人教版《锐角三角函数》2

合集下载

《锐角三角函数(2)》名师教案(人教版九年级下册数学)

《锐角三角函数(2)》名师教案(人教版九年级下册数学)

28.1 锐角三角函数 第二课时(刘佳)一、教学目标 1.核心素养:通过锐角三角函数---余弦、正切的学习,初步形成基本的几何直观、运算能力、推理能力. 2.学习目标(1)1.1.1理解余弦、正切及锐角三角函数的概念 (2)1.1.2能熟练运用锐角三角函数的概念进行有关计算 (3)1.1.3理解并掌握互余两角三角函数间的关系 (4)1.1.4理解并掌握同角三角函数间关系 3.学习重点熟练运用锐角三角函数的概念进行有关计算4.学习难点互余两角和同角的三角函数关系 二、教学设计 (一)课前设计 1.预习任务任务1 阅读教材P64-P65,思考:什么是余弦? 任务2 阅读教材P64-P65,思考:什么是正切? 2.预习自测 一、选择题1.如图,在Rt△ABC 中,CD 是斜边AB 上的中线,若CD =5,AC =6,则cos B 的值是( ) A. 34 B.35 C.43 D. 45 答案: D解析:Rt△ABC 中,CD 是斜边AB 上的中线,所以CD =AD =BD =5,所以AB =10,因为AC =6,据勾股定理可得BC =8,所以cos B =45.故选D.2.在Rt△ABC 中,5sin 13C 90A ∠==,,则tan B 的值为( ) A.1213 B.512 C.1312 D.125答案:D解析:Rt△ABC 中,设a =x 5,则x c 13=,x b 12=,所以tan B 512=.故选D.3.在Rt△ABC 中,ACB 90∠=,CD 是斜边AB 上的高,8,15BC AC ==,设BCD α∠=,则cos α的值为( ) A.87B.78C.817D.1517答案:D解析:据勾股定理可知,AB 17=,ABC 111581722CD S ∆=⨯⨯=⨯⨯,所以17120=CD ,所以cos α1517=.故选D. (二)课堂设计 1.知识回顾(1)正弦的概念:在Rt △ABC 中,∠C=90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦,即ABBCA A =∠=斜边的对边sin .(2)函数的概念:设在某变化过程中有两个变量x 、y ,如果对于x 在某一范围内的每一个确定的值,y 都有唯一确定的值与它对应,那么就称y 是x 的函数,x 叫做自变量. (3)勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方. 2.问题探究问题探究一●活动一 类比正弦,得出结论复习思考:在Rt△ABC 中,∠C=90o ,当锐角A 确定时,不管三角形的大小如何,∠A 的对边与斜边的比就随之确定.此时,其他边之间的比是否也确定了呢?如图:Rt △ABC 与Rt △A ´B ´C ´,∠C=∠C ´=90o,∠A=∠A ´=α,那么AC AB 与''''AC A B 、BCAC与''''B C AC 有什么关系?分析:由于∠C=∠C´=90o ,∠A=∠A´=α,所以Rt△ABC∽Rt△A´B ´C ´,则''''AC ABAC A B=,即''''AC AC AB A B =同理,''''BC B C AC AC=结论:在直角三角形中,当锐角A 的大小确定时,∠A 的邻边与斜边的比、∠A 的对边与邻C ´´ C BB ´A边的比也分别是确定的.我们把锐角A的邻边与斜边的比叫做∠A的余弦,记作 cosA,即cosA==b c把∠A的对边与邻边的比叫做∠A的正切.记作tanA,即tanA==a b●活动二函数思想,理论提升思考:sinA是A的函数吗?分析:对于锐角A的每一个确定的值,sinA有唯一确定的值与它对应,所以sinA是A的函数.同理,cosA、tanA也是A的函数.定义:锐角A的正弦,余弦,正切都叫做∠A的锐角三角函数.问题探究二●活动一初步运用,简单求值例1.如图,在Rt△ABC中,∠C=90°,BC=6,sinA=35,求cosA、tanB的值.【知识点:三角函数概念,勾股定理;数学思想:数形结合】详解:sinA=BCAB =35,BC=6,∴AB=5610sin3BCA=⨯=又,∴cosA=ACAB =45,tanB=ACBC=43.点拨:在直角三角形中,只要已知任意两条边、或者一边和一锐角三角函数,都可根据勾股定理求出第三边,进而求出所有锐角三角函数值.例2.如图,在△ABC中,AD⊥BC,垂足是D,BC=14,AD=12,tan∠BAD=34,求sinC的值.【知识点:三角函数概念,勾股定理;数学思想:数形结合】详解:∵AD⊥BC,∴tan∠BAD=BD AD .∵tan∠BAD=34,AD=12,∴34=BD12.∴BD=9.∴CD=BC-BD=14-9=5.∴在Rt△ADC中,AC=AD2+CD2=122+52=13.∴sin C=ADAC=1213.点拨:在求解直角三角形的问题中,三角函数是解题的突破口,由已知三角函数求得相应线段长,进而求出未知三角函数.问题探究三 互余两角的三角函数之间有什么关系?重点、难点知识★▲●活动一观察思考,归纳总结互余两角之间的三角函数有怎样的关系呢?如图,在Rt △ABC 中,∠C =90°.=A sin ()(),()()=B cos ,则B A cos ____sin ; B sin =()(),=A cos ()(),则A cos ____B sin ; A tan =()(),B tan =()(),则____tan tan =⋅B A . 归纳结论:若βα、为锐角,且090=+βα,则___sin =α,___sin =β,___tan tan =⋅βα. 问题探究四 同角的三角函数之间有什么关系?重点、难点知识★▲●活动一观察思考,归纳总结 同角三角函数间有怎样的关系呢? 如图,在Rt △ABC 中,∠C =90°.归纳结论:若0°<α<90°,则①平方关系:1cos sin 22=+αα;②弦切关系:αααcos sin tan =. 3.课堂总结【知识梳理】(1)在Rt △ABC 中,∠C=90°,我们把锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA=b c ;把锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA=ab.(2)锐角A 的正弦,余弦,正切都叫做∠A 的锐角三角函数. (3)若90A B ∠+∠=,则sin A =cos B ,sin B =cos A (4)22sin cos 1A A +=,sin tan cos AA A=【重难点突破】(1)求解三角函数基本计算,找准角的对边、邻边是关键.(2)在求解三角函数问题时,要灵活运用公式,将求一个锐角的三角函数问题转化成求另外一个角的三角函数或这个角的其他三角函数. 4.随堂检测 一、选择题1.在直角三角形中,各边的长度都扩大5倍,则锐角A 的三角函数值( )A.也扩大3倍B.缩小为原来的15C.都不变D.有的扩大,有的缩小 答案: C解析:∠A 、∠B 、∠C 所对应的边分别为a 、b 、c,sinB=b/a,当该直角三角形的各边长都扩大5倍后,sinB=5b/5a=b/a ,所以答案为C. 【知识点:三角函数概念】2.在ABC ∆Rt 中,︒=∠90C ,如果4=AB ,2=BC ,则B cos 等于( )A .12 B .2 C D .1 答案:A解析:在ABC ∆Rt 中,B cos 21==AB BC .故选A. 【知识点:三角函数概念,勾股定理;数学思想:数形结合】3.在△ABC 中,AB=5,BC=6,B 为锐角且sinB=35,则∠C 的正切值等于( )A .56B .32C 答案:B解析:过A 作AD ⊥BC 于D ,在Rt △ABD 中,因为B 为锐角且sinB=35,所以AD=3,据勾股定理可得:BD=4,所以DC=2,tanC 23==DC AD .故选B. 【知识点:三角函数概念,勾股定理;数学思想:数形结合】 二、填空题4.sin 259°+sin 231°的值是_______. 答案:1解析:sin 259°+sin 231°= sin 259°+cos 259°=1 【知识点:同角与互余两角的三角函数】5.在ABC ∆中,90C ∠=,2sin 5A =,则cos A =______,sin B =______,tan A =______.答案:521 、521 、21212 解析:设AB 2125===AC CB ,,则,所以cos A =521,sin B =521,tan A =21212.【知识点:三角函数概念,勾股定理】。

人教版九年级数学下册作业课件 第二十八章 锐角三角函数 第2课时 仰角、俯角与解直角三角形

人教版九年级数学下册作业课件 第二十八章 锐角三角函数 第2课时 仰角、俯角与解直角三角形

AF的高度约为9.0米
【素养提升】 11.(18分)(广州中考)某数学活动小组利用太阳光线下物体的影子和标杆测量旗杆的 高度.如图,在某一时刻,旗杆AB的影子为BC,与此同时在C处立一根标杆CD, 标杆CD的影子为CE,CD=1.6 m,BC=5CD. (1)求BC的长; (2)从条件①,条件②这两个条件中选择一个作为已知,求旗杆AB的高度. 条件①:CE=1.0 m;条件②:从D处看旗杆顶部A的仰角α为54.46°. 注:如果选择条件①和条件②分别作答,按第一个解答计分. 参考数据:sin 54.46°≈0.81,cos 54.46°≈0.58,tan 54.46°≈1.40.
A.8(3- 3 ) m B.8(3+ 3 ) m C.6(3- 3 ) m D.6(3+ 3 ) m
8.(5分)(广西中考)如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼 顶部B处测得乙楼底部D处的俯角是45°,已知甲楼的高AB是120 m,则乙楼的高 CD是__4_0__3____m.(结果保留根号)
第二十八章 锐角三角函数
28.2 解直角三角形及其应用 28.2.2 应用举例
第2课时 仰角、俯角与解直角三角形
仰角与俯角问题 1.(5分)(玉林中考)如图,从热气球A看一栋楼底部C的俯角是( ) D A.∠BAD B.∠ACB C.∠BAC D.∠DAC
2.(5分)(教材P78习题T3变式)如图,某地修建高速公路,要从A地向B地修一条隧道 (点A,B在同一水平面上).为了测量A,B两地之间的距离,一架直升飞机从A地出发, 垂直上升800米到达C处,在C处观察B地的俯角为α,则A,B两地之间的距离为 _____t_a8_n0_0_α__米.
3.(5分)如图,甲,乙两座建筑物相距30 m,从甲顶部点A测得乙顶部点D的仰角为 37°,若甲建筑物AB的高为40 m,则乙建筑物CD的高约为____m6.3 (结果取整数, 参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)

(人教版)九年级数学下册同步课件:28.第2课时 30°,45°,60°角的三角函数值

(人教版)九年级数学下册同步课件:28.第2课时 30°,45°,60°角的三角函数值
28.1 锐角三角函数 第2课时 30°,45°,60°角的三角函数值
知识与技能 熟记30°,45°,60°角的三角函数值,并能根据这些值说出对应的锐角度数. 过程与方法 1.培养学生把实际问题转化为数学问题的能力. 2.培养学生观察、比较、分析、概括的能力. 情感、态度与价值观 经历观察、操作、归纳等学习数学的过程,感受数学思考过程的合理性,感受数学 说理的必要性、说理过程的严谨性,养成科学、严谨的学习态度.
(3)若∠A=30°,则ac=________.
二、共同探究,获取新知 (1)探索 30°,45°,60°角的三角函数值. 师:观察一副三角尺,其中有几个锐角?它们分别等于多少度? 生:一副三角尺中有四个锐角,它们分别是 30°,60°,45°,45°. 师:sin30°等于多少呢?你是怎样得到的?与同伴交流.
生:sin30°=12.sin30°表示在直角三角形中,30°角的对边与斜边的比值, 与直角三角形的大小无关.我们不妨设 30°角所对的边长为 a(如图所示),根据 “直角三角形中 30°角所对的边等于斜边的一半”的性质,则斜边长等于 2a. 根据勾股定理,可知 30°角的邻边长为 3a,所以 sin30°=2aa=21.
第一列,随着角度的增大,正弦值在逐渐增大. 第二列,余弦值随角度的增大而减小. 师:第三列呢?
生:第三列是30°,45°,60°角的正切值,首先45°角是等腰直角三角形中 的一个锐角,所以tan45°=1比较特殊.随着角度的增大,正切值也在增大.
(2)进一步探究锐角的三角函数值. 如图,在 Rt△ABC 中,∠C=90°.
重点 30°,45°,60°角的三角函数值. 难点 与特殊角的三角函数值有关的计算.
一、复习巩固 如图,在 Rt△ABC 中,∠C=90°.

初中数学教学课例《锐角三角函数(第二课时正弦与余弦)》教学设计及总结反思

初中数学教学课例《锐角三角函数(第二课时正弦与余弦)》教学设计及总结反思

据三角形中已知的边和角求出未知的边和角。
1.知识与技能:理解正弦与余弦的概念,能用 sin、
cos 表示直角三角形中的两边之比,并能解决三角函数
相关问题。
2.过程与方法:通过引导法、自主探究法和交流法,
教学目标 让学生自己动脑动手去猜想去发现,然后通过讨论交流
得出结论。
3.性感态度价值观:积极参与数学活动,对数学产
生好奇心和求知欲,形成合作交流的意识以及独立思考
的习惯。
学生学习能
学生必须主动思考,在教师的引导下及时地进行相
力分析 关操作,比如在教师在板书时自己也应该很快地在草稿
纸上画出相应的直角三角形,并且标出各顶点、各角; 在得到明确指令后要迅速思考、交流,能有条理地、清 晰地阐述自己的观点,最重要的一点是再次提醒学生目 前所讲的三角函数是在直角三角形中进行讨论的
教师通过课件展示后提出问题:如图,(1)直角 教学过程
三角形 AB1C1 和直角三角形 AB2C2 有什么关系?(2) AC1B1A 和 AC2B2A 有什么关系 B1C1B1A 和 B2C2B2A 呢? (3)如果改变 AB 倾斜角大小呢?由此可以得出什么结
论,请同学们讨论会回答。学生们开始在自己的草稿纸 上画出教师所展示图形的草图,借以学习正切时的方 法,逐一解决教师提出的问题。首先是探索两个三角形 的关系,经过简单的思考不难发现两个三角形是相似 的,那么就有同学会回答这两个三角形是相似的,教师 便继续引导:既然是相似三角形,那么赶快回顾一下相 似三角形都具有什么性质,学生回忆:相似三角形对应 角相等,对应边成比例、相似三角形的周长比等于相似 比、相似三角形的面积比等于相似比的平方等,教师继 续提问:既然这样,那么第(2)小问中的比值有什么 样的关系,学生可以很快得出答案:相等。教师立马板 书出来,并且在板书过程中要求学生共同书写,最后一 问:如果改变倾斜角大小,以上结论还成立吗?学生又 开始讨论,很快有学生回答:改变倾斜角大小,两个三 角形仍然是相似三角形。教师追问:那倾斜角对边与斜 边的比值有变化吗?学生又开始计算、讨论,回答:倾 斜角变化,倾斜角的对边与斜边的比值也会随之变化。 教师继续引导:如果刚才你是用图中小三角形来计算的 比值,那么现在计算一下大三角形的比值,反之亦然。 学生在引导下又进行计算,然后发现比值居然一样,积 极讨论,随后教师带领学生归纳总结:只要倾斜角确定, 倾斜角的对边与斜边的角有关,而与直角

锐角三角函数 (2)

锐角三角函数 (2)

28.1 锐角三角函数(2)主备:简红一.课时学习目标:1、掌握余弦、正切的含义,会在直角三角形中求出某个锐角的余弦和正切值。

2、能用函数的观点理解余弦和正切。

重点和难点重点:三角函数定义的理解。

难点:直角三角形中锐角三角函数值与三边之间的关系及求三角函数值。

二.课前预习导学:带着下列问题独立预习.交流研讨课本第77—78页内容:1. 在Rt△ABC中,∠ACB=90°,当∠A确定时,它的邻边与斜边的比值是锐角A的邻边与斜边的比叫做∠A的,记作。

即cosA==。

2. 在Rt△ABC中,∠ACB=90°,当∠A确定时,它的对边与邻边的比值是锐角A的对边与邻边的比叫做∠A的,记作。

即tanA==。

三.预习检测1、在Rt△ABC中,∠C=90°,AC=1,AB=3,则cosA=________,tanB=______。

2.在中,∠C=90°,a,b,c分别是∠A、∠B、∠C的对边,则有()A.B.C.D.3. 在中,∠C=90°,如果那么的值为()A.B.C.D.四. 课堂学习研讨:第一,小组内交流你的预习收获,并说出你的困惑。

第二,分组汇报预习收获及困惑。

第三,本节内容深入研讨,并整理。

探索新知:一般地,当∠A取其他一定度数的锐角时,它的邻边与斜边的比. 对边与邻边的比是否也是一个固定值?如图:Rt△ABC与Rt△A`B`C`,∠C=∠C` =90o,∠A=∠A‘那么与有什么关系?结论:1.在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的邻边与斜边的比也是一个固定值。

2.在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与邻边的比也是一个固定值。

五.课内训练巩固:1.在Rt△ABC中,∠C=90°,BC=6,AC=8,则sinA=_____,cosA=_____,tanA=_____。

2.在Rt△ABC中,∠B=90°,AC=2BC,则sinC=____,cosA=_____,tanA=_____。

26.1 锐角三角函数 - 第2课时课件(共21张PPT)

26.1 锐角三角函数 - 第2课时课件(共21张PPT)
例3 在Rt△ABC中,∠C=90°,AC=5,BC=12.求sinA,cosA,tanA的值.
归纳
在直角三角形中,锐角α的对边与邻边的比、邻边与斜边的比以及对边与邻边的比,都是唯一确定的;当锐角α变化时,相应的值也会发生相应的变化. 我们把锐角α的正弦、余弦和正切统称为α的三角函数. 为方便起见,今后将(sinα)2,(cosα)2,(tanα)2分别记作sin2α,cos2α,tan2α.
随堂练习
1.△ABC中,∠C=90°,AB=8,cosA= ,则AC的长是______.2.已知A为锐角,tanA= ,则sinA=___ ,cosA=_____ .3.如图,在矩形ABCD中,DE⊥AC于E,设∠ADE=α,且cosα= ,AB=4,则AD的长为_____.
6
4.如图,在正方形ABCD中,M是AD的中点,BE=3AE,求sin∠ECM.
定义中应该注意的几个问题:1.sinA,cosA,tanA是在直角三角形中定义的,∠A是锐角(注意数形结合,构造直角三角形).2.sinA,cosA,tanA是一个完整的符号,分别表示∠A的正弦,余弦,正切 (习惯省去“∠”号).3.sinA,cosA,tanA 是一个比值.注意比的顺序.且sinA,cosA,tanA均大于0,无单位.4.sinA,cosA,tanA的大小只与∠A的大小有关,而与直角三角形的边长无关.5.角相等,则其三角函数值相等;两锐角的三角函数值相等,则这两个锐角相等.
解:设正方形ABCD的边长为4x,由勾股定理可知,∵M是AD的中点,BE=3AE,∴AM=DM=2x,AE=x,BE=3x.∴EM2=AM2+AE2=(2x)2+x2=5x2∴CM2=DM2+DC2=(2x)2+(4x)2=20x2∴EC2=BC2+BE2=(4x)2+(3x)2=25x2∴EC2=EM2+CM2 由勾股定理逆定理可知,△EMC为直角三角形.∴sin∠ECM= = = .

锐角三角函数(第2课时)教案 2022—2023学年人教版数学九年级下册

锐角三角函数(第2课时)教案  2022—2023学年人教版数学九年级下册

28.1 锐角三角函数第2课时一、教学目标【知识与技能】1.通过类比正弦函数,理解余弦函数、正切函数的定义,进而得到锐角三角函数的概念;2.能灵活运用锐角三角函数进行相关运算.【过程与方法】通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力.【情感态度与价值观】经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力.二、课型新授课三、课时第2课时共4课时四、教学重难点【教学重点】理解余弦、正切概念,知道当直角三角形的锐角固定时,它的邻边与斜边的比值、直角边之比是固定值.【教学难点】熟练运用锐角三角函数的概念进行有关计算.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔.六、教学过程(一)导入新课(出示课件2)如图,在Rt△ABC中,∠C=90°.当∠A确定时,∠A的对边与斜边的比就确定,此时,其他边之间的比是否也确定呢?(二)探索新知知识点一余弦的定义如图,△ABC和△DEF都是直角三角形,其中∠A=∠D,∠C=∠F=90°,则AC DF=成立吗?为什么?(出示课件4)AB DE学生思考后,师生共同解答:(出示课件5)∵∠A=∠D,∠C=∠F=90°,∴∠B=∠E.从而sinB=sinE,因此AC DF=.AB DE教师归纳:(出示课件6)在有一个锐角相等的所有直角三角形中,这个锐角的邻边与斜边的比值是一个常数,与直角三角形的大小无关.如下图所示,在直角三角形中,我们把锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cosA=.A b c∠=的邻边斜边教师强调:从上述探究和证明过程,可以得到互余两角的三角函数之间的关系:对于任意锐角α,有cos α=sin(90°-α),或sin α=cos(90°-α).(出示课件7)出示课件8,教师对照正弦、余弦的定义,对两个概念注意事项加以强调:1.sinA 、cosA 是在直角三角形中定义的,∠A 是锐角(注意数形结合,构造直角三角形).2.sinA 、cosA 是一个比值(数值).3.sinA 、cosA 的大小只与∠A 的大小有关,而与直角三角形的边长无关.出示课件9,学生独立思考后口答,教师订正.知识点二 正切的定义如图,△ABC 和△DEF 都是直角三角形,其中∠A=∠D ,∠C=∠F=90°,则BC EF AC DF=成立吗?为什么?(出示课件10)学生自主证明,一生板演,教师巡视,并用多媒体展示. 证明:∵∠C=∠F=90°,∠A=∠D ,∴Rt △ABC ∽Rt △DEF. ∴BC AC EF DF =, 即BC EF AC DF=. 教师问:当直角三角形的一个锐角的大小确定时,其对边与邻边比值也是唯一确定的吗?(出示课件11)学生独立思考后,师生共同总结:在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,∠A 的对边与邻边的比是一个固定值.(出示课件12)如图:在Rt △ABC 中,∠C =90°,我们把锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA.即tanA=a .A A b∠=∠的对边的邻边出示课件14,教师问:如果两个角互余,那么这两个角的正切值有什么关系?学生答:互为倒数.教师问:锐角A 的正切值可以等于1吗?为什么?可以大于1吗?学生答:锐角A 的正切值可以等于1;当a=b 时;可以大于1,当a >b 时.出示课件15,学生独立思考后口答,教师订正.知识点三 锐角三角函数的定义出示课件16:锐角A 的正弦、余弦、和正切统称∠A 的锐角三角函数.考点1 已知直角三角形两边求锐角三角函数的值.例 如图,△ABC 中,∠C=90°,AB=10,BC=6,求sinA ,cosA ,tanA 的值.(出示课件17)学生思考后,师生共同解答.解:由勾股定理,得2222=106AC AB BC --, 因此,63sin ==105BC A AB =, 84cos 105AC A AB ,===63tan ==.84BC A AC = 师生共同总结:已知直角三角形中的两条边求锐角三角函数值的一般思路是:当所涉及的边是已知时,直接利用定义求锐角三角函数值;当所涉及的边是未知时,可考虑运用勾股定理的知识求得边的长度,然后根据定义求锐角三角函数值.(出示课件18)出示课件19,学生独立思考后口答,教师订正.考点2 已知一边及一锐角三角函数值求函数值.例 如图,在Rt △ABC 中,∠C=90°,BC=6,3sin 5A =,求cosA,tanB 的值.学生独立思考后,师生共同解答.解:∵在Rt △ABC 中,sin BC A AB=, ∴5610sin 3BC AB A =⨯==. 又22221068AC AB BC =-=-=, ∴4cos 5AC A AB ==,4tan .3AC B BC == 教师强调:在直角三角形中,如果已知一边长及一个锐角的某个三角函数值,即可求出其它的所有锐角三角函数值.出示课件21,学生独立思考后一生板演,教师订正.(三) 课堂练习(出示课件22-28)练习课件22-28相应题目,约用时15分钟。

【人教版】九年级下册数学《锐角三角函数》全章知识点复习及同步习题

【人教版】九年级下册数学《锐角三角函数》全章知识点复习及同步习题

c ,则有: s in A = a = cos B , cos A = = sin B , tan A = ,这就是锐角三角函数所以 cos B = sin(90 - B) = sin A = .在 Rt△BCD 中, cos B = ,所以 = ., cos A = , =(sin 2A 、cos 2A 分别表示 sin A 、cos A 2 2锐角三角函数我们知道,在 Rt△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为 a 、b 、b ac c b的定义.根据锐角三角函数的定义,再结合直角三角形的性质,我们可以探索出锐角三角函数之间的三个特殊关系.一、余角关系由上面的定义我们已得到 sin A =cos B ,cos A =sin B ,而在直角三角形中,∠A+∠B =90°,即∠B =90°-∠A .因此有:sin A =cos (90°-A ),cos A =sin (90°-A ).应用这些关系式,可以很轻松地进行三角函数之间的转换.例1 如图,在 Rt△ABC 中,∠C =90°,CD ⊥AB 于 D ,已知 sin A ==2,求 BC 的长.解:由于∠A +∠B =90°,12BD 2 1BC BC 2所以 BC =4.二、平方关系a b 由定义知 sin A = c c1 2 ,BD所以 sin 2 A + cos 2 A = a 2 b 2 a 2 + b 2+ c c c 2的平方).又由勾股定理,知 a 2+b 2=c 2,所以 sin 2A +cos 2A = c 2 c 2=1.应用此关系式我们可以进行有关锐角三角函数平方的计算.例 2 计算:sin256°+sin245°+sin234°.=⎪⎪ + 1 = 由定义中 sin A = a, cos A = ,得 = c = ⨯ = = tan A .所以原式 = = =- .5 12 5 12所以 sin B = = .应选(B).5解:由余角关系知 sin56°=cos(90°-56°)=cos34°.所以原式=sin245°+(sin234°+cos234°)⎛ 2 ⎫2 ⎝ 2 ⎭3 2 .三、相除关系b c casin A a c a cos A b c b bc利用这个关系式可以使一些化简求值运算过程变得简单.例 3 已知 α 为锐角,tan α =2,求 3sin α + cos α 4cos α - 5sin α的值.解:因为 tan α = sin α cos α= 2 ,所以 sin α =2cos α ,6cos α + cos α 6 + 1 74cos α - 10cos α 4 - 10 6求三角函数值的方法较多,且方法灵活.是中考中常见的题型.我们可以根据已知条件结合图形选用灵活的求解方法.四、设参数法例 4 如图 △1,在 ABC 中,∠C =90°,如果 t a n A =(A)(B) (C) (D)13 13 12 55 12 ,那么 sin B 等于( )分析:本题主要考查锐角三角函数的定义及直角三角形的有关性质.因为 tan A = a 5 =b 12,所以可设 a =5k ,b =12k (k >0),根据勾股定理得 c =13k ,图 1b 12c 13五、等线段代换法例 5如图 2,小明将一张矩形的纸片 ABC D 沿 C E 折叠,B 点恰好落在 A D 边上,设此点为 F ,若 BA :BC =4:,则 c os∠DCF 的值是______.分析:根据折叠的性质可知 E △B C ≌ EF C ,所以 C F=CB ,又 C D=AB ,AB :BC =4:5, 所以 C D :C F=4:5,图 2=.113911,即=,所以C E=,在Rt△A E C中,tan∠CA E==3=.所以tanα=.C3445所以DB==,所以tanα=,选(A).在Rt D△C F中,c os∠D C F=DC4 CF5六、等角代换法例6如图3,C D是平面镜,光线从A点出发经C D上点E反射后照射到B点,若入射角为α(入射角等于反射角),AC⊥C D,B D⊥C D,垂足分别为C、D,且AC=3,B D=6,C D=11,则tanα的值为()B(A)(B)(C)(D)311119A分析:根据已知条件可得∠α=∠CA E,所以只需求出tan∠CA E.α根据条件可知△A C E∽B DE,所以AC CE3CE=BD ED611-CEC E图3D11311CE11AC39119七、等比代换法例7如图4,在Rt△ABC中,ACB=90,D⊥AB于点D,BC=3,AC=4,设BC D=α,tanα的值为()(A)(B)(C)(D)435分析:由三角形函数的定义知tanα=DB DC,由Rt△C D△B∽Rt ACB,BC33DC AC44图4( :锐角三角函数测试1.比较大小:sin41°________sin42°. 2.比较大小:cot30°_________cot22°. 3.比较大小:sin25°___________cos25°. 4.比较大小:tan52°___________cot52°. 5.比较大小:tan48°____________cot41°. 6.比较大小:sin36°____________cos55°.7、下列命题①sin α 表示角α 与符号 sin 的乘积;② 在△ABC 中,若∠C=90°,则 c=α sinA 成立;③任何锐角的正弦和余弦值都是介于 0 和 1 之间实数.其正确的为()A 、②③B.①②③C.②D. ③8、若 △R t ABC 的各边都扩大 4 倍得到 △R t A ′B ′C ′,那么锐角 A 和锐角 A ′正切值的关系为()A.tanA ′=4tanA B.4tanA ′=tanAC.tanA ′=tanAD.不确定.9(新疆中考题) 1)如图(1)、 2),锐角的正弦值和余弦值都随着锐角的确定而确定, 变化而变化.试探索随着锐角度数的增大.它的正弦值和余弦值变化的规律.(2)根据你探索到的规律,试比较 18°,34°,50°,62°,88°,这些锐角的正弦值的 大小和余弦值的大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

、邻边.
1 tanA 2 tanB
BC
(AACC)
BC
CD
(AD )
CD
( BD)
A
DB C
人教版《锐角三角函数》2(PPT优秀 课件)
人教版《锐角三角函数》2(PPT优秀 课件)
5. 分别求出下列直角三角形中两个锐角的正弦值、余弦值和
正切值.
C
解:由勾股定理
12
B C A B 2 A C 21 3 2 1 2 2 5 B
coAsA斜 的边 邻边 bc
把∠A的对边与邻边的比叫做∠A的正切来自斜边cB 对边a
(tangent),记作tanA,即
A
tanA A A的 的邻 对边 边 ba
邻边b
C
锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.
如图,在Rt△ABC中,∠C=90°,求cosA,tanA. B
解:由勾股定理得
在图中 ∠A的对边记作a ∠B的对边记作b ∠C的对边记作c
如图,在Rt△ABC中,∠C=90°,求sinA.
B
解: sinABC 6 3 AB 10 5
10 6
A
C
如图,在Rt△ABC中,∠C=90°,求sinA和sinB的值.
B
求sinA就是 要确定∠A的对
边与斜边的比; 求sinB就是要确 定∠B的对边与 斜边的比
A 、b= a•tanA
B、b= c•sinA
C、 a= c•cosB
D、c= a•sinA
2、已知在△ABC中,∠C=90°,a,b,c分别是∠A,∠B, ∠C的对边,如果b=5a,那么∠A的正切值为____15 ____.
人教版《锐角三角函数》2(PPT优秀 课件)
人教版《锐角三角函数》2(PPT优秀 课件)
B
13 5
C
A
(2)
A C A B 2 B C 21 3 2 5 2 1 2
sinB AC 12 AB 13
(1)正弦的实质是两条线段的比值,其大小只与锐角的大 小有关,与直角三角形的大小无关;
(2)求锐角的正弦的前提是此锐角在直角三角形中,若题 目没有给出直角三角形或给出的不是直角三角形,则应先构 造直角三角形再求解;
角形的大小如何,∠A的对边与斜边的比也是一个固定值.
如图,在Rt△ABC中,∠C=90°,我们把锐角A的对边与
斜边的比 sinAA斜 的边 对边ac 叫做∠A的正弦(sine),记住sinA 即
c 斜边
B
a 对边
例如,当∠A=30°时,我们有
A
bC
sinAsin30 1 2
当∠A=45°时,我们有 sinAsin45 2 2
第二十八章 锐角三角函数
28.1锐角三角函数 (第1课时)
1.如图28-1-1,在Rt△ABC中,∠A=30°,BC=1 cm,根 据“在直角三角形中,30°角所对的边
等于斜边的__一__半____”得到 AB=___2___ cm,然后根据 勾股定理,得AC=___3___ cm.
2.在Rt△ABC中,∠C=90°,∠A=45°,BC=1 cm, 则AC=____1__ cm,AB=____2 __ cm.
B
C A
B
C A
分析:这个问题可以归结为,在Rt△ABC中,∠C=90°, ∠A=30°,BC=35m,求AB.
根据“在直角三角形中,30°角所对的边等于斜边
的一半”,即 A斜 的边 对边BACB12
可得AB=2BC=70m,也就是说,需要准备70m长的水管.
在上面的问题中,如果使出水口的高度为50m,那么需要 准备多长的水管?
∠A=∠ A' =α,那么 BC
AB
你能解释一下吗?
B
与 B ' C ' 有什么关系.
A'B '
B'
A
C
A'
C'
B' B
A
C A'
C'
在图中,由于∠C=∠C'=90°,∠A=∠A'=α,所以
Rt△ABC∽Rt△A'B'C'
BC AB B'C' A'B'
BC B'C' AB A' B'
这就是说,在直角三角形中,当锐角A的度数一定时,不管三
3.如图,小颖利用有一个锐角是30°的三角板测量一棵
树的高度,已知她与树之间的水平距离BE为5m,AB为
1.5m(即小颖的眼睛距地面的距离),那么这棵树高是
( A)
C
30°
A
D
B
E
A.( 5 3 3 )m 32
B.(5 3 3 )m 2
C.5 3 m 3
D.4m
人教版《锐角三角函数》2(PPT优秀 课件)
人教版《锐角三角函数》2(PPT优秀 课件)
人教版《锐角三角函数》2(PPT优秀 课件)
1、Rt△ABC中,∠C=90°,如果AB=2,BC=1,那么
cosB的值为( A )
A、 1 2
B、 3 2
C、 3 3
D、 3
4
2、在Rt∆ABC中,∠C=90°,如果cos A=
那么
5
tanB的值为( D)
人教版《锐角三角函数》2(PPT优秀 课件)
B
如图,在Rt△ABC中,∠C=90°.
1.求证:sinA=cosB,sinB=cosA
2.求证: tan A sin A
A
C
cos A
人教版《锐角三角函数》2(PPT优秀 课件)
人教版《锐角三角函数》2(PPT优秀 课件)
解:(1) sin A BC
人教版《锐角三角函数》2(PPT优秀 课件)
4、如图,PA是圆O切线,A为切点,PO交圆O于点B,PA=8, OB=6,求tan∠APO的值.
解:∵ PA是圆O的切线 ∴ PA⊥OA ∴ ∆POA是直角三角形 又∵ OA=OB tanAPOOA63 PA 8 4
人教版《锐角三角函数》2(PPT优秀 课件)
AB 10 5
cosAAC 8 4 AB 10 5
tanABC63 AC 8 4
如图,在Rt△ABC中,∠C=90°,cosA= 1 5 ,求
B
17
sinA、tanA的值.
解:∵ cos A AC 15
AB 17
设AC=15k,则AB=17k
A
C
所以 B C A B 2 A C 2(1 7 k)2 (1 5 k)2 8 k
2
综上可知,在一个Rt△ABC中,∠C=90°,当∠A=30°时,
∠A的对边与斜边的比都等于
1
,是一个固定值;当
2
∠A=45°时,∠A的对边与斜边的比都等于 2 ,也是
2
一个固定值.
一般地,当∠A 取其他一定度数的锐角时,它的对
边与斜边的比是否也是一个固定值?
探究
任意画Rt△ABC和Rt△A'B'C',使得∠C=∠C'=90°,
13
A
sinA BC 5 AB 13
sinB AC 12 AB 13
cos A AC 12 AB 13
cosB BC 5 AB 13
tanA BC 5 AC 12
tanB AC 12 BC 5
人教版《锐角三角函数》2(PPT优秀 课件)
人教版《锐角三角函数》2(PPT优秀 课件)
1、在∆ABC中,∠C=90°,a,b,c分别是∠A、∠B、 ∠C的对边,则有( C
(3)在直角三角形中,如果所给出的边的条件不足,应先 根据勾股定理计算出边的长度,再按正弦的定义求得锐角的 正弦值.
已知△ABC 中,∠C=90°,sinA=13,BC=2,求 AC,AB 的长.
解: ∵∠C=90°,sinA=13,∴BACB=13.
∵BC=2,∴AB=6. 由勾股定理,得 AC= AB2-BC2= 62-22= 32=4 2. 即 AC=4 2,AB=6.
B
AB
cos B BC AB
A
C
sin B AC AB
cos A AC AB
所以 sinA=cosB,sinB=cosA
人教版《锐角三角函数》2(PPT优秀 课件)
人教版《锐角三角函数》2(PPT优秀 课件)
解:(2) sin A BC
B
AB
cos A AC AB
A
C
BC
sin A cos A
sinABC8k 8 AB 17k 17
tanABC8k 8 AC 15k 15
求一个锐角的三角函数值,必须寻找该锐角所在的直角 三角形,若没有直角三角形,则需作垂线构造直角三角 形.若题中已知三角形的面积,则我们要联想到作三角 形一条边上的高来构造直角三角形,然后再综合利用面 积公式、勾股定理、三角函数的定义求解.
10 6
A C A B 2B C 2102628,
A
C
cosAAC8 4 AB 10 5
tanABC63 AC 8 4
例2 如图,在Rt△ABC中,∠C=90°,AB=10,BC=6, B
求sinA, cosA,tanA的值.
6
解:由勾股定理得
A C A B 2B C 2102628, A
C
因此 sinABC 6 3
A、 3
B、 5
C、3
D、4
5
4
4
3
人教版《锐角三角函数》2(PPT优秀 课件)
人教版《锐角三角函数》2(PPT优秀 课件)
3、在Rt△ABC中,∠C为直角,a=1,b=2,则
相关文档
最新文档