 X MZ ,则有:MZ AMZ
或:
d At 1 2 2 e I At A t A e At A dt 2!
由此可知,方阵A及其矩阵指数函数eAt是可交换的。
性质4可用来从给定的状态转移矩阵eAt中求出系统矩阵A,即:
A e
At 1
e A e
At
At
d At e dt
x0 sa
3 2
与式(3-2)类似,我们假设式(3-1)的解X(t)为时间t的幂级 数形式,即:
X t b0 b1t b2t 2 bk t k
线性系统理论-郑大钟(3-4章)

1
2 n
n 1 n
t e n
1
0 1
21
n 1 2
(n 1)1 (n 1)(n 2) n 3 1 2! n2 (n 1)1 n 1 1 1
矩阵指数函数的算法 1:定义法
e At I At
1 2 2 A t 2!
只能得到eAt的数值结果,难以获得eAt解析表达式,但用计算机计算,具 有编程简单和算法迭代的优点。 2:特征值法
A P 1 AP
A PA P 1
e At Pe A t P 1
P为变换A为约当规范型的变换矩阵 1)若A的特征值为两两互异
如果系统矩阵A(t),B(t)的所有元在时间定义区间[t0,tα]上为时间t的连续实函数,输 入u(t)的所有元为时间t的连续实函数,那么状态方程的解x(t)存在且唯一。 从数学观点,上述条件可减弱为: ①系统矩阵A(t)的各个元aij(t)在时间区间[t0,tα]上为绝对可积,即:
t
t0
| aij (t ) | dt ,
-1
te1t 1t e e3t
0 2tet e 2t 1 3tet 2et 2e 2t 2 tet et e 2t
e At 0 I 1 A 2 A2 (2tet e 2t ) I (3tet 2et 2e 2t ) A (tet et e 2t ) A2 2et e 2t 0 e t e 2t 0 et 0 2et 2e 2t 0 et 2e 2t
s3 ( s 1)( s 2) 2 ( s 1)( s 2)
《现代控制理论》第3版课后习题答案

《现代控制理论参考答案》第一章答案1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。
11K s K K p +sK s K p 1+s J 11sK n 22s J K b -++-+-)(s θ)(s U 图1-27系统方块结构图解:系统的模拟结构图如下:)(s U )(s θ---+++图1-30双输入--双输出系统模拟结构图1K pK K 1pK K 1+++pK n K ⎰⎰⎰11J ⎰2J K b ⎰⎰-1x 2x 3x 4x 5x 6x系统的状态方程如下:u K K x K K x K K x X K x K x x x x J K x J x J K x J K x x J K x x x pp p p n pb1611166131534615141313322211+--=+-==++--===••••••令y s =)(θ,则1x y =所以,系统的状态空间表达式及输出方程表达式为[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-----=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡••••••654321165432111111112654321000001000000000000010010000000000010x x x x x x y uK K x x x x x x K K K K K K J K J J K J K J K x x x x x x p p pp npb1-2有电路如图1-28所示。
以电压)(t u 为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻2R 上的电压作为输出量的输出方程。
R1L1R2L2CU---------Uc ---------i1i2图1-28 电路图解:由图,令32211,,x u x i x i c ===,输出量22x R y =有电路原理可知:•••+==+=++3213222231111x C x x x x R x L ux x L x R 既得22213322222131111111111x R y x C x C x x L x L R x u L x L x L R x =+-=+-=+--=•••写成矢量矩阵形式为:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡32121321222111321000*********x x x R y u L x x x CCL L R L L R x x x 。
《现代控制理论》第3版课后习题答案

《现代控制理论参考答案》第一章答案1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。
图1-27系统方块结构图解:系统的模拟结构图如下:图1-30双输入--双输出系统模拟结构图系统的状态方程如下:u K K x K K x K K x X K x K x x x x J K x J x J K x J K x x J K x x x pp p p n pb1611166131534615141313322211+--=+-==++--===••••••令y s =)(θ,则1x y =所以,系统的状态空间表达式及输出方程表达式为[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-----=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡••••••654321165432111111112654321000001000000000000010010000000000010x x x x x x y uK K x x x x x x K K K K K K J K J J K J K J K x x x x x x p p pp n p b1-2有电路如图1-28所示。
以电压)(t u 为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻2R 上的电压作为输出量的输出方程。
L1L2U图1-28 电路图解:由图,令32211,,x u x i x i c ===,输出量22x R y =有电路原理可知:•••+==+=++3213222231111x C x x x x R x L ux x L x R 既得22213322222131111111111x R y x C x C x x L x L R x u L x L x L R x =+-=+-=+--=•••写成矢量矩阵形式为:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡32121321222111321000*********x x x R y u L x x x CCL L R L L R x x x 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x0=[1,0,-1];
[y,t,x]=initial(G,x0,t);
u=ones(size(t));
plot(t,x,t,y)
输出响应:
A=[0,1,0;0,0,1;-6,-11,-6];
B=[0;0;1];
C=[6,0,0];
D=0;
t=[0:0.01:10];
u=ones(size(t));
状态曲线:
(2)A=[0 1;-2 -3];
symst;
f=expm(A*t);
X0=[1;0];
t=[0:0.5:10];
fori=1:length(t);
g(i)=double(subs(f(1),t(i)));
end
plot(t,g)
(3)状态转移矩阵
symslambda
A=[lambda 0 0;0 lambda 0;0 0 lambda];
代码:
A=[0 1; -2 -3];
B=[3;0];
C=[1 1];
D=[0];
t=[0:0.01:10];
x0=[1;0];
G=ss(A,B,C,D)
[y,t,x]=initial(G,x0,t);
plot(x(:,1),x(:,2))
2)令初始状态为零,输入为u(t)=1(t).
a)用MATLAB求状态方程的解析解。选择时间向量t,绘制系统的状态响应曲线。观察并记录这些曲线。
(4)掌握利用MATLAB导出连续状态空间模型的离散化模型的方法。
三、实验原理及相关基础
(1)参考教材P99~101“3.8利用MATLAB求解系统的状态方程”
(2)MATLAB现代控制理论仿真实验基础
(3)控制理论实验台使用指导
4、实验内容
(1)求下列系统矩阵A对应的状态转移矩阵
(a)
(b)
代码:
求解系统的状态方程
一、实验设备
PC计算机,MATLAB软件,控制理论实验台
二、实验目的
(1)掌握状态转移矩阵的概念。学会用MATLAB求解状态转移矩阵
(2)学习系统齐次、非齐次状态方程求解的方法,计算矩阵指数,求状态响应;
(3)通过编程、上机调试,掌握求解系统状态方程的方法,学会绘制输出响应和状态响应曲线;
代码:
A=[01; -2 -3];
B=[3;0];
C=[1 1];
D=[0];
G=ss(A,B,C,D);
[y,t,x]=step(G);
plot(t,x)
b)计算系统在初始状态作用下状态响应和输出响应的数值解,绘制系统的状态响应曲线和输出响应曲线。观察并记录这些响应曲线,然后将这一状态响应曲线与a).中状态响应曲线进行比较。
symst
f=expm(A*t)
b)计算系统在初始状态作用下状态响应和输出响应的数值解(用函数initial( )),绘制系统的状态响应曲线和输出响应曲线。观察并记录这些响应曲线,然后将这一状态响应曲线与a)中状态响应曲线进行比较。
代码:
A=[0 1; -2 -3];
B=[3;0];
C=[1 1];
代码:
A=[0 1; -2 -3];
B=[3;0];
C=[1 1];
D=[0];
t=[0:0.01:10];
x0=[1 -1];
G=ss(A,B,C,D);
[y,t,x]=initial(G,x0,t);
plot(t,x)
4)令初始状态为零,输入为u(t)=3sin(5t)。计算状态响应和输出响应的数值解(用函数
lsim( )),并绘制系统的状态响应曲线、输出响应曲线和状态轨迹。
代码:
A=[0 1; -2 -3];
B=[3;0];
C=[1 1];
D=[0];
t=[0:0.01:10];
u=3*sin(5*t);
G=ss(A,B,C,D);
[y,t,x]=lsim(G,u,t);
plot(t,x)
(3)已知系统
syms lambda
A=[lambda 0 0;0 lambda 0;0 0 lambda];syms t;f=expm(A*t)
(c)
代码:
syms t;syms lambda;A=[lambda 0 0 0;0 lambda 1 0;0 0 lambda 1;0 0 0 lambda];f=expm(A*t)
代码:
A=[0 1; -2 -3];
B=[3;0];
C=[1 1];
D=[0];
t=[0:0.5:10];
G=ss(A,B,C,D);
x0=[0 0];
[y0,t,x0]=initial(G,x0,t);
plot(t,x0,'-',t,y0,'-')
绘制系统的状态响应曲线、输出响应曲线和状态轨迹。观察和分析这些响应曲线和状态轨迹是否是(1)和(2)中的响应曲线和状态轨迹的叠加。
(2)已知系统
a)用MATLAB求状态方程的解析解。选择时间向量t,绘制系统的状态响应曲线。
观察并记录这些曲线。
(1)
代码:
A=[0 1; -2 -3];
B=[3;0];
C=[1 1];
D=[0];
u=1;
symst;
f=expm(A*t);%状t(s1,t,0,t)%状态方程解析解
D=[0];
G=ss(A,B,C,D);
t=[0:0.5:10];
x0=[1;0]
[y0,t,x0]=initial(G,x0,t);
plot(t,x0,'-',t,y0,'-')
c)根据b)中所得的状态响应的数值解,绘制系统的状态轨迹(用命令plot(x(:,1), x(:,2)))。记录系统状态转移的过程,结合a)和b)中的状态响应曲线分析这一过程。
1)当输入为u(t)= (t)时,用函数initial( )和impulse( )求解系统的状态响应和输出响应的
数值解,并绘制系统的状态响应曲线、输出响应曲线和状态轨迹。
状态响应:
A=[0,1,0;0,0,1;-6,-11,-6];
B=[0;0;1];
C=[6,0,0];
D=0;
t=[0:0.5:10];
代码:
A=[0 1; -2 -3];
B=[3;0];
C=[1 1];
D=[0];
G=ss(A,B,C,D);
G=ss(A,B,C,D);
t=[0:0.5:10];
x0=[1;-1];
[y0,t,x0]=initial(G,x0,t);
plot(t,x0,'-',t,y0,'-')
c)根据b)中所得的状态响应的数值解,绘制系统的状态轨迹。记录系统状态转移的过程,结合a)和b)中的状态响应曲线分析这一过程。