锐角三角函数_2
锐角三角函数(第2课时)(课件)九年级数学下册(北师大版)

c
sin
A
=
∠A的对边
斜边
斜边
a =c
b
A
c
cos
A
=
∠A的邻边
斜边
=
b c
斜边
b邻 A 边
谢谢~
B1 A1
B2 A1
B1 A1
B2 A1
B1
(3)如果改变B2在梯子A1B1上的位置呢?
由此你可得出什么结论?
B2
(4)如果改变梯子A1B1的倾斜角的大小呢?
由此你可得出什么结论?
C1 C2
A1
探究新知
(1)Rt△B1A1C1 ∽ Rt△B2A1C2.
(2)相等
∵ Rt△B1A1C1 ∽ Rt△B2A1C2,
=
a c
tan A a a c sin A b c b cos A
若∠A+∠B=90°;一个 锐角的正弦等于它余角的余 弦,sinA=cosB;一个锐角的 余弦等于它余角的正弦;
cosA=sinB.
探究新知
锐角三角函数之间的关系:
(1)同一个角:①商的关系:tanA= sin A ;②平方
关系:sin2A+cos2A=1.
A
B
斜边
∠A的对边
┌ ∠A的邻边 C
结论:在Rt△ABC中,如果锐角A确定,那么∠A的对边与 斜边的比, ∠A的邻边与斜边的比也随之确定.
探究新知
核心知识点一: 正弦、余弦的定义
想一想:如图.
(1)直角三角形A1B1C1和直角三角形A1B2C2有什么关系?
(2)A1C1 和 A1C2 有什么关系? B1C1 和 B2C2 呢?
探究新知
• 定义中应该注意的几个问题: 1.sinA,cosA是在直角三角形中定义的,∠A是锐角(注意数形结合,构 造直角三角形). 2.sinA,cosA是一个完整的符号,分别表示∠A的正弦,余弦 (习惯省去 “∠”号). 3.sinA,cosA 是一个比值,是直角边与斜边之比.注意比的顺序
北师大版数学九年级下册1.1 锐角三角函数(第2课时)教案

1.1 锐角三角函数第2课时教学目标1.经历探索直角三角形中边角关系的过程,理解正弦和余弦的意义.2.能够运用sinA 、cosA 表示直角三角形两边的比.3.能根据直角三角形中的边角关系,进行简单的计算.4.理解锐角三角函数的意义.教学重难点【教学重点】1.理解锐角三角函数正弦、余弦的意义,并能举例说明.2.能用sinA 、cosA 表示直角三角形两边的比.3.能根据直角三角形的边角关系,进行简单的计算. 【教学难点】用函数的观点理解正弦、余弦和正切.学习方法探索——交流法.教学过程一、正弦、余弦及三角函数的定义 想一想:如图(1)直角三角形AB 1C 1和直角三角形AB 2C 2有什么关系?(2) 211122BA C A BA C A 和有什么关系? 2112BA BC BA BC 和呢? (3)如果改变A 2在梯子A 1B 上的位置呢?你由此可得出什么结论?(4)如果改变梯子A1B 的倾斜角的大小呢?你由此又可得出什么结论? 请讨论后回答.二、由图讨论梯子的倾斜程度与sinA 和cosA 的关系:三、例题:例1、如图,在Rt △ABC 中,∠B=90°,AC =200.sinA =0.6,求BC 的长.例2、做一做:如图,在Rt △ABC 中,∠C=90°,cosA =1312,AC =10,AB 等于多少?sinB 呢?cosB 、sinA 呢?你还能得出类似例1的结论吗?请用一般式表达.四、随堂练习:1、在等腰三角形ABC 中,AB=AC =5,BC=6,求sinB ,cosB ,tanB.2、在△ABC 中,∠C =90°,sinA =54,BC=20,求△ABC 的周长和面积.3、在△ABC 中.∠C=90°,若tanA=21,则sinA= .4、已知:如图,CD 是Rt △ABC 的斜边AB 上的高,求证:BC 2=AB ·BD.(用正弦、余弦函数的定义证明)五、课后练习:1、在Rt △ABC 中,∠ C=90°,tanA=34,则sinB=_______,tanB=______.DB ACBA C2、在Rt △ABC 中,∠C=90°,AB=41,sinA=941,则AC=______,BC=_______. 3、在△ABC 中,AB=AC=10,sinC=45,则BC=_____. 4、在△ABC 中,已知AC=3,BC=4,AB=5,那么下列结论正确的是( )A.sinA=34 B.cosA=35 C.tanA=34 D.cosB=355、如图,在△ABC 中,∠C=90°,sinA=35,则BCAC等于( )A.34B.43C.35D.456、Rt △ABC 中,∠C=90°,已知cosA=35,那么tanA 等于( )A.43B.34C.45D.547、在△ABC 中,∠C=90°,BC=5,AB=13,则sinA 的值是A .135 B .1312 C .125 D .5128、已知甲、乙两坡的坡角分别为α、β, 若甲坡比乙坡更徒些, 则下列结论正确的是( )A.tan α<tan βB.sin α<sin β;C.cos α<cos βD.cos α>cos β9、如图,在Rt △ABC 中,CD 是斜边AB 上的高,则下列线段的比中不等于sinA 的是( ) A.CD AC B.DB CB C.CB AB D.CDCB10、某人沿倾斜角为β的斜坡前进100m,则他上升的最大高度是( )mA.100sin βB.100sin βC.100cos β D. 100cos β11、如图,分别求∠α,∠β的正弦,余弦,和正切.12、在△ABC 中,AB=5,BC=13,AD 是BC 边上的高,AD=4.求:CD,sinC.13、在Rt △ABC 中,∠BCA=90°,CD 是中线,BC=8,CD=5.求sin ∠ACD,cos ∠ACD 和tan ∠ACD.14、在Rt△ABC中,∠C=90°,sinA和cosB有什么关系?15、如图,已知四边形ABCD中,BC=CD=DB,∠ADB=90°,cos∠ABD=45.求:s△ABD:s△BCD§1.2 30°、45°、60°角的三角函数值学习目标:1.经历探索30°、45°、60°角的三角函数值的过程,能够进行有关的推理.进一步体会三角函数的意义.2.能够进行30°、45°、60°角的三角函数值的计算.3.能够根据30°、45°、60°的三角函数值说明相应的锐角的大小.学习重点:1.探索30°、45°、60°角的三角函数值.2.能够进行含30°、45°、60°角的三角函数值的计算.3.比较锐角三角函数值的大小.学习难点:进一步体会三角函数的意义.学习方法:自主探索法学习过程:BDAC一、问题引入[问题]为了测量一棵大树的高度,准备了如下测量工具:①含30°和60°两个锐角的三角尺;②皮尺.请你设计一个测量方案,能测出一棵大树的高度.二、新课[问题] 1、观察一副三角尺,其中有几个锐角?它们分别等于多少度?[问题] 2、sin30°等于多少呢?你是怎样得到的?与同伴交流.[问题] 3、cos30°等于多少?tan30°呢?[问题] 4、我们求出了30°角的三个三角函数值,还有两个特殊角——45°、60°,它们的三角函数值分别是多少?你是如何得到的?结论:(1)sin30°+cos45°; (2)sin260°+cos260°-tan45°.[例2]一个小孩荡秋千,秋千链子的长度为2.5 m,当秋千向两边摆动时,摆角恰好为60°,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差.(结果精确到0.01 m)三、随堂练习 1.计算:(1)sin60°-tan45°; (2)cos60°+tan60°; (3) 22sin45°+sin60°-2cos45°; ⑷13230sin 1+-︒;⑸(2+1)-1+2sin30°-8; ⑹(1+2)0-|1-sin30°|1+(21)-1;⑺sin60°+︒-60tan 11; ⑻2-3-(0032+π)0-cos60°-211-.2.某商场有一自动扶梯,其倾斜角为30°.高为7 m ,扶梯的长度是多少?3.如图为住宅区内的两幢楼,它们的高AB =CD=30 m ,两楼问的距离AC=24 m ,现需了解甲楼对乙楼的采光影响情况.当太阳光与水平线的夹角为30°时,求甲楼的影子在乙楼上有多高?(精确到0.1 m ,2≈1.41,3≈1.73)四、课后练习:1、Rt △ABC 中,8,60=︒=∠c A ,则__________,==b a ;2、在△ABC 中,若2,32==b c ,,则____tan =B ,面积S = ;3、在△ABC 中,AC :BC =1:3,AB =6,∠B = ,AC = BC =4、等腰三角形底边与底边上的高的比是3:2,则顶角为 ( ) (A )600(B )900(C )1200(D )1505、有一个角是︒30的直角三角形,斜边为cm 1,则斜边上的高为 ( ) (A )cm 41 (B )cm 21 (C )cm 43 (D )cm 236、在ABC ∆中,︒=∠90C ,若A B ∠=∠2,则tanA 等于( ). (A )3 (B )33(C )23 (D )217、如果∠a 是等边三角形的一个内角,那么cos a 的值等于( ). (A )21 (B )22(C )23 (D )1 8、某市在“旧城改造”中计划内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米a 元,则购买这种草皮至少要( ). (A )450a 元 (B )225a 元 (C )150a 元 (D )300a 元9、计算:⑴、︒+︒60cos 60sin 22 ⑵、︒︒-︒30cos 30sin 260sin⑶、︒-︒45cos 30sin 2⑷、3245cos 2-+︒︒15020米30米⑸、045cos 360sin 2+ ⑹、 130sin 560cos 30-⑺、︒30sin 22·︒+︒60cos 30tan tan60° ⑻、︒-︒30tan 45sin 2210、请设计一种方案计算tan15°的值。
(课件)1.2锐角三角函数的计算(2)

这节课你收获了什么?
1.(3分)用计算器求tanA=0.5234中的锐角A(精确到1°)时,按键
顺序正确的是 (C )
A. tan 0 ·5 2 3 4 =
B. 0 ·5 2 3 4 = SHIFT tan
C. SHIFT tan 0 ·5 2 3 4 =
D. tan SHIFT 0 ·5 2 3 4 =
(1)sin α=0.4511
shift sin 0 . 4 5 1 1 = 0'''
(2)cos α=0.7857
shift cos 0 . 7 8 5 7 = 0'''
(3)tan α=1.4036
shift tan 1 . 4 0 3 6 = 0'''
提示:上表的显示结果是以度为 单位的,再按 0''' 键即可显示以“度, 分,秒”为单位的结果.
7.如图,工件上有一V型槽,测得它的上口宽20mm, 深19.2mm.求V型角(∠ACB)的大小(结果精确到 10 ).
解 :Q tan ∠ACD AD 10 0 .5208 ,
CD 19 . 2
∴∠ACD≈27.50 .
∴∠ACB=2∠ACD≈2×27.50 =550.
∴V型角的大小约550.
2
∠A= 450
cos A 1 2
∠A= 600 cos A
2 2
∠A=
450 cos A
3 2
∠A= 300
tan A 3 3
∠A= 300 tan A 3 ∠A= 600
tan A 1 ∠A= 450
1.sin700= 0.9397
九下7.6锐角三角函数的简单应用(2)

§7.6 锐角三角函数的简单应用(2)--- ( 教案)备课时间: 主备人:班级__________ 姓名__________ 学号_________【知识要点】1.认清俯角与仰角3. 解决此类问题的关键是将一般三角形问题,通过添加辅助线转化直角三角形问题。
【典型例题】如图,AB 和CD 是同一地面上的两座相距36米的楼房,在楼AB 的楼顶A 点测得楼CD 的楼顶C 的仰角为45°,楼底D 的俯角为30°.求楼CD 的高。
若已知楼CD 高为30米,其他条件不变,你能求出两楼之间的距离BD 吗?2.如图,飞机在距地面9km 高空上飞行,先在A 处测得正前方某小岛C 的俯角为30°,飞行一段距离后,在B 处测得该小岛的俯角为60°.求飞机的飞行距离。
2.方位角:如图,从O 点出发的视线与铅垂线所成的锐角,叫做观测的方位角3.如图,在一笔直的海岸线上有A,B两个观测站,A在B的正西方向,AB=2km,从A测得船C在北偏东60°的方向,从B测得船C在北偏西45°的方向.求船C离海岸线的距离.4.气象局发出预报:如图, 沙尘暴在A市的正东方向400km的B处以40km/h的速度向北偏西600的方向转移,距沙尘暴中心300km的范围内将受到影响,A市是否受到这次沙尘暴的影响?如果受到影响,将持续多长时间?5.如图, 海上有一灯塔P, 在它周围3海里处有暗礁. 一艘客轮以9海里/时的速度由西向东航行, 行至A点处测得P在它的北偏东60度的方向, 继续行驶20分钟后, 到达B处又测得灯塔P在它的北偏东45度方向. 问客轮不改变方向继续前进有无触礁的危险?课后练习:【基础演练】1.如图,一座塔的高度TC=120m ,甲、乙两人分别站在塔的西、东两侧的点A 、B 处,测得塔顶的仰角分别为28º、15º。
求A 、B 两点间的距离_________(精确到0.1米) (参考数据:tan 280.53,tan 150.27︒≈︒≈)2.如图所示,小华同学在距离某建筑物6米的点A 处测得广告牌B 点、C 点的仰角分别为60°和45°,则广告牌的高度BC 为_____________米(结果保留根号). 3.如图,小明同学在东西方向的环海路A 处,测得海中灯塔P 在北偏东60°方向上,在A 处向东500米的B 处,测得海中灯塔P 在北偏东30°方向上,则灯塔P 到环海路的距离PC =米(结果保留根号)题1图题2图 题3图 4.如图,在某广场上空飘着一只汽球P ,A 、B 是地面上相距90米的两点,它们分别在汽球的正西和正东,测得仰角∠PAB=45o,仰角∠PBA=30o,求汽球P 的高度。
24.3.1锐角三角函数2

4 cos A 5 sin A cos A 4 5 tan A 2 cos A 3 sin A cos A 2 3 tan A
3 7
4 5 0.5 1.5 3 原式 2 3 0.5 3.5 7
1.sinA与cosA有何关系? tanA与cotA的关系?
2.tanA与sinA、cosA之间的关系: cotA与sinA、cosA之间的关系: 商的关系
作者:李先贵(平昌县信义小学)
4
探索一:sinA与cosA的平方和关系
证明
∵∠C=900
a b c
2 2
2
a sin A , c
华东师大版九年级(上册)
第二课时
执教人:李先贵
作者:李先贵(平昌县信义小学) 1
锐角三角函数是如何定义的?
sinA = cosA = tanA = cotA =
A的对边 斜边
A的邻边 斜边
A的对边 A的邻边
A的邻边 A的对边
锐角A的正弦、余弦、和正切、余切统称∠A的三角函数
作者:李先贵(平昌县信义小学)
cotA与sinA、cosA间商的关系
cot A
1 tan A
sin A cos A . cos A sin A
cos A . sin A
a sin A , cos A b , tan A a , b c c sin A a b a c a cos A c c c b b
tan A cot A
B
cot A b . a
c a
┌
tan A cot A 1.
锐角三角函数《应用举例》第2课时示范公开课教学设计【人教版九年级数学下册】

第二十八章锐角三角函数28.2.2应用举例第2课时一、教学目标1.能够把解直角三角形相关知识应用到实际问题中;2.能从实际问题中构造直角三角形,把实际问题转化为解直角三角形的问题,并能灵活选择三角函数解决问题;3.经历从实际问题到数学问题的思考,培养学生数学建模思想和分析问题、解决问题的能力;4.体会数学在解决实际问题中的应用,使学生感受数学在航海方面的应用,使学生感受到数学的广泛作用.二、教学重难点重点:能够把解直角三角形相关知识应用到实际问题中.难点:灵活选择三角函数解决问题.三、教学用具多媒体等.四、教学过程设计教学环节教师活动学生活动设计意图环节一创设情景【回顾】教师活动:教师带领学生回顾前面所学知识,为下面做基础.如图,在Rt△ABC中,共有六个元素(三条边,三个角),其中∠C=90°.(1) 三边之间的关系:a2+b2=__c2___;思考并配合老师回答问题通过前面所学知识的复习,为后面解题做基础.(2) 锐角之间的关系:∠A+∠B=__90°___;(3) 边角之间的关系:sin A=__ac___,cos A=_bc____,tan A=_ab____.解直角三角形的应用:(1)将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题);(2)根据条件的特点,适当选用锐角三角函数等知识去解直角三角形;(3)得到数学问题答案;(4)得到实际问题答案.环节二探究新知【探究】如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80 n mile的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34 °方向上的B处.这时,B处距离灯塔P有多远(结果取整数) ?【归纳】方位角:指北或指南方向线与目标方向线所成的小于90°的角叫做方位角.在下图中依次画出表示东南方向、西北方向、北偏东65°、南偏东34°方向的射线.学生跟随教师写过程经历从实际问题到数学问题的思考,培养学生数学建模思想和分析问题、解决问题的能力.解:如图 ,在Rt △APC 中, PC =P A ·cos(90°-65°) =80×cos25° ≈72.505在Rt △BPC 中,∠B =34°,sin PCB PB=()72505130n mile sin sin34PC .PB B ∴==≈ 当海轮到达位于灯塔P 的南偏东34°方向时,它距离灯塔P 大约130海里. 环节三应用新知 【典型例题】例1:铁路的路基横断面为一个等腰梯形,若腰的坡度为i =3∶2,顶宽是3m ,路基高是1.5m ,求路基的下底宽是多少?【归纳】坡度(坡比):坡面的铅直高度h 和水平距离l 的比叫做坡度,用字母 i 表示,如图,坡度通常写成tan hi lα==的形式.坡度越大 坡角越大 坡面越陡解:如图,AD =3m ,作AE ⊥BC , DF ⊥BC .集体回答通过例题,规范学生对解题步骤的书写,让学生感受数学的严谨性.∵i=3∶2,AE=DF=1.5m.∴BE=CF=1m.∴BC=1+1+3=5m.环节四巩固新知【随堂练习】教师活动:通过Pk作答的形式,让学生独立思考,再由老师带领整理思路过程.练习1如图,水库的横断面是梯形ABCD,迎水坡AB的坡度i=1∶1,坝高BE=20m,迎水坡AB=_______m,坡角α=_______.答案:202;45°练习2如图,海中有一个小岛A,它的周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上,如果渔船不改变航线继续向东航行,有没有触礁的危险?答案:(方法1)解:如图,过A作AC⊥BD,交BD的延长线于点C,则AC的长是A到BD的最短距离,由题意,得∠CAD=30°,∠CAB=60°,∠ABD=90°-60°= 30°,又∵∠BAD=∠CAB-∠CAD=60° -30°=30°,∴∠ABD=∠BAD,分组讨论进一步巩固本节课的内容.了解学习效果,让学生经历运用知识解决问题的过程,给学生获得成功体验的空间.=⨯12∴渔船继续向正东方向行驶,没有触礁的危险.3=tan30360°= 30°=3x以思维导图的形式呈现本节课所讲解的内容.。
九年级数学下册《锐角三角函数》第2课时教学设计

九年级数学下册《锐角三角函数》第2课时教学设计一、教材分析本节课是北师大版九年级下册第一章《直角三角形的边角关系》的第一节的内容, 共两课时。
本设计是第二课时。
本节课是在学生理解了正切的基础上, 进一步通过探究发现直角三角形中直角边与斜边之间存在的关系。
从教材中可以看到, 其中渗透着数学核心素养如数学抽象、数学建模等数学思想, 是本节课的数学本质。
二、学情分析学生的知识技能基础:通过前一节课学习的有关正切的知识, 学生已获得一定的探究方法, 积累了一定的经验, 这为本节课的开展提供了必要的铺垫。
本节课将在此基础上进行类比学习, 进一步探究直角三角形中的边角关系。
学生的活动经验基础:学生在上一节课的学习过程中已经历过从实际生活中抽象出数学概念, 形成数学知识, 并建立起数学建模解决实际生活问题的模式, 而且获得了探究数学问题过程中采用合适的数学方法解决问题的经验, 同时具有了一定的合作学习的能力, 交流的能力, 这些都为本节课的学习提供了必要的铺垫。
三、教学任务本节共分2个课时, 这是第2课时, 主要内容是进一步通过探究发现直角三角形中直角边与斜边之间存在的关系, 并利用这种关系解决一些简单问题。
本节课的具体教学目标为:知识与技能:1、探索并掌握锐角三角函数的概念——正弦、余弦, 理解锐角的正弦与余弦和梯子倾斜程度的关系。
2、能够用正弦、余弦进行简单的计算, 解决一些简单的实际问题。
过程与方法:1、经历类比、猜想等过程.发展合情推理能力, 能有条理地、清晰地阐述自己的观点。
2、在课堂上落实数学核心素养数学抽象、数学建模的思想, 体会解决问题的策略的多样性, 发展实践能力和创新精神。
情感态度价值观:积极参与数学活动, 提高学生对数学学科的好奇心和求知欲, 学有用的数学, 同时体会数学学科的一些核心素养, 如数学抽象、数学建模对研究问题时的引领作用。
教学重点:掌握正弦、余弦的定义, 感受数学与生活的联系。
锐角三角函数(第2课时)教案 2022—2023学年人教版数学九年级下册

28.1 锐角三角函数第2课时一、教学目标【知识与技能】1.通过类比正弦函数,理解余弦函数、正切函数的定义,进而得到锐角三角函数的概念;2.能灵活运用锐角三角函数进行相关运算.【过程与方法】通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力.【情感态度与价值观】经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力.二、课型新授课三、课时第2课时共4课时四、教学重难点【教学重点】理解余弦、正切概念,知道当直角三角形的锐角固定时,它的邻边与斜边的比值、直角边之比是固定值.【教学难点】熟练运用锐角三角函数的概念进行有关计算.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔.六、教学过程(一)导入新课(出示课件2)如图,在Rt△ABC中,∠C=90°.当∠A确定时,∠A的对边与斜边的比就确定,此时,其他边之间的比是否也确定呢?(二)探索新知知识点一余弦的定义如图,△ABC和△DEF都是直角三角形,其中∠A=∠D,∠C=∠F=90°,则AC DF=成立吗?为什么?(出示课件4)AB DE学生思考后,师生共同解答:(出示课件5)∵∠A=∠D,∠C=∠F=90°,∴∠B=∠E.从而sinB=sinE,因此AC DF=.AB DE教师归纳:(出示课件6)在有一个锐角相等的所有直角三角形中,这个锐角的邻边与斜边的比值是一个常数,与直角三角形的大小无关.如下图所示,在直角三角形中,我们把锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cosA=.A b c∠=的邻边斜边教师强调:从上述探究和证明过程,可以得到互余两角的三角函数之间的关系:对于任意锐角α,有cos α=sin(90°-α),或sin α=cos(90°-α).(出示课件7)出示课件8,教师对照正弦、余弦的定义,对两个概念注意事项加以强调:1.sinA 、cosA 是在直角三角形中定义的,∠A 是锐角(注意数形结合,构造直角三角形).2.sinA 、cosA 是一个比值(数值).3.sinA 、cosA 的大小只与∠A 的大小有关,而与直角三角形的边长无关.出示课件9,学生独立思考后口答,教师订正.知识点二 正切的定义如图,△ABC 和△DEF 都是直角三角形,其中∠A=∠D ,∠C=∠F=90°,则BC EF AC DF=成立吗?为什么?(出示课件10)学生自主证明,一生板演,教师巡视,并用多媒体展示. 证明:∵∠C=∠F=90°,∠A=∠D ,∴Rt △ABC ∽Rt △DEF. ∴BC AC EF DF =, 即BC EF AC DF=. 教师问:当直角三角形的一个锐角的大小确定时,其对边与邻边比值也是唯一确定的吗?(出示课件11)学生独立思考后,师生共同总结:在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,∠A 的对边与邻边的比是一个固定值.(出示课件12)如图:在Rt △ABC 中,∠C =90°,我们把锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA.即tanA=a .A A b∠=∠的对边的邻边出示课件14,教师问:如果两个角互余,那么这两个角的正切值有什么关系?学生答:互为倒数.教师问:锐角A 的正切值可以等于1吗?为什么?可以大于1吗?学生答:锐角A 的正切值可以等于1;当a=b 时;可以大于1,当a >b 时.出示课件15,学生独立思考后口答,教师订正.知识点三 锐角三角函数的定义出示课件16:锐角A 的正弦、余弦、和正切统称∠A 的锐角三角函数.考点1 已知直角三角形两边求锐角三角函数的值.例 如图,△ABC 中,∠C=90°,AB=10,BC=6,求sinA ,cosA ,tanA 的值.(出示课件17)学生思考后,师生共同解答.解:由勾股定理,得2222=106AC AB BC --, 因此,63sin ==105BC A AB =, 84cos 105AC A AB ,===63tan ==.84BC A AC = 师生共同总结:已知直角三角形中的两条边求锐角三角函数值的一般思路是:当所涉及的边是已知时,直接利用定义求锐角三角函数值;当所涉及的边是未知时,可考虑运用勾股定理的知识求得边的长度,然后根据定义求锐角三角函数值.(出示课件18)出示课件19,学生独立思考后口答,教师订正.考点2 已知一边及一锐角三角函数值求函数值.例 如图,在Rt △ABC 中,∠C=90°,BC=6,3sin 5A =,求cosA,tanB 的值.学生独立思考后,师生共同解答.解:∵在Rt △ABC 中,sin BC A AB=, ∴5610sin 3BC AB A =⨯==. 又22221068AC AB BC =-=-=, ∴4cos 5AC A AB ==,4tan .3AC B BC == 教师强调:在直角三角形中,如果已知一边长及一个锐角的某个三角函数值,即可求出其它的所有锐角三角函数值.出示课件21,学生独立思考后一生板演,教师订正.(三) 课堂练习(出示课件22-28)练习课件22-28相应题目,约用时15分钟。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锐 角三角 函数_2
有一段防洪大堤,横截面为梯形ABCD, AB∥CD,斜坡AD的坡度 i1 为1:1.2,斜坡BC 的坡度 i2为1:0.8,大坝底宽AB为10米,坝高2 米,求坝顶宽。
D
C
A
锐 角三角 函数_2
B
10米
锐 角三角 函数_2
如图,在某海域内有A、C两个港口,港口C在港口 A北偏东60°方向上.一艘船以每小时36海里的速 度沿北偏东30°的方向驶离A港口,3小时后到达B 点位置,在B处测得港口C在B处的南偏东75°方向 上,求B处离港口C有多少海里?(结果保留根号)
根据图中所给的数据,求避雷针
CD的长。
D
C
45°
A 30°
52m
B
锐 角三角 函数_2
锐 角三角 函数_2
某人在A处测得建筑物的仰角∠BAC为 300 ,沿AC方向行20m至D处,测得仰角∠BDC 为450,___________________
D
C
锐 角三角 函数_2
y
C A
O
Dx
B
锐 角三角 函数_2
二.特殊角的三角函数值
1
2
3
2
2
2
3
2
1
2
2
2
3
1
3
3 锐角的三角函数值有
何变化规律呢?
锐 角三角 函数_2
锐 角三角 函数_2
正切值和正弦值都随着锐角度数的增大而_增__大__; 余弦值随着锐角度数的增大而_减__小__.
一.比较大小
(1)sin250____sin430 (2)cos70____cos80 (3)tan480____tan400 当A为锐角时,0<sinA<1,0<cosA<1,tanA>0.
4.会用解直角三角形的有关知识解决简单的实际 问题.
一.锐角三角函数的概念
B
在Rt△ABC中,∠C=90
ca
正弦:把锐角A的_对__边__与__斜__边_的比叫做∠A
的正弦,记作 sin A a
c
A bC
余弦:把锐角A的_邻__边__与__斜__边_的比叫做∠A的 余弦,记作 cosA b
c
正切:把锐角A的_对__边__与__邻__边_的比叫做∠A的 正切,记作 tan A a
就可以求出其余3个未知元素.
锐 角三角 函数_2
锐 角三角 函数_2
1.在Rt △ ABC中,∠C=90°,∠ A=30°,b=5, 求a、c的大小.
B
30°
A
C
锐 角三角 函数_2
锐 角三角 函数_2
四、解直角三角形的应用
(1)将实际问题抽象为数学问题; (画出图形、转化为直角三角形问题) (2)选择适当的三角函数解直角三角形; (3)得到数学问题的答案。
(4)得到实际问题的答案。
锐 角三角 函数_2
锐 角三角 函数_2
如图,在一笔直的海岸线上有A,B两个观测站,A在 B的正西方向,AB=2km,从A测得船C在北偏东 60°的方向,从B测得船C在北偏西45°的方向.求 船C离海岸线的距离.
C
60°
A 2km
45°
B
锐 角三角 函数_2
锐 角三角 函数_2
锐 角三角 函数_2
锐 角三角 函数_2
☆ 应用练习
二.已知角,求值 (1)tan45°-sin60°cos30° (2)2sin30°+3tan30°+tan45° (3)cos245°+ tan60°cos30°
锐 角三角 函数_2
锐 角三角 函数_2
☆ 应用练习
三.已知值,求角
(1)已知 sinA= 3 ,求锐角A .
2
(2)已知2cosA - 2 = 0 , 求锐角A.
(3)已知 tan( ∠A+20°)= 3 ,求锐角A .
(4)在△ABC中, ∠ B、 ∠ C均为锐角,且
sinB - 1 2
cos C -
3 2
2
0
,求∠A的度数。
锐 角三角 函数_2
锐 角三角 函数_2
三.解直角三角形
1.什么叫解直角三角形?
在直角三角形中,除直角外的已知元素,求出所 B 有未知元素的过程,叫做解直角三角形.
2.直角三角形中的边角关系:
ca
(1)三边关系: a2 b2 c2 (勾股定理)
(2)两锐角的关系:∠A十∠B=90°
A bC
(3)边角的关系:sin A a cos A b tan A a
c
c
b
归纳:只要知道其中的2个元素(至少有一个是_边___),
B C
A
锐 角三角 函数_2
锐 角三角 函数_2
⑴正弦
1.锐角三角函数的定义 ⑵余弦
锐
⑶正切
角 2.30°、45°、60°特殊角的三角函数值
三 角
⑴定义 ⑵解直角三角形的依据
函
①三边间关系
数 3.解直角三角形
②锐角间关系
③边角间关系
⑶解直角三角形在实际问题中的应用
锐 角三角 函数_2
锐 角三角 函数_2
b
锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.
1.如图,在Rt△ABC中,∠C=90,AB=5,AC=3, 求sinA,cosA及tanA。
B
A
C
2.在正方形网格中,△ABC的位置如图所示, 则cos∠ABC的值为________。
A
B
C
3、如图,直径为5的⊙A经过点C(0,3)和 点O(0,0),B是y轴右侧⊙A优弧上一点, 则∠OBC的余弦值为_______。
教材 P68—69 习题
锐 角三角 函数_2
锐 角三角 函数_2
1.仰角和俯角
在进行测量时, 从下向上看,视线与水平线的夹角叫做_仰__角_; 从上往下看,视线与水平线的夹角叫做_俯__角_。
视线
铅 直
仰角
线
俯角
水平线
视线
锐 角三角 函数_2
锐 角三角 函数_2
2.坡角、坡度
坡角:坡面与水平面的夹角叫做坡角,用字母α表示.
坡度:坡面的铅直高度h和水 平距离l的比叫做坡度,用字 母i表示,即:
i tan h
l
h
l
锐 角三角 函数_2
锐 角三角 函数_2 锐 角三角 函数_2
1. 巩固三角函数的概念,巩固用直角三角形边之 比来表示某个锐角的三角函数.
2. 熟记30°,45°, 60°角的三角函数值.会计 算含有特殊角的三角函数的值,会由一个特殊 锐角的三角函数值,求出它的对应的角度.
3.掌握直角三角形的边角关系,会运用勾股定理, 直角三角形的两锐角互余及锐角三角函数解直 角三角形.