高考解答题得分模板——圆锥曲线

合集下载

高考数学复习----圆锥曲线压轴解答题常考套路归类专项练习题(含答案解析)

高考数学复习----圆锥曲线压轴解答题常考套路归类专项练习题(含答案解析)

高考数学复习----圆锥曲线压轴解答题常考套路归类专项练习题(含答案解析)1.(2023春·福建泉州·高三阶段练习)如图,在平面直角坐标系中,已知点,直线:,为平面上的动点,过点作直线的垂线,垂足为点,分别以PQ ,PF 为直径作圆和圆,且圆和圆交于P ,R 两点,且.(1)求动点的轨迹E 的方程;(2)若直线:交轨迹E 于A ,B 两点,直线:与轨迹E 交于M ,D 两点,其中点M 在第一象限,点A ,B 在直线两侧,直线与交于点且,求面积的最大值.【解析】(1)设点,因为, 由正弦定理知,,解得, 所以曲线的方程为.(2)直线与曲线在第一象限交于点, 因为,所以, 由正弦定理得:,xOy ()1,0F l =1x −P P l Q 1C 2C 1C 2C PQR PFR ∠=∠P 1l x my a =+2l 1x =2l 1l 2l N MA BN AN MB ⋅=⋅MAB △(,)P x y PQR PFR ∠=∠||||PQ PF =|1|x =+24y x =E 24y x =1x =E (1,2)M ||||||||MA BN AN MB ⋅=⋅||||||||MA MB AN BN =sin sin sin sin ANM BNMAMN BMN∠∠=∠∠所以. 设, 所以, 得,所以, 所以直线方程为:,联立,得 由韦达定理得,又因为点在直线的上方,所以,所以, 所以又因为点到直线的距离为所以方法一:令,则,所以当时,单调递增,当时,单调递减,所以, 所以当时,面积最大,此时最大值为.方法二:最大值也可以用三元均值不等式,过程如下:, 当且仅当,即时,等号成立.AMN BMN ∠=∠()()1122,,,A x y B x y 12122212121222224411221144AM BM y y y y k k y y x x y y−−−−+=+=+=+=−−++−−124y y +=−2121222121124144AB y y y y k y y x x y y −−====−−+−1l x y a =−+24y xx y a ⎧=⎨=−+⎩2440,16(1)0,1y y a a a +−=∆=+>>−12124,4y y y y a +=−=−M 1l 21a >−+13a −<<12||AB y =−=M 1l d =11||22ABMSAB d ==⨯=2()(1)(3),13f a a a a =+−−<<()(31)(3)f a a a '=−−113a −<<()0,()f a f a '>133a <<()0,()f a f a '<max 1256()327f a f ⎛⎫== ⎪⎝⎭13a =ABM S ∆=ABM S △ABMS==223a a +=−13a =2.(2023·北京·高三专题练习)已知椭圆中心在原点,焦点在坐标轴上,,一个焦点为. (1)求椭圆的标准方程;(2)过点且不与坐标轴垂直的直线与椭圆相交于两点,直线分别与直线相交于两点,若为锐角,求直线斜率的取值范围. 【解析】(1)由题意知:椭圆的离心率因为一个焦点为,所以,则由可得:,所以椭圆的标准方程为. (2)设直线的方程为,, 联立方程组,整理可得:,则有, 由条件可知:直线所在直线方程为:, 因为直线与直线相交于 所以,同理可得:, 则, 若为锐角,则有, 所以 C O ()0,1F C F l ,A B ,OA OB 2y =,M N MON ∠l k C c e a ==()0,1F 1c =a 222a b c =+1b =C 2212y x +=l 1y kx =+1122(,),(,)A x y B x y 22112y kx y x =+⎧⎪⎨+=⎪⎩22(2)210k x kx ++−=12122221,22k x x x x k k −−+==++OA 11y y x x =OA 2y =M 112(,2)x M y 222(,2)xN y 112(,2)x OM y =222(,2)xON y =MON ∠0OM ON >121212212121212444444(1)(1)()1x x x x x x OM ON y y kx kx k x x k x x =+=+=++++++,则,解得:或, 所以或或, 故直线斜率的取值范围为. 3.(2023·青海海东·统考一模)已知函数.(1)求曲线在处的切线方程;(2)若在点处的切线为,函数的图象在点处的切线为,,求直线的方程.【解析】(1),,则,所以曲线在处的切线方程为,即.(2)设,令,则. 当时,; 当时,.所以在上单调递增,在上单调递减,所以在时取得最大值2,即.,当且仅当时,等号成立,取得最小值2. 因为,所以,得.2222142=412122k k k k k k −⨯++−−⨯+⨯+++22=41k +−22421k k −=−224201k k −>−212k <21k>k −<<1k >1k <−l k 22(,1)(,)(1,)22−∞−−+∞()32ln 13x f x x x x =−+−()y f x =1x =()y f x =A 1l ()e e x xg x −=−B 2l 12l l ∥AB ()11101133f =−+−=−()222ln 212ln 3f x x x x x =+−+=−+'()12f '=()y f x =1x =()1213y x +=−723y x =−()()1122,,,A x y B x y ()22ln 3h x x x =−+()()()21122x x h x x x x+−=−='01x <<()0h x '>1x >()0h x '<()h x ()0,1()1,+∞()22ln 3h x x x =−+1x =()2f x '…()e e 2x x g x −=+'…0x =()g x '12l l ∥()()122f x g x ''==121,0x x ==即,所以直线的方程为,即. 4.(2023春·重庆·高三统考阶段练习)已知椭圆的左右焦点分别为,右顶点为A ,上顶点为B ,O 为坐标原点,.(1)若的面积为的标准方程;(2)如图,过点作斜率的直线l 交椭圆于不同两点M ,N ,点M 关于x 轴对称的点为S ,直线交x 轴于点T ,点P 在椭圆的内部,在椭圆上存在点Q ,使,记四边形的面积为,求的最大值.【解析】(1),∴,,解得的标准方程为:. (2),∴,椭圆,令,直线l 的方程为:, 联立方程组: ,消去y 得,由韦达定理得,,()11,,0,03A B ⎛⎫− ⎪⎝⎭AB ()130010y x −−−=−−13y x =−22122:1(0)x y C a b a b+=>>12,F F ||2||OA OB =12BF F △1C (1,0)P (0)k k >1C SN OM ON OQ +=OMQN 1S 21OT OQ S k⋅−||2||OA OB =2a b =12122BF F S b c =⋅=△bc =222a b c =+4,2,a b c ===1C 221164x y +=||2||OA OB =2a b =22122:14x yC b b+=()()()()201012,,,,,,,0T M x y N x y Q x y T x (1)y k x =−222214(1)x y b b y k x ⎧+=⎪⎨⎪=−⎩22222(14)8440k x k x k b +−+−=2122814k x x k +=+221224414k b x x k −=+有 ,因为:,所以, , 将点Q 坐标代入椭圆方程化简得: , 而此时: . 令,所以直线 , 令得 , 由韦达定理化简得,,而, O 点到直线l 的距离, 所以:,,因为点P 在椭圆内部,所以 ,得,即令 ,求导得 ,当,单调递增; 当 ,即,单调递减.所以:,即5.(2023·全国·高三专题练习)已知椭圆C :的右顶点为,过左焦点F 的直线交椭圆于M ,N 两点,交轴于P 点,,,记,,(为C 的右焦点)的面积分别为.121222(2)14kyy k x x k −+=+−=+OM ON OQ +=202814k x k =+02214k y k −=+222414k b k=+()22222284(14)(44)480k k k b k ∆=−+−=>()11,S x y −122221:()y y SN y y x x x x +−=−−0y =()1212211212212112122(1)(1)(2)2T x x x x x y x y k x x k x x x y y k x x x x −+−+−===+++−+−24T x b =12OMN S S =△12MN x =−=d =1122S MN d =⨯⋅=2222243212814(14)k b k OQ OT k k ⋅==++2312280(14)OT OQ S k k k ⋅−=+214b <2112k >k >322()(14)k f k k =+222222423(41)(43)(43)()(14)(14)k k k k k f k k k −+−−−'==++213124k <<k <<()0f k '>()f k 234k >k >()0f k '<()f k max()f k f ==⎝⎭21maxOT OQ S k ⎛⎫⋅−=⎪⎝⎭22221(0)x y a b a b+=>>A 1(0)x ty t =−≠y PM MF λ=PN NF μ=OMN 2OMF △2ONF △2F 123,,S S S(1)证明:为定值;(2)若,,求的取值范围.【解析】(1)由题意得F ,,所以椭圆C 的标准方程为:.设,显然,令,,则,则,,由得,解得,同理. 联立,得. ,从而(定值) (2)结合图象,不妨设,,,, λμ+123S mS S μ=+42λ−≤≤−m a (1,0)1c −⇒=2221b a c =−=2212x y +=1122(,),(,)M x y N x y 0t ≠0x =1y t =10,P t ⎛⎫⎪⎝⎭111,PM x y t ⎛⎫=− ⎪⎝⎭()111,MF x y =−−−PM MF λ=11111(,)(1,)x y x y t λ−=−−−111ty λ+=211ty μ+=22121x y x ty ⎧+=⎪⎨⎪=−⎩22(2)210t y ty +−−=12122221,11t y y y y t t −+==++121212*********y y tty ty t y y t λμ++++=+=⋅=⋅=−−4λμ+=−120y y >>1121211122S y y y y =⋅⋅−=−()21111122S y y =⋅⋅=32211122S y y =⋅⋅=−由得 代入,有,则, 解得 ,,设,则,设,则,令,解得,解得,故在上单调递减,在上单调递增,则且,则,则. 6.(2023·四川成都·统考二模)已知椭圆的左、右焦点分别为,离心率,.(1)求椭圆的标准方程;(2)过点的直线与该椭圆交于两点,且的方程. 【解析】(1)由已知得,解得,,所求椭圆的方程为;(2)由(1)得.①若直线的斜率不存在,则直线的方程为,由得. 111ty λ+=21211111,,13y y y tt y λμμμλμ++++====+−−123S mS S μ=+()1212111222y y my y μ−=−1212y y my y μ−=−2222111811(1)17(3)133y y y m y y y μμμμμμ⎡⎤=−+=−−=−=−++−+⎢⎥+⎣⎦42λ−≤≤−31[1,3]μλ∴+=−−∈3u μ=+[]1,3u ∈()87h u u u ⎛⎫=−+ ⎪⎝⎭()228uh u u −'=()0h u '>1u <<()0h u '<3u <<()h u ()(()max 7h u =−()()412,33h h =−=()2,7h u ⎡∈−−⎣2,7m ⎡−−⎣∈22221(0)x y a b a b+=>>12,F F e =22a c =1F l M N 、2223F M F N +=l 22c a a c⎧=⎪⎪⎨⎪=⎪⎩1a c ==1b ∴∴2212x y +=()()121,01,0F F −、l l =1x −22112x x y =−⎧⎪⎨+=⎪⎩2y =设, ,这与已知相矛盾. ②若直线的斜率存在,设直线直线的斜率为,则直线的方程为,设,联立, 消元得,,,又,, 化简得,解得或(舍去)所求直线的方程为或.7.(2023·全国·高三专题练习)设分别是椭圆的左、右焦点,过作倾斜角为的直线交椭圆于两点,到直线的距离为3,连接椭圆的四个顶点得到的菱形面积为4. (1)求椭圆的方程;(2)已知点,设是椭圆上的一点,过两点的直线交轴于点,若,1,M N ⎛⎛−− ⎝⎭⎝⎭、()222,4,04F M F N ⎛⎛⎫∴+=−+−=−= ⎪ ⎪⎝⎭⎝⎭l l k l ()1y k x =+()()1122,,M x y N x y 、()22112y k x x y ⎧=+⎪⎨+=⎪⎩()2222124220k x k x k +++−=22121222422,1212k k x x x x k k −−∴+==++()121222212ky y k x x k ∴+=++=+()()2112221,,1,F M x y F N x y =−=−()2212122,F M F N xx y y ∴+=+−+(22F M F N x ∴+=424023170k k −−=21k =21740k =−1k ∴=±∴l 1y x =+=1y x −−12,F F 2222:1(0)x y D a b a b+=>>2F π3D ,A B 1F AB D D ()1,0M −E D ,E M l y C CE EM λ=求的取值范围;(3)作直线与椭圆交于不同的两点,其中点的坐标为,若点是线段垂直平分线上一点,且满足,求实数的值.【解析】(1)设的坐标分别为,其中; 由题意得的方程为. 因为到直线的距离为3,解得①因为连接椭圆的四个顶点得到的菱形面积为4,所以,即 ②联立①②解得: ,所求椭圆D 的方程为.(2)由(1)知椭圆的方程为,设,因为,所以所以,代入椭圆的方程, 所以,解得或.(3)由,设根据题意可知直线的斜率存在,可设直线斜率为,则直线的方程为,把它代入椭圆的方程,消去整理得: 由韦达定理得则,; 所以线段的中点坐标为. (i )当时,则,线段垂直平分线为轴,λ1l D ,P Q P ()2,0−()0,N t PQ 4NP NQ ⋅=t 12,F F ()(),0,,0c c −0c >AB )y x c −1F AB 3,=c =2223a b c −==D 12242a b ⨯⨯=2ab =2,1a b ==2214x y +=2214x y +=11(,),(0,)E x y C m CE EM λ=1111(,)(1,),x y m x y λ−=−−−11,11m x y λλλ=−=++22()1()141m λλλ−++=+2(32)(2)04m λλ++=≥23λ≥−2λ≤−()2,0P −11(,)Q x y 1l k 1l ()2y k x =+D y 2222(14)16(164)0k x k x k +++−=212162,14k x k −+=−+2122814k x k −=+112()4214k y k x k =+=+PQ 22282(,)1414k kk k −++0k =()2,0Q PQ y于是,由解得(ii )当时,则线段垂直平分线的方程为. 由点是线段垂直平分线的一点,令,得;于是由, 解得综上可得实数的值为8.(2023·全国·高三专题练习)如图所示,为椭圆的左、右顶点,焦距长为在椭圆上,直线的斜率之积为.(1)求椭圆的方程;(2)已知为坐标原点,点,直线交椭圆于点不重合),直线交于点.求证:直线的斜率之积为定值,并求出该定值. 【解析】(1)由题意,,设,,由题意可得,即,可得 (2,),(2,)NP t NQ t =−−=−244,NP NQ t ⋅=−+=t =±0k ≠PQ 222218()1414k ky x k k k −=−+++()0,N t PQ 0x =2614kt k =−+11(2,),(,)NP t NQ x y t =−−=−24211222224166104(16151)2()4141414(14)k k k k k NP NQ x t y t k k k k −++−⎛⎫⋅=−−−=+== ⎪++++⎝⎭k =2614k t k =−=+t ±,A B 2222:1(0)x yE a b a b+=>>P E ,PA PB 14−E O ()2,2C −PC E (,M M P ,BM OC G ,AP AG ()(),0,,0A a B a −()00,P x y 0000,PA PB y y k k x a x a==+−000014y y x a x a ⋅=−+−222014y x a =−−2202222222201111444x b a b a c x a a a ⎛⎫− ⎪−⎝⎭=−⇒=⇒=−又所以,椭圆的方程为;(2)由题意知,直线的斜率存在,设直线,且联立,得 由,得,所以, 设,由三点共线可得所以,直线的斜率之积为定值.9.(2023·全国·高三专题练习)已知,分别是椭圆的上、下焦点,直线过点且垂直于椭圆长轴,动直线垂直于点,线段的垂直平分线交于点,点的轨迹为.2c =c =2a =E 2214x y +=MP :MP y kx m =+()()112222,,,,k m P x y M x y =−+2214y kx m x y =+⎧⎪⎨+=⎪⎩()222148440k x kmx m +++−=Δ0>22410k m +−>2121222844,1414km m x x x x k k −−+==++(),G t t −,,G M B 222222222y y tt t x x y −=⇒=−−−+−11,22AG AP y tk k t x ==−++()()()()112121221212222221222AG AP y y y y y tk k t x x y x k x m x ⋅=⋅=−=−−+++−+⎡⎤++−+⎣⎦()()()()()())()()22212122212112121221222124y k x x km x x m y m x x m x m x m x x x x +++=−=−=−−++⎡⎤⎡⎤−+−+−+++⎣⎦⎣⎦()()()2222222222222222244844841414448144164161241414m kmk km m k m k m m k m k k m km m m km k m k k −−+⋅+−−++++=−=−⎡⎤⎡⎤−−−−−++⎣⎦−+⋅+⎢⎥++⎣⎦()()()()()()()2222222422141(2)818144144m k m k m k m k m m m m k m m m m km k −+−++−=−=−=−=−=−−−−−−−+,AP AG 14−F F '221:171617C x y +=1l F '2l 1l G GF 2l H H 2C(1)求轨迹的方程;(2)若动点在直线上运动,且过点作轨迹的两条切线、,切点为A 、B ,试猜想与的大小关系,并证明你的结论的正确性.【解析】(1),,椭圆半焦距长为,,,,动点到定直线与定点的距离相等,动点的轨迹是以定直线为准线,定点为焦点的抛物线,轨迹的方程是;(2)猜想证明如下:由(1)可设,,,则,切线的方程为:同理,切线的方程为: 联立方程组可解得的坐标为, 在抛物线外,,,2C P :20l x y −−=P 2C PA PB PFA ∠PFB ∠22171617x y +=∴2211716y x +=∴1410,4F ⎛⎫'− ⎪⎝⎭10,4F ⎛⎫ ⎪⎝⎭HG HF =∴H 11:4l y =−10,4F ⎛⎫⎪⎝⎭∴H 11:4l y =−10,4F ⎛⎫⎪⎝⎭∴2C 2x y =PFA PFB ∠=∠()211,A x x ()()22212,B x x x x ≠2y x =2y x '∴=112AP x x k y x =='=∴AP ()1221111220y x x x x y x x x −⇒−=−−=BP 22220x x y x −−=P 122P x x x +=12P y x x =P ∴||0FP ≠2111,4FA x x ⎛⎫=− ⎪⎝⎭12121,24x x FP x x +⎛⎫=− ⎪⎝⎭2221,4FB x x ⎛⎫=− ⎪⎝⎭22121121112122221112211111244444cos ||||||11||||4x x x x x x x x x x x FP FA AFP FP FA FP FP x x FP x +⋅−−+++⋅∴⎛⎫⎛⎫⎛⎫⎛⎫+⋅∠====+− ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎝⎭⎝⋅+同理10.(2023春·江西·高三校联考阶段练习)已知椭圆+=1(a >b >0),右焦点F (1,0),,过F作两条互相垂直的弦AB ,CD .(1)求椭圆的标准方程;(2)求以A ,B ,C ,D 为顶点的四边形的面积的取值范围.【解析】(1)由题意知,,又,所以,所以,所以椭圆的标准方程为;(2)①当直线与中有一条直线的斜率为0时,另一条直线的斜率不存在,不妨设直线的斜率为0,的斜率不存在,则直线方程为,直线的方程为,联立可得所以联立可得所以所以四边形ADBC 的面积. ②当两条直线的斜率均存在且不为0时,设直线的方程为,1214cos ||||||x x FP FB BFP FP FB FP +⋅∠==cos cos AFP BFP ∴∠=∠PFA PFB ∴∠=∠22x a 22y b2c e a ==a 1c =a =222abc =+21b =2212x y +=AB CD AB CD AB 0y =CD 1x =22120x y y ⎧+=⎪⎨⎪=⎩0x y ⎧=⎪⎨=⎪⎩AB =22121x y x ⎧+=⎪⎨⎪=⎩1x y =⎧⎪⎨=⎪⎩CD =11||||222S AB CD =⋅=⨯AB (1)y k x =−则直线的方程为. 将直线的方程代入椭圆方程,整理得,方程的判别式,设, 所以, ∴, 同理可得, ∴四边形ADBC 的面积 , ∵,当且仅当时取等号,∴四边形ADBC 的面积,综上①②可知,四边形ADBC 的面积的取值范围为.11.(2023·全国·高三专题练习)如图,椭圆,经过点,且斜率为的直线与椭圆交于不同的两点P ,Q (均异于点,证明:直线AP 与AQ 的斜率之和为2.CD 1(1)y x k=−−AB ()2222124220k xk x k +−+−=()2222124220k x k x k +−+−=()()42221642122880k k k k ∆=−+−=+>()()1122,,,A x y B x y 22121222422,1212k k x x x x k k −+=⋅=++12||AB x −)22112kAB k +==+)2222111||1212k k CD k k⎫+⎪+⎝⎭==++⨯))22221111||||22122k k S AB CD k k ++=⋅=⨯⨯++()2222242144122252112121k k k k k k k k k ⎛⎫+ ⎪+⎝⎭===−++⎛⎫⎛⎫++++ ⎪ ⎪⎝⎭⎝⎭22121219k k ⎛⎛⎫++≥+= ⎪⎝⎭⎝1k =±16,29S ⎡⎫∈⎪⎢⎣⎭S 16,29⎡⎤⎢⎥⎣⎦22:12+=x E y (1,1)M k E (0,1)A −【解析】设,直线的方程为,两交点异于点,则 ,联立直线与椭圆方程,消去变量 并整理得,由已知,由韦达定理得,则所以可知直线与的斜率之和为2.12.(2023·全国·高三专题练习)已知椭圆的左右焦点分别为,,,,是椭圆上的三个动点,且,,若,求的值.【解析】由题可知,设,,,由,得, 满足,可得,()()1122,,,P x y Q x y PQ (1)1y k x =−+A 2k ≠y ()222221124(1)2402(1)1x y k x k k x k k y k x ⎧+=⎪⇒++−+−=⎨⎪=−+⎩0∆>21212224(1)24,1212k k k kx x x x k k −−+==++()()12121212121211AP AQ k x k x y y k k x x x x −+−++++=+=+()()12121212122(2)(2)2kx x k x x k x x k x x x x +−+−+==+222244122(2)1224k k k k k k k k−+=+−⋅⋅+−()2212k k =−−=AP AQ 22162x y +=1F 2F A B P 11PF F A λ=22PF F B μ=2λ=μ2226,2,4a b c ===()00,P x y 11(,)A x y 22(,)B x y 11PF F A λ=22PF F B μ=()1,0F c −0101101x x c y y λλλλ+⎧−=⎪⎪+⎨+⎪=⎪+⎩()010110x x c y y λλλ⎧+=−+⎨+=⎩满足,可得,由,可得, 所以,∴,, 又,∴, 同理可得, ∴, 所以,又,所以.13.(2023·全国·高三专题练习)已知椭圆的离心率为,且直线被椭圆. (1)求椭圆的方程;(2)以椭圆的长轴为直径作圆,过直线上的动点作圆的两条切线,设切点为,若直线与椭圆交于不同的两点,,求的取值范围.【解析】(1)直线,经过点,,被椭圆,可得.又,,解得:,,, ()2,0F c 0202101x x c y y μμμμ+⎧=⎪+⎪⎨+⎪=⎪+⎩()020210x x c y y μμμ⎧+=−+⎨+=⎩22002222112211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩2200222222211221x y a b x y a b λλλ⎧+=⎪⎪⎨⎪+=⎪⎩()()()()010*******21x x x x y y y y abλλλλλ−+−++=−()()()()0101211x x x x a λλλλ−+=−+()()2011a x x cλλ−=−−()()011x x c λλ+=−+222202a c a c x c cλ−+=−222202a c a c x c c μ−+=−+()22222a c a c c cλμ−++=⋅2222210a c a cλμ++=⋅=−2λ=8μ=22122:1(0)x y C a b a b+=>>121:1x yl a b+=1C 1C 1C 2C 2:4l y =M 2C ,A B AB 1C C D ||||CD AB ⋅1:1x yl a b+=(,0)a (0,)b 1C 227a b +=12c a =222a b c =+24a =23b =1c =椭圆的方程为.(2)由(1)可得:圆的方程为:.设,则以为直径的圆的方程为:,与相减可得:直线的方程为:,设,,,,联立,化为:,,则,,故又圆心到直线的距离,令,则,可得,可得:14.(2023·全国·高三专题练习)已知椭圆的两个焦点,,动点在椭圆上,且使得的点恰有两个,动点到焦点的距离的最大值为∴1C22143x y+=2C224x y+=(2,4)M t OM222()(2)4x t y t−+−=+224x y+=AB2440tx y+−=1(C x1)y2(D x2)y222440143tx yx y+−=⎧⎪⎨+=⎪⎩22(3)480t x tx+−−=248(2)0t∆=+>12243tx xt+=+12283x xt=⋅−+||CDO AB d=||AB∴=||||AB CD∴⋅==23(3)t m m+=≥||||AB CD⋅==3m≥3233m≤−<||||AB CD⋅<22122:1(0)x yC a ba b+=>>1F2F P 1290F PF∠=︒P P1F2(1)求椭圆的方程;(2)如图,以椭圆的长轴为直径作圆,过直线作圆的两条切线,设切点分别为,,若直线与椭圆交于不同的两点,,求弦长的取值范围. 【解析】(1)设半焦距为,由使得的点恰有两个可得, 动点到焦点的距离的最大值为,可得所以椭圆的方程是. (2)圆的方程为,设直线的坐标为.设,连接OA ,因为直线为切线,故,否则直线垂直于轴,则与直线若,则,故, 故直线的方程为:, 整理得到:;当时,若,直线的方程为:;若,则直线的方程为:, 满足.故直线的方程为,同理直线的方程为, 又在直线和上,即,故直线的方程为.1C 1C 2C x =−T 2C A B AB 1C C D ||CD c 1290F PF ∠=︒P ,b c a =P 1F 22a c +=2,a c =1C 22142x y +=2C 224x y +=x =−T ()t −1122(,),(,)A x y B x y AT 10y ≠AT x AT x =−10x ≠11OA y k x =11AT x k y =−AT ()1111x y y x x y −=−−2211114x x y y x y +=+=10x =(0,2)A AT 2y =(0,2)A −AT =2y −114x x y y +=AT 114x x y y +=BT 224x x y y +=()t −AT BT 112244ty ty ⎧−+=⎪⎨−+=⎪⎩AB 4ty −+=联立,消去得,设,. 则, 从而, 又,从而,所以. 15.(2023·全国·高三专题练习)已知、分别为椭圆的左、右焦点,且右焦点的坐标为,点在椭圆上,为坐标原点.(1)求椭圆的标准方程(2)若过点的直线与椭圆交于两点,且的方程; (3)过椭圆上异于其顶点的任一点,作圆的两条切线,切点分别为,(,224142ty x y ⎧−+=⎪⎨+=⎪⎩x 22(16)8160t y ty +−−=33(,)C x y 44(,)D x y 343422816,1616t y y y y t t −+==++||CD 224(8)16t t +=+232416t −=++21616t +≥2322016t −−≤<+||[2,4)CD ∈1F 2F 2222:1(0)x yC a b a b+=>>2F (1,0)(P C O C 2F l C ,A B ||AB =l C Q 22:1O x y +=M N M不在坐标轴上),若直线在轴、轴上的截距分别为、,那么是否为定值?若是,求出此定值;若不是,请说明理由. 【解析】(1)椭圆的右焦点的坐标为,椭圆的左焦点的坐标为,由椭圆的定义得, 所以,由题意可得,即,即椭圆的方程为;(2)直线与椭圆的两个交点坐标为,, ①当直线垂直轴时,方程为:,代入椭圆可得,舍去;②当直线不垂直轴时,设直线联立,消得,,则,,恒成立., 又, N MN x y m n 2212m n+C 2F (1,0)∴C 1F (1,0)−12||||2PF PF a +=2a =a ∴=22a =1c =2221b ac =−=C 2212x y +=l C ()11,A x y ()22,B x y l x l 1x =y =||AB =l x :(1)l y k x =−2212(1)x y y k x ⎧+=⎪⎨⎪=−⎩y ()2222124220k x k x k +−+−=2122421k x x k +=+21222221k x x k −=+()()()()22222442122810k k k k ∆=−+−=+>22AB =()()22121214k x x x x ⎡⎤=++−⎣⎦()()22228121k k +=+||AB =()()222228132921k k +==+⎝⎭化简得,,即,解得或(舍去),所以,直线方程的方程为或. (3)是定值,定值为2.设点,,,连接,,,,则有,. ,不在坐标轴上,则,, 则,, 直线的方程为,即,① 同理直线的方程为,②,将点代入①②,得,显然,满足方程,直线的方程为,分别令,,得到,,,,又满足,,即.16.(2023·全国·高三专题练习)某同学在探究直线与椭圆的位置关系时发现椭圆的一个重要性427250k k −−=()()227510k k +−=21k =257k =−1k =±∴l 10x y −−=10x y +−=()00,Q x y ()33,M x y ()44,N x y OM ON 0M MQ ⊥ON NQ ⊥22331x y +=22441x y +=M N 33MO y k x =44NO y k x =331MQ MOx k k y =−=−441NQ NO x k k y =−=−∴MQ ()3333x y y x x y −=−−2233331xx yy x y +=+=⋯NQ 441xx yy +=⋯Q 0303040411x x y y x x y y +=⎧⎨+=⎩()33,M x y ()44,N x y 001xx yy +=∴MN 001xx yy +=0x =0y =01n x =01=m y 01y m ∴=01x n =()00,Q x y 2212x y +=∴221112m n +=22122m n +=质:椭圆在任意一点,处的切线方程为.现给定椭圆,过的右焦点的直线交椭圆于,两点,过,分别作的两条切线,两切线相交于点. (1)求点的轨迹方程;(2)若过点且与直线垂直的直线(斜率存在且不为零)交椭圆于,两点,证明:为定值. 【解析】(1)由题意F 为,设直线为,,,,, 易得在点处切线为,在点处切线为, 由得,又,,可得,故点的轨迹方程.(2)证明:联立的方程与的方程消去,得.由韦达定理,得,,所以,因为,直线MN 可设为,同理得, 所以.2222:1(0)x y C a b a b+=>>0(M x 0)y 00221xx yy a b +=22:143x y C +=C F l C P Q P Q C G G F l C M N 11||||PQ MN +()1,0PQ 1x ty =+1(P x 1)y 2(Q x 2)y P 11143x x y y +=Q 22143x x y y+=11221,431,43x xy yx x y y⎧+=⎪⎪⎨⎪+=⎪⎩1122124()y y x x y x y −=−111x ty =+221x ty =+4x =G 4x =l C 221143x ty x y =+⎧⎪⎨+=⎪⎩x 22(34)690t y ty ++−=122634t y y t +=−+122934y y t =−+2212(1)||34t PQ t +=+PQ MN ⊥11x y t =−+2222112(1)12(1)||13434t t MN t t++==+⋅+22221134347||||12(1)12(1)12t t PQ MN t t +++=+=++。

2020高考—圆锥曲线(解答+答案)

2020高考—圆锥曲线(解答+答案)

2020年高考——圆锥曲线1.(20全国Ⅰ文21)(12分)已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程; (2)证明:直线CD 过定点.2.(20全国Ⅰ理20)(12分)已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程; (2)证明:直线CD 过定点.3.(20全国Ⅱ文19)(12 分)已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴重直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.4.(20全国Ⅱ理19)(12分)已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |. (1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.5.(20全国Ⅲ文21)(12分)已知椭圆222:1(05)25x y C m m +=<<,A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ △的面积.6.(20全国Ⅲ理20)(12分)已知椭圆222:1(05)25x y C m m+=<<,A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ △的面积.7.(20新高考Ⅰ22)(12分)已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.8.(20天津18)(本小题满分15分)已知椭圆22221(0)x y a b a b+=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点.(Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.9.(20浙江21)(本题满分15分)如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于点M (B ,M 不同于A ). (Ⅰ)若116p =,求抛物线2C 的焦点坐标; (Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.10.(20江苏18)(本小题满分16分)在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求12AF F △的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值;(3)设点M 在椭圆E 上,记OAB △与MAB △的面积分别为S 1,S 2,若213S S =,求点M 的坐标.11.(20北京20)(本小题15分)已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =.(Ⅰ)求椭圆C 的方程:(Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q .求||||PB BQ 的值.参考答案:1.解:(1)由题设得(,0),(,0),(0,1)A a B a G -.则(,1)AG a =,(,1)GB a =-.由8AG GB ⋅=得218a -=,即3a =.所以E 的方程为2219x y +=.(2)设1122(,),(,),(6,)C x y D x y P t .若0t ≠,设直线CD 的方程为x my n =+,由题意可知33n -<<. 由于直线PA 的方程为(3)9t y x =+,所以11(3)9ty x =+.直线PB 的方程为(3)3t y x =-,所以22(3)3ty x =-.可得12213(3)(3)y x y x -=+.由于222219x y +=,故2222(3)(3)9x x y +-=-,可得121227(3)(3)y y x x =-++, 即221212(27)(3)()(3)0m y y m n y y n ++++++=.①将x my n =+代入2219xy +=得222(9)290m y mny n +++-=.所以212122229,99mn n y y y y m m -+=-=-++. 代入①式得2222(27)(9)2(3)(3)(9)0m n m n mn n m +--++++=. 解得3n =-(舍去),32n =. 故直线CD 的方程为32x my =+,即直线CD 过定点3(,0)2. 若0t =,则直线CD 的方程为0y =,过点3(,0)2.综上,直线CD 过定点3(,0)2.2.解:(1)由题设得A (–a ,0),B (a ,0),G (0,1).则(,1)AG a =,GB =(a ,–1).由AG GB ⋅=8得a 2–1=8,即a =3.所以E 的方程为29x +y 2=1.(2)设C (x 1,y 1),D (x 2,y 2),P (6,t ).若t ≠0,设直线CD 的方程为x =my +n ,由题意可知–3<n <3. 由于直线PA 的方程为y =9t (x +3),所以y 1=9t (x 1+3).直线PB 的方程为y =3t (x –3),所以y 2=3t(x 2–3).可得3y 1(x 2–3)=y 2(x 1+3).由于222219x y +=,故2222(3)(3)9x x y +-=-,可得121227(3)(3)y y x x =-++, 即221212(27)(3)()(3)0.m y y m n y y n ++++++=①将x my n =+代入2219xy +=得222(9)290.m y mny n +++-=所以12229mn y y m +=-+,212299n y y m -=+.代入①式得2222(27)(9)2(3)(3)(9)0.m n m n mn n m +--++++= 解得n =–3(含去),n =32.故直线CD 的方程为3=2x my +,即直线CD 过定点(32,0). 若t =0,则直线CD 的方程为y =0,过点(32,0).综上,直线CD 过定点(32,0).3.解:(1)由已知可设2C 的方程为24y cx =,其中c =不妨设,A C 在第一象限,由题设得,A B 的纵坐标分别为2b a ,2b a -;,C D 的纵坐标分别为2c ,2c -,故22||b AB a=,||4CD c =.由4||||3CD AB =得2843b c a=,即2322()c c a a ⨯=-,解得2c a =-(舍去),12c a =.所以1C 的离心率为12.(2)由(1)知2a c =,b =,故22122:143x y C c c+=,所以1C 的四个顶点坐标分别为(2,0)c ,(2,0)c -,),(0,),2C 的准线为x c =-. 由已知得312c c c c +++=,即2c =.所以1C 的标准方程为2211612x y +=,2C 的标准方程为28y x =.4.解:(1)由已知可设2C 的方程为24y cx =,其中c =不妨设,A C 在第一象限,由题设得,A B 的纵坐标分别为2b a ,2b a -;,C D 的纵坐标分别为2c ,2c -,故22||b AB a=,||4CD c =.由4||||3CD AB =得2843b c a=,即2322()c c a a ⨯=-,解得2c a =-(舍去),12c a =.所以1C 的离心率为12.(2)由(1)知2a c =,b =,故22122:143x y C c c+=,设00(,)M x y ,则220022143x y c c +=,2004y cx =,故20024143x x c c+=.①由于2C 的准线为x c =-,所以0||MF x c =+,而||5MF =,故05x c =-,代入①得22(5)4(5)143c c c c --+=,即2230c c --=,解得1c =-(舍去),3c =. 所以1C 的标准方程为2213627x y +=,2C 的标准方程为212y x =.5.解:(1)由题设可得54=,得22516m =,所以C 的方程为221252516x y +=. (2)设(,),(6,)P P Q P x y Q y ,根据对称性可设0Q y >,由题意知0P y >, 由已知可得(5,0)B ,直线BP 的方程为1(5)Qy x y =--,所以||BP y =,||BQ =, 因为||||BP BQ =,所以1P y =,将1P y =代入C 的方程,解得3P x =或3-. 由直线BP 的方程得2Q y =或8.所以点,P Q 的坐标分别为1122(3,1),(6,2);(3,1),(6,8)P Q P Q -.11||PQ 11PQ 的方程为13y x =,点(5,0)A -到直线11PQ,故11APQ △的面积为1522=. 22||PQ =22P Q 的方程为71093y x =+,点A 到直线22P Q的距离为26,故22AP Q △的面积为152262⨯=. 综上,APQ △的面积为52.6.解:(1)由题设可得54=,得22516m =, 所以C 的方程为221252516x y +=. (2)设(,),(6,)P P Q P x y Q y ,根据对称性可设0Q y >,由题意知0P y >,由已知可得(5,0)B ,直线BP 的方程为1(5)Qy x y =--,所以||BP y =,||BQ =, 因为||||BP BQ =,所以1P y =,将1P y =代入C 的方程,解得3P x =或3-. 由直线BP 的方程得2Q y =或8.所以点,P Q 的坐标分别为1122(3,1),(6,2);(3,1),(6,8)P Q P Q -.11||PQ 11PQ 的方程为13y x =,点(5,0)A -到直线11PQ 的距离为2,故11APQ △的面积为1522=.22||PQ =22P Q 的方程为71093y x =+,点A 到直线22P Q故22AP Q △的面积为1522=. 综上,APQ △的面积为52.7.解:(1)由题设得22411a b +=,22212a b a -=,解得26a =,23b =. 所以C 的方程为22163x y +=. (2)设11(,)M x y ,22(,)N x y .若直线MN 与x 轴不垂直,设直线MN 的方程为y kx m =+,代入22163x y +=得222(12)4260k x kmx m +++-=. 于是2121222426,1212km m x x x x k k -+=-=++.①由AM AN ⊥知0AM AN ⋅=,故1212(2)(2)(1)(1)0x x y y --+--=, 可得221212(1)(2)()(1)40k x x km k x x m ++--++-+=.将①代入上式可得22222264(1)(2)(1)401212m kmk km k m k k-+---+-+=++.整理得(231)(21)0k m k m +++-=.因为(2,1)A 不在直线MN 上,所以210k m +-≠,故2310k m ++=,1k ≠.于是MN 的方程为21()(1)33y k x k =--≠. 所以直线MN 过点21(,)33P -. 若直线MN 与x 轴垂直,可得11(,)N x y -.由0AM AN ⋅=得1111(2)(2)(1)(1)0x x y y --+---=. 又2211163x y +=,可得2113840x x -+=.解得12x =(舍去),123x =. 此时直线MN 过点21(,)33P -. 令Q 为AP 的中点,即41(,)33Q . 若D 与P 不重合,则由题设知AP 是Rt ADP △的斜边,故1||||2DQ AP ==. 若D 与P 重合,则1||||2DQ AP =. 综上,存在点41(,)33Q ,使得||DQ 为定值.8.(Ⅰ)解:由已知可得3b =.记半焦距为c ,由||||OF OA =可得3c b ==.又由222a b c =+,可得218a =.所以,椭圆的方程为221189x y +=. (Ⅱ)解:因为直线AB 与以C 为圆心的圆相切于点P ,所以AB CP ⊥.依题意,直线AB 和直线CP 的斜率均存在.设直线AB 的方程为3y kx =-.由方程组223,1,189y kx x y =-⎧⎪⎨+=⎪⎩消去y ,可得()2221120k x kx +-=,解得0x =,或21221k x k =+.依题意,可得点B 的坐标为2221263,2121k k k k ⎛⎫- ⎪++⎝⎭.因为P 为线段AB 的中点,点A 的坐标为(0,3)-,所以点P 的坐标为2263,2121k k k -⎛⎫ ⎪++⎝⎭.由3OC OF =,得点C 的坐标为(1,0),故直线CP 的斜率为2230216121k k k --+-+,即23261k k -+.又因为AB CP ⊥,所以231261k k k ⋅=--+,整理得22310k k -+=,解得12k =,或1k =. 所以,直线AB 的方程为132y x =-,或3y x =-.9.(Ⅰ)由116p =得2C 的焦点坐标是1(,0)32. (Ⅱ)由题意可设直线:(0,0)l x my t m t =+≠≠,点00(,)A x y .将直线l 的方程代入椭圆221:12x C y +=得222(2)220m y mty t +++-=, 所以点M 的纵坐标22M mt y m =-+. 将直线l 的方程代入抛物线22:2C y px =得2220y pmy pt --=,所以02M y y pt =-,解得202(2)p m y m+=, 因此22022(2)p m x m+=. 由220012x y +=得2421224()2()160m m p m m =+++≥,所以当m,t =时,p.10.解:(1)椭圆22:143x y E +=的长轴长为2a ,短轴长为2b ,焦距为2c , 则2224,3,1a b c ===.所以12AF F △的周长为226a c +=.(2)椭圆E 的右准线为4x =.设(,0),(4,)P x Q y ,则(,0),(4,)OP x QP x y ==--,2(4)(2)44,OP QP x x x ⋅=-=--≥-在2x =时取等号.所以OP QP ⋅的最小值为4-.(3)因为椭圆22:143x y E +=的左、右焦点分别为12,F F ,点A 在椭圆E 上且在第一象限内,212AF F F ⊥, 则123(1,0),(1,0),(1,)2F F A -. 所以直线:3430.AB x y -+= 设(,)M x y ,因为213S S =,所以点M 到直线AB 距离等于点O 到直线AB 距离的3倍. 由此得|343||30403|355x y -+⨯-⨯+=⨯, 则34120x y -+=或3460x y --=. 由2234120,143x y x y -+=⎧⎪⎨+=⎪⎩得2724320x x ++=,此方程无解; 由223460,143x y x y --=⎧⎪⎨+=⎪⎩得271240x x --=,所以2x =或27x =-. 代入直线:3460l x y --=,对应分别得0y =或127y =-. 因此点M 的坐标为(2,0)或212(,)77--.11.。

高考全国卷圆锥曲线解答题中的定值问题

高考全国卷圆锥曲线解答题中的定值问题

ʏ广东省佛山市顺德区容山中学 潘敬贞圆锥曲线中的定值问题内容丰富多彩,通常有线段为定值,线段之比为定值,线段之积为定值,两条直线斜率的运算为定值,夹角为定值,面积为定值,某个量的系数运算为定值,向量数量积为定值等问题,这些问题往往具有强大的几何背景,其求解思路一般是:(1)先由特殊寻找出定值,然后证明;(2)直接推理,消掉参数得到所求几何量为定值㊂圆锥曲线中的定值问题的求解对分析问题和解决问题的能力要求比较高,需要同学们具备一定的运算求解能力㊁推理论证能力,以及丰富的解题经验㊂针对各类定值问题,文章结合实例厘清各类问题的求解思路,目的是帮助同学们提高备考的针对性和有效性㊂一、线段之比为定值线段之比为定值问题就是当某个动点在运动时,两条线段都与某一个或几个参数有联系,通过代数变形,化简后即可得到线段之比为定值㊂例1 已知F 1,F 2分别为椭圆C :x 2a 2+y2b2=1(a >b >0)的左焦点和右焦点,M 为C 上的动点,其中动点M 到左焦点F 1的最短距离为1,且当әM F 1F 2的面积最大时,әM F 1F 2恰好为等边三角形㊂(1)求椭圆C 的方程㊂(2)斜率为k 的动直线l 过点F 2,且与椭圆C 交于A ,B 两点,线段A B 的垂直平分线交x 轴于点P ㊂试问:P F 2|A B |是否为定值若是,请求出该定值;若不是,请说明理由㊂解析:(1)设F 1F 2=2c ,由题意可知a -c =1,a =2c ,解得a =2,c =1,所以b =a 2-c 2=3,故椭圆C 的方程为x 24+y23=1㊂(2)P F 2|A B |为定值㊂由题意可知,动直线l 的方程为y =k (x-1),联立x 24+y23=1,y =k (x -1),消去y 整理得3+4k 2 x 2-8k 2x +4k 2-3=0㊂设A x 1,y 1 ,B x 2,y 2,则x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-33+4k2㊂设A B 的中点为Q x 0,y 0,则x 0=x 1+x 22=4k 23+4k 2,y 0=k x 0-1 =-3k3+4k2㊂当k ʂ0时,线段A B 的垂直平分线的方程为y --3k 3+4k 2=-1k x -4k23+4k2,令y =0,解得x =k23+4k2,所以P F 2=k 23+4k 2-1=31+k 23+4k2㊂A B=x 1-x 2 2+y 1-y 22=1+k 2x 1+x 2 2-4x 1x 2=12k 2+13+4k2㊂所以P F 2|A B |=31+k 23+4k 2121+k 23+4k2=14㊂当k =0时,l 的方程为y =0,此时A B =2a =4,P F 2=c =1,故P F 2|A B |=14㊂ 知识篇 科学备考新指向 高考数学 2023年4月综上所得,|P F 2||A B |为定值14㊂评注:由于直线A B 经过定点,因此在写其方程时只有一个参数(斜率k ),由弦长公式即可用参数k 表示线段A B ,又线段A B 的垂直平分线的斜率为-1k,故也可用参数k 表示线段P F 2,此时只需对线段之比化简即可得到结论㊂本题求解的关键是在写直线方程和用参数k 表示线段的过程中,需要讨论斜率k 是否为零㊂二㊁线段之积为定值线段之积为定值问题的求解原理与线段之比为定值问题的求解原理基本一样㊂例2已知椭圆C :x 2a 2+y2b2=1a >b >0的左顶点和下顶点分别为A ,B ,|A B |=25,过椭圆C 的焦点且与长轴垂直的弦长为2㊂(1)求椭圆C 的方程;(2)已知M 为椭圆C 上一动点(M 不与A ,B 重合),直线A M 与y 轴交于点P ,直线B M 与x 轴交于点Q ,证明:|A Q |㊃|B P |为定值㊂解析:(1)由题意可知a 2+b 2=20,2b2a=2,解得a =4,b =2,所以椭圆C 的方程为x 216+y24=1㊂(2)由题意及(1)知A (-4,0),B (0,-2),设M x 0,y 0 ,P 0,y P ,Q x Q ,0 ,因为M 在椭圆C 上,所以x 20+4y 20=16,由A ,P ,M 三点共线得y P 4=y 0x 0+4,即y P =4y 0x 0+4,同理可得x Q =2x 0y 0+2㊂所以|A Q |㊃|B P |=|x Q +4|㊃|y P +2|=2x 0+4y 0+8x 0+4㊃2x 0+4y 0+8y 0+2=4x 20+4y 20+16+4x 0y 0+8x 0+16y 0x 0+4 y 0+2 =432+4x 0y 0+8x 0+16y 0x 0+4 y 0+2 =16㊂所以|A Q |㊃|B P |为定值16㊂评注:本题求解时,先设点M x 0,y 0,然后用三点共线原理顺利实现用点M 的坐标表示线段|A Q |与线段|B P |,此题化简过程显得尤为关键,最后一步还需要由点M 在椭圆上得x 20+4y 20=16,并将其代入代数式进行化简㊂三㊁直线斜率运算为定值直线斜率运算包括加减运算和乘除运算,直线斜率运算为定值问题反映两条直线在运动过程中其斜率运算满足某个特殊的关系式㊂例3已知椭圆E :x 2a 2+y2b2=1a >b >0的离心率为32,短轴长为2㊂(1)求椭圆E 的方程;(2)过点M -4,0且斜率不为0的直线l 与E 自左向右依次交于点B ,C ,点N 在线段B C 上,且M BM C=N BN C,P 为线段B C 的中点,记直线O P ,O N 的斜率分别为k 1,k 2,求证:k 1k 2为定值㊂解析:(1)由题意及椭圆的性质可知ca=32,2b =2,则1-b 2a2=34,所以a 2=4,故椭圆E 的方程为x 24+y 2=1㊂(2)由题意可知直线l 的斜率一定存在,故设直线l 的方程为y =k (x +4),设B (x 1,y 1),C (x 2,y 2),N (x 3,y 3),P (x 0,y 0),联立x 24+y 2=1,y =k (x +4),消去y 整理得(4k 2+1)x 2+32k 2x +64k 2-4=0,由Δ=16(1-12k 2)>0,得0<k 2<112,所以x 1+x 2=-32k 24k 2+1,x 1x 2=64k 2-44k 2+1,所以x 0=-16k24k 2+1,y 0=k (x 0+4)=4k 4k 2+1,所以P -16k 24k 2+1,4k4k 2+1㊂因为M BM C=N BN C ,所以x 1+4x 2+4=x 3-x 1x 2-x 3,知识篇 科学备考新指向 高考数学 2023年4月解得x 3=2x 1x 2+4(x 1+x 2)x 1+x 2+8=2ˑ64k 2-44k 2+1+4ˑ-3k 24k 2+1-32k24k 2+1+8=-1,y 3=3k ,所以N (-1,3k ),故k 1k 2=y 0x 0㊃y 3x 3=-14kˑ(-3k )=34,即k 1k 2为定值㊂评注:本题第(2)问求解的关键是将直线的斜率坐标化㊁代数化,在化简过程中充分利用条件M B M C =N BN C,并将这一条件转化为坐标问题,然后化简得到所需的等式㊂本题的综合性强,计算量大,属于较难试题㊂四㊁夹角为定值夹角为定值问题就是当直线在运动的过程中,某个角度大小不变,其求解思路是:将夹角为定值问题转化为直线的位置关系问题,同时还要注意利用向量工具助力求解㊂例4 已知点P (-2,y 0)为抛物线C :x 2=2p y (p >0)上一点,F 为抛物线C 的焦点,抛物线C 在点P 处的切线与y 轴相交于点Q ,且әF P Q 的面积为2㊂(1)求抛物线C 的方程;(2)设直线l 经过点(2,5)交抛物线C 于M ,N 两点(异于点P ),求证:øM P N 的大小为定值㊂解析:(1)因为әF P Q 的面积为2,所以12|F Q |㊃2=2,即|F Q |=2㊂因为x 2=2p y ,所以y =x 22p ,求导得y '=xp ,所以点P 处的切线的斜率为-2p,切线的方程为y -y 0=-2p (x +2),令x =0,可得y =y 0-4p =2p -4p =-2p ,所以p 2+2p =2,解得p =2,所以抛物线C 的方程为x 2=4y ㊂(2)设M x 1,x 214,N x 2,x 224,设直线l 的方程为y =k (x -2)+5,联立y =k (x -2)+5,x 2=4y ,消去y 整理得x 2-4k x +8k -20=0,所以x 1+x 2=4k ,x 1x 2=8k -20㊂因为P (-2,1),所以P M ң=x 1+2,x 214-1,P N ң=x 2+2,x 224-1,所以P M ң㊃P N ң=(x 1+2)(x 2+2)+x 214-1x 224-1=x 1x 2+2(x 1+x 2)+4+x 21x 2216-(x 1+x 2)2-2x 1x 24+1=8k -20+8k+(8k -20)216-16k 2-16k +404+5=0,所以P M ңʅP N ң,所以øP MN 的大小为定值90ʎ㊂评注:本题的求解是将夹角为定值问题转化为直线的位置关系问题,再借助向量工具即可得证㊂本题难度不大,求解思路清晰,过程简洁㊂五㊁向量的数量积为定值例5 在平面直角坐标系x O y中,过椭圆C :x 2a 2+y2b2=1(a >b >0)的右焦点F的直线x +y -2=0交椭圆C 于A ,B 两点,P 为A B 的中点,且O P 的斜率为13㊂(1)求椭圆C 的方程㊂(2)设过点F 的直线l (不与坐标轴垂直)与椭圆C 交于D ,E 两点,试问:在x 轴上是否存在定点M ,使得MD ң㊃M E ң为定值若存在,求出点M 的坐标;若不存在,请说明理由㊂解析:(1)由题意可设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则x 21a 2+y 21b 2=1,x 22a 2+y 22b 2=1,两式相减可得,(x 1-x 2)(x 1+x 2)a2+(y 1-y 2)(y 1+y 2)b 2=0㊂又因为y 1-y 2x 1-x 2=-1,P 为A B 的中点,且O P 的斜率为13,所以y 0=13x 0,即y 1+y 2=13x 1+x 2,所以可解得a 2=3b 2,即a 2=3a 2-c 2,即a 2= 知识篇 科学备考新指向 高考数学 2023年4月32c 2,又因为c =2,所以a 2=6,所以椭圆C 的方程为x 26+y22=1㊂(2)设直线l 的方程为y =k x -2,代入椭圆C 的方程x 26+y 22=1,化简整理得3k 2+1x 2-12k 2x +12k 2-6=0,设D x 3,y 3 ,E (x 4,y 4),则x 3+x 4=12k21+3k2,x 3x 4=12k 2-61+3k2㊂假设x 轴上存在定点M t ,0,使得MD ң㊃M E ң为定值,则有MD ң㊃M E ң=(x 3-t ,y 3)(x 4-t ,y 4)=(x 3-t )(x 4-t )+y 3y 4=(x 3-t )(x 4-t )+k 2(x 3-2)(x 4-2)=(k 2+1)x 3x 4-(2k 2+t )(x 3+x 4)+4k 2+t2=(k 2+1)12k 2-61+3k 2-(2k 2+t )12k 21+3k2+4k 2+t 2=(3t 2-12t +10)k 2+t 2-61+3k2,要使上式为定值,即与k 无关,则应有3t 2-12t +10=3(t 2-6),解得t =73,故当点M 的坐标为73,0时,MD ң㊃M E ң为定值㊂评注:本题以存在性设问,有一定的开放性㊂由于是证明向量的数量积为定值,所以可用向量的坐标运算直接将问题代数化,此时只需联立直线和曲线的方程,并借助韦达定理,最后通过等式代换化简即可㊂六、面积为定值例6 已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为32,过椭圆的焦点且与长轴垂直的弦长为1㊂(1)求椭圆C 的方程;图1(2)如图1,设M 为椭圆上位于第一象限内的一个动点,A ,B 分别为椭圆的左顶点和下顶点,直线M B 与x 轴交于点C ,直线M A 与y 轴交于点D ,求证:四边形A B C D 的面积为定值㊂解析:(1)由已知可得ca=32,2b2a=1,a 2=b 2+c 2,解得a =2,b =1,所以椭圆C 的方程为x 24+y 2=1㊂(2)因为椭圆C 的方程为x 24+y 2=1,所以A (-2,0),B (0,-1)㊂由题意可设M (m ,n )(m >0,n >0),则m 24+n 2=1,即m 2+4n 2=4㊂所以直线B M 的方程为y =n +1mx -1,令y =0,得x C =mn +1㊂同理可得,直线A M 的方程为y =n m +2(x +2),令x =0,得y D =2nm +2㊂所以S 四边形A B C D =12㊃A C ㊃B D =12㊃mn +1+2㊃2n m +2+1=12㊃(m +2n +2)2(m +2)(n +1)=12㊃4m n +4m +8n +8m n +m +2n +2=2㊂所以四边形A B C D 的面积为定值2㊂评注:本题求解的关键是将线段坐标化,从而实现将面积代数化㊂首先设M (m ,n )(m >0,n >0),得m 2+4n 2=4,直线B M 的方程为y =n +1m x -1,从而x C =mn +1,同理得y D =2n m +2,所以S 四边形A B C D =12ˑ|A C |ˑ|B D |=12ˑm n +1+2ˑ2nm +2+1,最后通过化简即可证明四边形A B C D 的面积为定值2㊂本文结合实例对圆锥曲线中的定值问题进行了梳理,希望同学们在平时的学习中,能根据以上六大类问题逐一分析,动手求解,经常思考和反思,不断积累解题经验,从而提升自身的数学综合能力㊂(责任编辑 王福华)知识篇 科学备考新指向 高考数学 2023年4月。

专题13 圆锥曲线压轴解答题常考套路归类(精讲精练)(原卷版)

专题13 圆锥曲线压轴解答题常考套路归类(精讲精练)(原卷版)

专题13 圆锥曲线压轴解答题常考套路归类【命题规律】解析几何是高考数学的重要考查内容,常作为试卷的拔高与区分度大的试题,其思维要求高,计算量大.令同学们畏惧.通过对近几年高考试题与模拟试题的研究,分析归纳出以下考点:(1)解析几何通性通法研究;(2)圆锥曲线中最值、定点、定值问题; (3)解析几何中的常见模型;解析几何的核心内容概括为八个字,就是“定义、方程、位置关系”.所有的解析几何试题都是围绕这八个字的内容与三大核心考点展开.【核心考点目录】核心考点一:轨迹方程核心考点二:向量搭桥进行翻译 核心考点三:弦长、面积背景的条件翻译 核心考点四:斜率之和差商积问题 核心考点五:弦长、面积范围与最值问题 核心考点六:定值问题 核心考点七:定点问题 核心考点八:三点共线问题 核心考点九:中点弦与对称问题 核心考点十:四点共圆问题 核心考点十一:切线问题 核心考点十二:定比点差法 核心考点十三:齐次化 核心考点十四:极点极线问题【真题回归】1.(2022·浙江·统考高考真题)如图,已知椭圆22112x y +=.设A ,B 是椭圆上异于(0,1)P 的两点,且点0,21Q ⎛⎫⎪⎝⎭在线段AB 上,直线,PA PB 分别交直线132y x =-+于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值; (2)求||CD 的最小值.2.(2022·全国·统考高考真题)已知双曲线2222:1(0,0)x y C a b a b -=>>的右焦点为(2,0)F ,渐近线方程为y =.(1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点()()1122,,,P x y Q x y 在C 上,且1210,0x x y >>>.过P 且斜率为Q M .从下面①②③中选取两个作为条件,证明另外一个成立:①M 在AB 上;②PQ AB ∥;③||||MA MB =.注:若选择不同的组合分别解答,则按第一个解答计分.3.(2022·全国·统考高考真题)设抛物线2:2(0)C y px p =>的焦点为F ,点(),0D p ,过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,3MF =. (1)求C 的方程;(2)设直线,MD ND 与C 的另一个交点分别为A ,B ,记直线,MN AB 的倾斜角分别为,αβ.当αβ-取得最大值时,求直线AB 的方程.4.(2022·全国·统考高考真题)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛--⎫⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.5.(2022·全国·统考高考真题)已知点(2,1)A 在双曲线2222:1(1)1x yC a a a -=>-上,直线l 交C 于P ,Q 两点,直线,AP AQ 的斜率之和为0. (1)求l 的斜率;(2)若tan PAQ ∠=PAQ △的面积.【方法技巧与总结】1、直接推理计算,定值问题一般是先引入参数,最后通过计算消去参数,从而得到定值.2、先猜后证,从特殊入手,求出定点或定值,再证明定点或定值与参数无关.3、建立目标函数,使用函数的最值或取值范围求参数范围.4、建立目标函数,使用基本不等式求最值.5、根据题设不等关系构建不等式求参数取值范围.【核心考点】核心考点一:轨迹方程 【规律方法】求动点的轨迹方程有如下几种方法:(1)直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程;(2)定义法:如果能确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程;(3)相关点法:用动点Q 的坐标x 、y 表示相关点P 的坐标0x 、0y ,然后代入点P 的坐标()00,x y 所满足的曲线方程,整理化简可得出动点Q 的轨迹方程;(4)参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一参数t 得到方程,即为动点的轨迹方程;(5)交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程.【典型例题】例1.(2022·全国·高三专题练习)双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线为y =,且一个焦点到渐(1)求双曲线方程;(2)过点()0,1的直线l 与双曲线交于异支两点,,P Q OM OP OQ =+,求点M 的轨迹方程.例2.(2022春·吉林辽源·高三辽源市第五中学校校考期中)已知过定点()01P ,的直线l 交曲线2214y x -=于A ,B 两点.(1)若直线l 的倾斜角为45︒,求AB ;(2)若线段AB 的中点为M ,求点M 的轨迹方程.例3.(2022·全国·高三专题练习)在学习数学的过程中,我们通常运用类比猜想的方法研究问题. (1)已知动点P 为圆222:O x y r +=外一点,过P 引圆O 的两条切线PA 、PB ,A 、B 为切点,若0PA PB ⋅=,求动点P 的轨迹方程;(2)若动点Q 为椭圆22:194x y M +=外一点,过Q 引椭圆M 的两条切线QC 、QD ,C 、D 为切点,若0QC QD ⋅=,求出动点Q 的轨迹方程;(3)在(2)问中若椭圆方程为22221(0)x y a b a b +=>>,其余条件都不变,那么动点Q 的轨迹方程是什么(直接写出答案即可,无需过程).核心考点二:向量搭桥进行翻译 【规律方法】把几何语言转化翻译为向量语言,然后用向量知识来解决. 【典型例题】例4.(2023·广西南宁·南宁二中校考一模)已知椭圆2222:1(0)x y C a b a b +=>>,倾斜角为30︒的直线过椭圆的左焦点1F 和上顶点B ,且11ABF S =△A 为右顶点). (1)求椭圆C 的标准方程;(2)若过点(0,)M m 的直线l 与椭圆C 交于不同的两点P ,Q ,且2PM MQ =,求实数m 的取值范围.例5.(2023·全国·高三专题练习)已知椭圆C :22221x y a b+=(0a b >>)的离心率e =(),0A a 、()0,B b(1)求椭圆C 的标准方程;(2)若经过点(且斜率为k 的直线l 与椭圆C 有两个不同的交点P 和Q ,则是否存在常数k ,使得OP OQ +与AB 共线?如果存在,求k 的值;如果不存在,请说明理由.例6.(2023·全国·高三专题练习)已知双曲线2212:14x y bΓ-=与圆2222:4(0)x y b b Γ+=+>交于点(),(A A A x y 第一象限),曲线Γ为1Γ、2Γ上取满足A x x >的部分.(1)若A x b 的值;(2)当b =2Γ与x 轴交点记作点1F 、2F ,P 是曲线Γ上一点,且在第一象限,且18PF =,求12F PF ∠;(3)过点20,22b D ⎛⎫+ ⎪⎝⎭斜率为2b-的直线l 与曲线Γ只有两个交点,记为M 、N ,用b 表示OM ON ⋅,并求OM ON ⋅的取值范围.例7.(2022·全国·高三专题练习)已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F ,2F ,且128F F =,()4,6P 是C 上一点. (1)求C 的方程;(2)过点()1,1M 的直线与C 交于两点A ,B ,与直线:312l y x =-交于点N .设NA AM λ=,NB BM μ=,求证:λμ+为定值.核心考点三:弦长、面积背景的条件翻译 【规律方法】首先仍是将题目中的基本信息进行代数化,坐标化,遵循直线与圆锥曲线题目通解中的套路,即设点设线、直由联立、看判别式、韦达定理.将有关弦长、面积背景的问题进行条件翻译时,一般是应用弦长公式、点到直线的距离公式及面积公式(在圆中要用半径、半弦、弦心距组成的直角三角形求弦长)将有关弦长、面积的条件翻译为:(1)关于某个参数的函数,根据要求求出最值;(2)关于某个参数的方程,根据要求得出参数的值或两参数间的关系.【典型例题】例8.(2022春·内蒙古呼和浩特·高三呼市二中阶段练习)已知椭圆222:1(0)8x y C a a +=>的左、右焦点分别为1F ,2F ,P 为C 上一点,且当1PF x ⊥轴时,2103PF =. (1)求C 的方程;(2)设C 在点P 处的切线交x 轴于点Q ,证明:1221PF QF PF QF ⋅=⋅.例9.(2022春·江苏徐州·高三期末)已知椭圆C :()222210x y a b a b +=>>,直线l 过C 的焦点且垂直于x 轴,直线l 被C (1)求C 的方程;(2)若C 与y 轴的正半轴相交于点P ,点A 在x 轴的负半轴上,点B 在C 上,PA PB ⊥,60PAB ∠=︒,求PAB 的面积.例10.(2022春·浙江金华·高三期末)已知双曲线22:143x y C -=上一点()4,3P ,直线()0y x b b =-+<交C于A ,B 点.(1)证明:直线PA 与直线PB 的斜率之和为定值; (2)若PAB 的外接圆经过原点O ,求PAB 的面积.核心考点四:斜率之和差商积问题 【规律方法】在面对有关等角、倍角、共线、垂直等几何特征时,可设法将条件翻译成关于斜率的关系式,然后将斜率公式代入其中,得出参数间的关系式,再根据要求做进一步的推导判断.【典型例题】例11.(2022·浙江·模拟预测)已知曲线C 上的任意一点到点)F和直线x =. (1)求曲线C 的方程;(2)记曲线的左顶点为A ,过()4,0B 的直线l 与曲线C 交于P ,Q 两点,P ,Q 均在y 轴右侧,直线AP ,AQ 与y 轴分别交于M ,N 两点.若直线MB ,NB 的斜率分别为1k ,2k ,判断12k k 是否为定值.若是,求出该定值;若不是,请说明理由.例12.(2022春·云南昆明·高三昆明市第三中学校考期末)如图,已知抛物线C :24y x =,过焦点F 斜率大于零的直线l 交抛物线于A 、B 两点,且与其准线交于点D .(1)若线段AB 的长为5,求直线l 的方程;(2)在C 上是否存在点M ,使得对任意直线l ,直线,,MA MD MB 的斜率始终成等差数列,若存在求点M 的坐标;若不存在,请说明理由.例13.(2022·安徽·校联考二模)已知椭圆2222:1(0)x y C a b a b+=>>经过点12⎫⎪⎭,其右焦点为)F.(1)求椭圆C 的标准方程;(2)椭圆C 的右顶点为A ,若点,P Q 在椭圆C 上,且满足直线AP 与AQ 的斜率之积为120,求APQ △面积的最大值.例14.(2022春·云南·高三校联考阶段练习)已知椭圆C :()222210x y a b a b +=>>的离心率为2,H ⎛ ⎝⎭是C 上一点. (1)求C 的方程.(2)设A ,B 分别为椭圆C 的左、右顶点,过点()1,0D 作斜率不为0的直线l ,l 与C 交于P ,Q 两点,直线AP 与直线BQ 交于点M ,记AP 的斜率为1k ,BQ 的斜率为2k .证明:①12k k 为定值;②点M 在定直线上.核心考点五:弦长、面积范围与最值问题 【规律方法】弦长和面积的最值问题首先需要将弦长和面积表达出来,弦长可用弦长公式求出;面积的表达以直线与椭圆相交得到的OAB 为例,总结一下高考中常见的三角形面积公式.对于OAB ,有以下三种常见的表达式:①1||||2OABSAB OH =⋅(随时随地使用,但是相对比较繁琐,想想弦长公式和点到直线距离)②121||2OABSOM y y =⋅-(横截距已知的条件下使用) ③121||2OABS ON x x =⋅-(纵截距已知的条件下使用) 【典型例题】例15.(2021秋·上海普陀·高三曹杨二中阶段练习)已知椭圆22:184x y C +=,过点(0,4)P 作关于y 轴对称的两条直线12,l l ,且1l 与椭圆交于不同两点2,,A B l 与椭圆交于不同两点D ,C .(1)已知1l 经过椭圆的左焦点,求1l 的方程; (2)证明:直线AC 与直线BD 交于点(0,1)Q ; (3)求线段AC 长的取值范围.例16.(2022·四川达州·统考一模)平面直角坐标系 xOy 中, 已知椭圆22:14x C y +=, 椭圆2:16x E +214y =.设点P 为椭圆C 上任意一点, 过点P 的直线y kx m =+交椭圆E 于A B ,两点, 射线PO 交椭圆E 于点Q .(1)求 OQ OP的值;(2)求 ABQ 面积的最大值.例17.(2022春·吉林通化·高三梅河口市第五中学校考期末)已知椭圆2222:1(0)x y C a b a b +=>>短轴的两个顶点与右焦点的连线构成等边三角形,直线3460x y ++=与圆222()x y b a +-=相切.(1)求椭圆C 的方程;(2)过点)M作两条互相垂直的直线12,l l ,与椭圆C 分别交于,,,A B C D 四点,如图,求四边形ACBD 的面积的取值范围.核心考点六:定值问题 【规律方法】求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 【典型例题】例18.(2022春·广东肇庆·高三肇庆市第一中学校考阶段练习)已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率是2,直线l 过双曲线C 的右焦点F ,且与双曲线C 的右支交于,A B 两点.当直线l 垂直于x 轴时,6AB =.(1)求双曲线C 的标准方程.(2)记双曲线C 的左、右顶点分别是,D E ,直线AD 与BE 交于点P ,试问点P 是否恒在某直线上?若是,求出该直线方程;若不是,请说明理由.例19.(2022春·湖南株洲·高三校联考阶段练习)已知椭圆C :()222210x y a b a b +=>>的右焦点为F ,上顶点为1B ,下顶点为2B ,12B FB △为等腰直角三角形,且直线1FB 与圆221x y +=相切. (1)求椭圆C 的方程;(2)过()0,2P 的直线l 交椭圆C 于D ,E 两点(异于点1B ,2B ),直线1B E ,2B D 相交于点Q .证明:点Q 在一条平行于x 轴的直线上.例20.(2022春·北京丰台·高三北京丰台二中校考阶段练习)已知椭圆2222:1(0)x y E a b a b+=>>过点为()()2,0,0,1A B -.(1)求椭圆E 的方程及其焦距;(2)过点()2,1P -的直线与椭圆E 交于不同的两点,C D ,直线,BC BD 分别与x 轴交于点,M N ,求AM AN的值.核心考点七:定点问题 【规律方法】求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明. 【典型例题】例21.(2023·河南郑州·高三阶段练习)已知抛物线2:2C y px =(其中6p >-F ,点M 、N 分别为抛物线C 上两个动点,满足以MN 为直径的圆过点F ,设点E 为MN 的中点,当MN EF ⊥时,点E 的坐标为()3-. (1)求抛物线C 的方程;(2)直线MF 、NF 与抛物线的另一个交点分别为A 、B ,点P 、Q 分别为AM 、BN 的中点,证明:直线PQ 过定点.例22.(2023春·甘肃兰州·高三兰化一中校考阶段练习)已知椭圆C :22221(0)x y a b a b+=>>的离心率为12,右顶点为A ,上顶点为B ,右焦点为F ,斜率为2的直线经过点A ,且点F (1)求椭圆C 的标准方程;(2)若直线l :y kx m =+与椭圆C 交于E 、F 两点(E 、F 两点与A 、B 两点不重合),且以EF 为直径的圆过椭圆C 的右顶点,证明:直线l 过定点,并求出该定点坐标.例23.(2023·江苏苏州·苏州中学校考模拟预测)已知动圆M 与圆(22:4A x y +=及圆(22:4B x y +=中的一个外切,另一个内切.(1)求动圆圆心M 的轨迹C 的方程;(2)若直线l 与轨迹C 相交于P 、Q 两点,以线段PQ 为直径的圆经过轨迹C 与x 轴正半轴的交点D ,证明直线l 经过一个不在轨迹C 上的定点,并求出该定点的坐标.核心考点八:三点共线问题 【规律方法】证明共线的方法:(1)斜率法:若过任意两点的直线的斜率都存在,通过计算证明过任意两点的直线的斜率相等证明三点共线;(2)距离法:计算出任意两点间的距离,若某两点间的距离等于另外两个距离之和,则这三点共线;(3)向量法:利用向量共线定理证明三点共线;(4)直线方程法:求出过其中两点的直线方程,在证明第3点也在该直线上;(5)点到直线的距离法:求出过其中某两点的直线方程,计算出第三点到该直线的距离,若距离为0,则三点共线.(6)面积法:通过计算求出以这三点为三角形的面积,若面积为0,则三点共线,在处理三点共线问题,离不开解析几何的重要思想:“设而不求思想”.【典型例题】例24.(2023·全国·高三专题练习)已知2222:1(0,0)x y E a b a b -=>>的右焦点为2F ,点2F 到E 的一条渐近线2F 的直线与E 相交于,A B 两点.当AB x ⊥轴时,||AB = (1)求E 的方程.(2)若3,02M ⎛⎫⎪⎝⎭,N 是直线1x =上一点,当,,B M N 三点共线时,判断直线AN 的斜率是否为定值.若是定值,求出该定值;若不是定值,说明理由.例25.(2023·全国·高三专题练习)已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为F ,且离心(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F 三点共线的充要条件是||MN =例26.(2023·全国·高三专题练习)已知椭圆()2222:10x y E a b a b +=>>经过点()0,1C O 为坐标原点.(1)求椭圆E 的方程;(2)设A 、B 分别为椭圆E 的左、右顶点,D 为椭圆E 上一点(不在坐标轴上),直线CD 交x 轴于点P ,Q 为直线AD 上一点,且4OP OQ =⋅,求证:C 、B 、Q 三点共线.核心考点九:中点弦与对称问题 【规律方法】对于中点弦问题常用点差法解决. 【典型例题】例27.(2023·全国·高三专题练习)已知椭圆E :()222210x y a b a b+=>>的离心率为12,点A ,B 分别为椭圆E 的左右顶点,点C 在E 上,且ABC 面积的最大值为 (1)求椭圆E 的方程;(2)设F 为E 的左焦点,点D 在直线x =﹣4上,过F 作DF 的垂线交椭圆E 于M ,N 两点.证明:直线OD 平分线段MN .例28.(2023春·江苏南京·高三统考阶段练习)已知O 为坐标原点,点⎛ ⎝⎭在椭圆C :()222210x y a b a b +=>>上,直线l :=+y x m 与C 交于A ,B 两点,且线段AB 的中点为M ,直线OM 的斜率为12-.(1)求C 的方程;(2)若=1m ,试问C 上是否存在P ,Q 两点关于l 对称,若存在,求出P ,Q 的坐标,若不存在,请说明理由.例29.(2023·全国·高三专题练习)已知抛物线C :()220y px p =>的焦点为F ,准线为l ,记准线l 与x 轴的交点为A ,过A 作直线交抛物线C 于()11,M x y ,()22,N x y (21x x >)两点.(1)若122x x p +=,求MF NF +的值;(2)若M 是线段AN 的中点,求直线MN 的方程;(3)若P ,Q 是准线l 上关于x 轴对称的两点,问直线PM 与QN 的交点是否在一条定直线上?请说明理由.核心考点十:四点共圆问题 【规律方法】 证明四点共圆的方法:方法一:从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,则可肯定这四点共圆.方法二:把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,则可肯定这四点共圆(根据圆的性质一一同弧所对的圆周角相等证).方法三:把被证共圆的四点连成四边形,若能证明其对角互补或能证明其中一个外角等于其内对角时,则可肯定这四点共圆(根据圆的性质一一圆内接四边形的对角和为180︒,并且任何一个外角都等于它的内对角).方法四:证明被证共圆的四点到某一定点的距离都相等,或证明被证四点连成的四边形其中三边中垂线有交点),则可肯定这四点共圆(根据圆的定义:平面内到定点的距离等于定长的点的轨迹为圆).【典型例题】例30.(2022春·山西运城·高三校考阶段练习)已知点(4,4)M 在抛物线2:2x py Γ=上,过动点P 作抛物线的两条切线,切点分别为A 、B ,且直线PA 与直线PB 的斜率之积为2-. (1)证明:直线AB 过定点;(2)过A 、B 分别作抛物线准线的垂线,垂足分别为C 、D ,问:是否存在一点P 使得A 、C 、P 、D 四点共圆?若存在,求所有满足条件的P 点;若不存在,请说明理由.例31.(2022·浙江丽水·高三统考竞赛)如图,已知抛物线24x y =的焦点为F ,直线:l y m =与抛物线交于,D E 两点,过,D E 分别作抛物线的切线12,l l ,12,l l 交于点A .过抛物线上一点M (在l 下方)作切线3l ,交12,l l 于点,B C .(1)当=1m 时,求ABC 面积的最大值; (2)证明A B F C 、、、四点共圆.例32.(2022·全国·高三专题练习)在平面直角坐标系xOy 中,已知()1,1A ,()1,1B -,动点P 满足OP mOA nOB =+,且1mn =.设动点P 形成的轨迹为曲线C .(1)求曲线C 的标准方程;(2)过点()2,2T 的直线l 与曲线C 交于M ,N 两点,试判断是否存在直线l ,使得A ,B ,M ,N 四点共圆.若存在,求出直线l 的方程;若不存在,说明理由.核心考点十一:切线问题 【规律方法】(1)若点()00,P x y 是圆222x y r +=上的点,则过点P 的切线方程为0x x +20y y r =.(2)若点()00,P x y 是圆222x y r +=外的点,由点P 向圆引两条切线,切点分别为A ,B ,则弦AB 所在直线方程为200x x y y r +=.(3)若点()00,P x y 是椭圆22221x y a b +=上的点,则过点P 的切线方程为00221x x y ya b+=.(4)若点()00,P x y 是椭圆22221x y a b+=外的点,由点P 向椭圆引两条切线,切点分别为A ,B ,则弦AB 所在直线方程为00221x x y ya b+=. 【典型例题】例33.(2023·全国·高三校联考阶段练习)如图,在平面直角坐标系xOy 中,已知椭圆22143x y +=的左、右顶点分别为,A B ,过左焦点1F 的直线与椭圆交于点,P Q (点Q 在点P 的上方).(1)求证:直线,AP AQ 的斜率乘积为定值;(2)过点,P Q 分别作椭圆的切线,设两切线交于点M ,证明:1MF PQ ⊥.例34.(2023·全国·高三专题练习)已知椭圆2222:1(0)x y C a b a b +=>>的右焦点为(1,0)F,且点P 在椭圆C 上,O 为坐标原点 (1)求椭圆C 的标准方程(2)过椭圆22122:153x y C a b +=-上异于其顶点的任一点Q ,作圆224:3O x y +=的切线,切点分别为M ,(N M ,N 不在坐标轴上),若直线MN 的横纵截距分别为m ,n ,求证:22113m n +为定值例35.(2023·全国·高三专题练习)已知中心在原点的椭圆1Γ和抛物线2Γ有相同的焦点(1,0),椭圆1Γ的离心率为12,抛物线2Γ的顶点为原点.(1)求椭圆1Γ和抛物线2Γ的方程;(2)设点P 为抛物线2Γ准线上的任意一点,过点P 作抛物线2Γ的两条切线PA ,PB ,其中,A B 为切点.设直线PA ,PB 的斜率分别为1k ,2k ,求证:12k k 为定值.核心考点十二:定比点差法 【典型例题】例36.已知椭圆2222:1x y C a b+=(0a b >>,过右焦点F 且斜率为k (0k >)的直线与C 相交于A ,B 两点,若3AF FB =,求k例37.已知22194x y +=,过点(0,3)P 的直线交椭圆于A ,B (可以重合),求PA PB 取值范围.例38.已知椭圆22162x y +=的左右焦点分别为1F ,2F ,A ,B ,P 是椭圆上的三个动点,且11PF F A λ=,22PF F B μ=若2λ=,求μ的值.核心考点十三:齐次化 【典型例题】例39.已知抛物线2:4C y x =,过点(4,0)的直线与抛物线C 交于P ,Q 两点,O 为坐标原点.证明:90POQ ︒∠=.例40.如图,椭圆22:12x E y +=,经过点(1,1)M ,且斜率为k 的直线与椭圆E 交于不同的两点P ,Q(均异于点(0,1)A -,证明:直线AP 与AQ 的斜率之和为2.例41.已知椭圆22:14x C y +=,设直线l 不经过点2(0,1)P 且与C 相交于A ,B 两点.若直线2P A 与直线2P B 的斜率的和为1-,证明:直线l 过定点.核心考点十四:极点极线问题 【典型例题】例42.(2022·全国·高三专题练习)已知椭圆()2222:10x y C a b a b +=>>的离心率为12,短轴长为(1)求椭圆C 的方程;(2)设A ,B 分别为椭圆C 的左、右顶点,若过点()4,0P 且斜率不为0的直线l 与椭圆C 交于M 、N 两点,直线AM 与BN 相交于点Q .证明:点Q 在定直线上.例43.(2022·全国·高三专题练习)已知A ,B 分别是双曲线22:14y E x -=的左,右顶点,直线l (不与坐标轴垂直)过点()2,0N ,且与双曲线E 交于C ,D 两点.(1)若3CN ND =,求直线l 的方程;(2)若直线AC 与BD 相交于点P ,求证:点P 在定直线上.例44.(2022·全国·高三专题练习)已知椭圆()2222:10,0x y C a b a b +=>>与y 轴的交点,A B (点A 位于点B的上方),F 为左焦点,原点O 到直线FA 2. (1)求椭圆C 的离心率;(2)设2b =,直线4y kx =+与椭圆C 交于不同的两点,M N ,求证:直线BM 与直线AN 的交点G 在定直线上.【新题速递】1.(2023春·福建泉州·高三阶段练习)如图,在平面直角坐标系xOy 中,已知点()1,0F ,直线l :=1x -,P 为平面上的动点,过点P 作直线l 的垂线,垂足为点Q ,分别以PQ ,PF 为直径作圆1C 和圆2C ,且圆1C 和圆2C 交于P ,R 两点,且PQR PFR ∠=∠.(1)求动点P 的轨迹E 的方程;(2)若直线1l :x my a =+交轨迹E 于A ,B 两点,直线2l :1x =与轨迹E 交于M ,D 两点,其中点M 在第一象限,点A ,B 在直线2l 两侧,直线1l 与2l 交于点N 且MA BN AN MB ⋅=⋅,求MAB △面积的最大值.2.(2023·北京·高三专题练习)已知椭圆C 中心在原点O 为()0,1F .(1)求椭圆C 的标准方程;(2)过点F 且不与坐标轴垂直的直线l 与椭圆相交于,A B 两点,直线,OA OB 分别与直线2y =相交于,M N 两点,若MON ∠为锐角,求直线l 斜率k 的取值范围.3.(2023·青海海东·统考一模)已知函数()32ln 13x f x x x x =-+-.(1)求曲线()y f x =在1x =处的切线方程;(2)若()y f x =在点A 处的切线为1l ,函数()e e x xg x -=-的图象在点B 处的切线为2l ,12l l ∥,求直线AB 的方程.4.(2023春·重庆·高三统考阶段练习)已知椭圆22122:1(0)x y C a b a b +=>>的左右焦点分别为12,F F ,右顶点为A ,上顶点为B ,O 为坐标原点,||2||OA OB =.(1)若12BF F △的面积为1C 的标准方程;(2)如图,过点(1,0)P 作斜率(0)k k >的直线l 交椭圆1C 于不同两点M ,N ,点M 关于x 轴对称的点为S ,直线SN 交x 轴于点T ,点P 在椭圆的内部,在椭圆上存在点Q ,使OM ON OQ +=,记四边形OMQN 的面积为1S ,求21OT OQ S k⋅-的最大值.5.(2023·全国·高三专题练习)已知椭圆C :22221(0)x y a b a b+=>>的右顶点为A ,过左焦点F 的直线1(0)x ty t =-≠交椭圆于M ,N 两点,交y 轴于P 点,PM MF λ=,PN NF μ=,记OMN ,2OMF △,2ONF △(2F 为C 的右焦点)的面积分别为123,,S S S .(1)证明:λμ+为定值;(2)若123S mS S μ=+,42λ-≤≤-,求m 的取值范围.6.(2023·四川成都·统考二模)已知椭圆22221(0)x y a b a b +=>>的左、右焦点分别为12,F F ,离心率2e =,22a c=. (1)求椭圆的标准方程;(2)过点1F 的直线l 与该椭圆交于M N 、两点,且222263F M F N +=l 的方程.7.(2023·全国·高三专题练习)设12,F F 分别是椭圆2222:1(0)x y D a b a b +=>>的左、右焦点,过2F 作倾斜角为π3的直线交椭圆D 于,A B 两点,1F 到直线AB 的距离为3,连接椭圆D 的四个顶点得到的菱形面积为4. (1)求椭圆D 的方程;(2)已知点()1,0M -,设E 是椭圆D 上的一点,过,E M 两点的直线l 交y 轴于点C ,若CE EM λ=,求λ的取值范围;(3)作直线1l 与椭圆D 交于不同的两点,P Q ,其中P 点的坐标为()2,0-,若点()0,N t 是线段PQ 垂直平分线上一点,且满足4NP NQ ⋅=,求实数t 的值.8.(2023·全国·高三专题练习)如图所示,,A B 为椭圆2222:1(0)x y E a b a b+=>>的左、右顶点,焦距长为P 在椭圆E 上,直线,PA PB 的斜率之积为14-.(1)求椭圆E 的方程;(2)已知O 为坐标原点,点()2,2C -,直线PC 交椭圆E 于点(,M M P 不重合),直线,BM OC 交于点G .求证:直线,AP AG 的斜率之积为定值,并求出该定值.9.(2023·全国·高三专题练习)已知F ,F '分别是椭圆221:171617C x y +=的上、下焦点,直线1l 过点F '且垂直于椭圆长轴,动直线2l 垂直1l 于点G ,线段GF 的垂直平分线交2l 于点H ,点H 的轨迹为2C . (1)求轨迹2C 的方程;(2)若动点P 在直线:20l x y --=上运动,且过点P 作轨迹2C 的两条切线PA 、PB ,切点为A 、B ,试猜想PFA ∠与PFB ∠的大小关系,并证明你的结论的正确性.10.(2023春·江西·高三校联考阶段练习)已知椭圆22x a +22y b =1(a >b >0),右焦点F (1,0),离心率为F 作两条互相垂直的弦AB ,CD .(1)求椭圆的标准方程;(2)求以A ,B ,C ,D 为顶点的四边形的面积的取值范围.11.(2023·全国·高三专题练习)如图,椭圆22:12+=x E y ,经过点(1,1)M ,且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点(0,1)A -,证明:直线AP 与AQ 的斜率之和为2.12.(2023·全国·高三专题练习)已知椭圆22162x y +=的左右焦点分别为1F ,2F ,A ,B ,P 是椭圆上的三个动点,且11PF F A λ=,22PF F B μ=,若2λ=,求μ的值.13.(2023·全国·高三专题练习)已知椭圆22122:1(0)x y C a b a b+=>>的离心率为12,且直线1:1x y l a b +=被椭圆1C . (1)求椭圆1C 的方程;(2)以椭圆1C 的长轴为直径作圆2C ,过直线2:4l y =上的动点M 作圆2C 的两条切线,设切点为,A B ,若直线AB 与椭圆1C 交于不同的两点C ,D ,求||||CD AB ⋅的取值范围.14.(2023·全国·高三专题练习)已知椭圆22122:1(0)x y C a b a b +=>>的两个焦点1F ,2F ,动点P 在椭圆上,且使得1290F PF ∠=︒的点P 恰有两个,动点P 到焦点1F 的距离的最大值为2(1)求椭圆1C 的方程;(2)如图,以椭圆1C 的长轴为直径作圆2C ,过直线x =-T 作圆2C 的两条切线,设切点分别为A ,B ,若直线AB 与椭圆1C 交于不同的两点C ,D ,求弦||CD 长的取值范围.15.(2023·全国·高三专题练习)已知1F 、2F 分别为椭圆2222:1(0)x yC a b a b+=>>的左、右焦点,且右焦点2F 的坐标为(1,0),点(P 在椭圆C 上,O 为坐标原点.(1)求椭圆C 的标准方程(2)若过点2F 的直线l 与椭圆C 交于,A B 两点,且||AB =l 的方程;。

高考考点突破;圆锥曲线(含答案)

高考考点突破;圆锥曲线(含答案)

圆锥曲线的概念及性质一、选择题1.双曲线方程为x 2-2y 2=1,则它的右焦点坐标为( ) A.⎝⎛⎭⎫22,0 B.⎝⎛⎭⎫52,0 C.⎝⎛⎭⎫62,0 D .(3,0) 2.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为( )A.x 236-y 2108=1B.x 29-y 227=1C.x 2108-y 236=1D.x 227-y 29=14.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足.如果直线AF 的斜率为-3,那么|PF |=( )A .4 3B .8C .8 3D .165.高8 m 和4 m 的两根旗杆笔直竖在水平地面上,且相距10 m ,则地面上观察两旗杆顶端仰角相等的点的轨迹为( )A .圆B .椭圆C .双曲线D .抛物二、填空题7.设抛物线y 2=2px (p >0)的焦点为F ,点A (0,2).若线段F A 的中点B 在抛物线上,则B 到该抛物线准线的距离为________.8.已知双曲线x 2a 2-y 2b 2=1的离心率为2,焦点与椭圆x 225+y 29=1的焦点相同,那么双曲线的焦点坐标为________;渐近线方程为________.即x D =3c 2,由椭圆的第二定义得|FD |=e ⎝⎛⎭⎫a 2c -3c 2=a -3c 22a .又由|BF |=2|FD |,得a = 2a -3c 2a ,整理得a 2=3c 2,即e 2=13,解得e =33.答案:33三、解答题10.已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为435和235,过P 作长轴的垂线恰好过椭圆的一个焦点,求此椭圆的方程.11.已知一条曲线C 在y 轴右边,C 上每一点到点F (1,0)的距离减去它到y 轴距离的差都是1.(1)求曲线C 的方程;(2)是否存在正数m ,对于过点M (m,0)且与曲线C 有两个交点A 、B 的任一直线,都有F A →·FB →<0?若存在,求出m 的取值范围;若不存在,请说明理由12.已知双曲线C 的方程为y 2a 2-x 2b 2=1(a >0,b >0),离心率e =52,顶点到渐近线的距离为255.(1)求双曲线C 的方程;(2)如图,P 是双曲线C 上一点,A ,B 两点在双曲线C 的两条渐近线上,且分别位于第一、二象限.若AP →=λPB →,λ∈⎣⎡⎦⎤13,2,求△AOB 面积的取值范围.圆锥曲线的概念及性质一、选择题1.(2010·安徽)双曲线方程为x 2-2y 2=1,则它的右焦点坐标为 ( ) A.⎝⎛⎭⎫22,0 B.⎝⎛⎭⎫52,0 C.⎝⎛⎭⎫62,0 D .(3,0)解析:∵原方程可化为x 21-y 212=1,a 2=1, b 2=12,c 2=a 2+b 2=32,∴右焦点为⎝⎛⎭⎫62,0. 答案:C2.(2010·天津)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为 ( )A.x 236-y 2108=1B.x 29-y 227=1C.x 2108-y 236=1D.x 227-y 29=1 解析:∵渐近线方程是y =3x ,∴ba = 3.①∵双曲线的一个焦点在y 2=24x 的准线上, ∴c =6.② 又c 2=a 2+b 2,③由①②③知,a 2=9,b 2=27, 此双曲线方程为x 29-y 227=1. 答案:B4.(2010·辽宁)设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足.如果直线AF 的斜率为-3,那么|PF |=( )A .4 3B .8C .8 3D .16 解析:解法一:AF 直线方程为: y =-3(x -2),当x =-2时,y =43,∴A (-2,43). 当y =43时代入y 2=8x 中,x =6, ∴P (6,43),∴|PF |=|P A |=6-(-2)=8.故选B.解法二:∵P A ⊥l ,∴P A ∥x 轴. 又∵∠AFO =60°,∴∠F AP =60°, 又由抛物线定义知P A =PF , ∴△P AF 为等边三角形. 又在Rt △AFF ′中,FF ′=4, ∴F A =8,∴P A =8.故选B. 答案:B5.高8 m 和4 m 的两根旗杆笔直竖在水平地面上,且相距10 m ,则地面上观察两旗杆 顶端仰角相等的点的轨迹为 ( ) A .圆 B .椭圆 C .双曲线 D .抛物线解析:如图1,假设AB 、CD 分别为高4 m 、8 m 的旗杆,P 点为地面上观察两旗杆 顶端仰角相等的点,由于∠BP A =∠DPC ,则Rt △ABP ∽Rt △CDP ,BA P A =DCPC ,从而PC =2P A .在平面APC 上,以AC 为x 轴,AC 的中垂线为y 轴建立平面直角坐标系(图 2),则A (-5,0),C (5,0),设P (x ,y ),得(x -5)2+y 2=2(x +5)2+y 2 化简得x 2+y 2+503x +25=0,显然,P 点的轨迹为圆.答案:A 二、填空题解析:由题知,垂足的轨迹为以焦距为直径的圆,则c <b ⇒c 2<b 2=a 2-c 2⇒e 2<12,又e ∈(0,1),所以e ∈⎝⎛⎭⎫0,22. 答案:⎝⎛⎭⎫0,227.(2010·浙江)设抛物线y 2=2px (p >0)的焦点为F ,点A (0,2).若线段F A 的中点B 在抛物线上,则B 到该抛物线准线的距离为________.解析:F ⎝⎛⎭⎫p 2,0,则B ⎝⎛⎭⎫p4,1, ∴2p ×p4=1,解得p = 2.∴B ⎝⎛⎭⎫24,1,因此B 到该抛物线的准线的距离为24+22=324. 答案:3248.(2010·北京)已知双曲线x 2a 2-y 2b 2=1的离心率为2,焦点与椭圆x 225+y 29=1的焦点相同,那么双曲线的焦点坐标为________;渐近线方程为________.解析:∵椭圆x 225+y 29=1的焦点为(±4,0),∴双曲线的焦点坐标为(±4,0),∴c =4,ca =2,c 2=a 2+b 2,∴a =2,b 2=12,∴双曲线方程为x 24-y 212=1,∴渐近线方程为y =±ba x =±3x ,即3x ±y =0. 答案:(±4,0)3x ±y =0即x D =3c 2,由椭圆的第二定义得|FD |=e ⎝⎛⎭⎫a 2c -3c 2=a -3c 22a .又由|BF |=2|FD |,得a =2a -3c 2a,整理得a 2=3c 2,即e 2=13,解得e =33. 答案:33三、解答题10.已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为435和235,过P 作长轴的垂线恰好过椭圆的一个焦点,求此椭圆的方程.解:解法一:设椭圆的标准方程是x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b 2=1(a >b >0),两个焦点分别为F 1、F 2,则由题意,知2a =|PF 1|+|PF 2|=25,∴a = 5.在方程x 2a 2+y 2b 2=1中,令x =±c ,得|y |=b 2a .在方程y 2a 2+x 2b 2=1中,令y =±c ,得|x |=b 2a .依题意知b 2a =235,∴b 2=103.即椭圆的方程为x 25+3y 210=1或y 25+3x 210=1.解法二:设椭圆的两个焦点分别为F 1、F 2,则|PF 1|=453,|PF 2|=253.由椭圆的定义,知2a =|PF 1|+|PF 2|=25,即a = 5. 由|PF 1|>|PF 2|知,PF 2垂直于长轴.故在Rt △PF 2F 1中,4c 2=|PF 1|2-|PF 2|2=609,∴c 2=53,于是b 2=a 2-c 2=103.又所求的椭圆的焦点可以在x 轴上,也可以在y 轴上,故所求的椭圆方程为x 25+3y 210=1或3x 210+y 25=1.11.(2010·湖北)已知一条曲线C 在y 轴右边,C 上每一点到点F (1,0)的距离减去它到y 轴距离的差都是1. (1)求曲线C 的方程;(2)是否存在正数m ,对于过点M (m,0)且与曲线C 有两个交点A 、B 的任一直线,都有F A →·FB →<0?若存在,求出m 的取值范围;若不存在,请说明理由解:(1)设P (x ,y )是曲线C 上任意一点,那么点P (x ,y )满足(x -1)2+y 2-x =1(x >0), 化简得y 2=4x (x >0).(2)设过点M (m,0)(m >0)的直线l 与曲线C 的交点为A (x 1,y 1),B (x 2,y 2).设l 的方程为x =ty +m ,由⎩⎪⎨⎪⎧x =ty +m ,y 2=4x 得y 2-4ty -4m =0,Δ=16(t 2+m )>0,于是⎩⎪⎨⎪⎧y 1+y 2=4t ,y 1y 2=-4m . ①又F A →=(x 1-1,y 1),FB →=(x 2-1,y 2),F A →·FB →<0⇔(x 1-1)(x 2-1)+y 1y 2=x 1x 2-(x 1+x 2)+1+y 1y 2<0. ②又x =y 24,于是不等式②等价于y 214·y 224+y 1y 2-⎝⎛⎭⎫y 214+y 224+1<0⇔(y 1y 2)216+y 1y 2-14[(y 1+y 2)2-2y 1y 2]+1<0, ③ 由①式,不等式③等价于m 2-6m +1<4t 2, ④ 对任意实数t,4t 2的最小值为0,所以不等式④对于一切t 成立等价于m 2-6m +1<0, 即3-22<m <3+2 2.由此可知,存在正数m ,对于过点M (m,0)且与曲线C 有两个交点A ,B 的任一直 线,都有F A →·FB →<0,且m 的取值范围是(3-22,3+22).12.(2009·陕西,21)已知双曲线C 的方程为y 2a 2-x 2b 2=1(a >0,b >0),离心率e =52,顶点到渐近线的距离为255.(1)求双曲线C 的方程;(2)如图,P 是双曲线C 上一点,A ,B 两点在双曲线C 的两条渐近线上,且分别位于第一、二象限.若AP →=λPB →,λ∈⎣⎡⎦⎤13,2,求△AOB 面积的取值范围.解:解法一:(1)由题意知,双曲线C 的顶点(0,a )到渐近线ax -by =0的距离为255,∴ab a 2+b 2=255,即ab c =255.由⎩⎨⎧ab c =255,c a =52,c 2=a 2+b2得⎩⎪⎨⎪⎧a =2,b =1,c =5,∴双曲线C 的方程为y 24-x 2=1.(2)由(1)知双曲线C 的两条渐近线方程为y =±2x . 设A (m,2m ),B (-n,2n ),m >0,n >0.由AP →=λPB →=λPB →得P 点的坐标为⎝ ⎛⎭⎪⎫m -λn 1+λ,2(m +λn )1+λ, 将P 点坐标代入y 24-x 2=1,化简得mn =(1+λ)24λ,设∠AOB =2θ,∵tan ⎝⎛⎭⎫π2-θ=2, ∴tan θ=12,sin 2θ=45.又|OA |=5m ,|OB |=5n , ∴S △AOB =12|OA |·|OB |·sin 2θ=2mn =12⎝⎛⎭⎫λ+1λ+1. 记S (λ)=12⎝⎛⎭⎫λ+1λ+1,λ∈⎣⎡⎦⎤13,2, 则S ′(λ)=12⎝⎛⎭⎫1-1λ2 由S ′(λ)=0得λ=1,又S (1)=2, S ⎝⎛⎭⎫13=83,S (2)=94, ∴当λ=1时,△AOB 的面积取得最小值2,当λ=13时,△AOB 的面积取得最大值83.∴△AOB 面积的取值范围是⎣⎡⎦⎤2,83. 解法二:(1)同解法一. (2)设直线AB 的方程为y =kx +m 由题意知|k |<2,m >0.由⎩⎪⎨⎪⎧y =kx +m ,y =2x 得A 点的坐标为⎝⎛⎭⎫m 2-k ,2m2-k ,由⎩⎪⎨⎪⎧y =kx +m y =-2x ,得B 点的坐标为⎝ ⎛⎭⎪⎫-m 2+k ,2m 2+k .由AP →=λPB →得P 点的坐标为⎝ ⎛⎭⎪⎫m 1+λ⎝⎛⎭⎫12-k -λ2+k ,2m 1+λ⎝⎛⎭⎫12-k +λ2+k , 将P 点坐标代入y 24-x 2=1得4m 24-k 2=(1+λ)2λ.设Q 为直线AB 与y 轴的交点,则Q 点的坐标为(0,m ). S △AOB =S △AOQ +S △BOQ=12|OQ |·|x A |+12|OQ |·|x B | =12m ·(x A -x B )=12m ⎝⎛⎭⎫m2-k +m 2+k =12·4m 24-k 2 =12⎝⎛⎭⎫λ+1λ+1. 以下同解法一。

2024高考巴蜀圆锥曲线解答题解析

2024高考巴蜀圆锥曲线解答题解析

2024高考巴蜀圆锥曲线解答题解析一、解答题1.(23-24高三下·重庆·阶段练习)已知抛物线()2:20E y px p =>,O 是坐标原点,过()4,0的直线与E 相交于A ,B 两点,满足OA OB ⊥.(1)求抛物线E 的方程;(2)若()0,2P x 在抛物线E 上,过()4,2Q -的直线交抛物线E 于M ,N 两点,直线PM ,PN 的斜率都存在,分别记为1k ,2k ,求12k k ⋅的值.3【点睛】方法点睛:求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.2.(23-24高三下·重庆·阶段练习)已知抛物线2:4,,C x y M N =为抛物线C 上两点,,M N 处的切线交于点()00,P x y ,过点P 作抛物线C 的割线交抛物线于,A B 两点,Q 为AB 的中点.(1)若点P 在抛物线C 的准线上,(i )求直线MN 的方程(用含0x 的式子表示);(ii )求PMN 面积的取值范围.(2)若直线MQ 交抛物线C 于另一点D ,试判断并证明直线ND 与AB 的位置关系.【答案】(1)(i )012y x =【详解】(1)(i )设点221212,,,44x x M x N x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,因为抛物线2:4C x y =,得12y x '=,则()21111:42MP x l y x x x -=-,整理得2111124y x x x =-①,()22221:42NP x l y x x x -=-,整理得2221124y x x x =-②,联立①②得()0120121214x x x y x x ⎧=+⎪⎪⎨⎪=⎪⎩,因为点P 在抛物线C 的准线上,即直线1y =-上,所以124x x =-,设直线MN 的方程为y kx b =+,斜率必存在,联立24=+⎧⎨=⎩y kx bx y ,消去y 得2440x kx b --=,所以212012Δ161604244k b x xk x x x b ⎧=+>⎪+==⎨⎪=-=-⎩,得0121k x b ⎧=⎪⎨⎪=⎩.所以直线MN 的方程为0112y xx =+;(ii )由(i )得21x x -=(2)直线ND 与AB 平行,证明:直线AB 斜率必存在,设消去y 得20444x kx kx -++=则()2034340161610444k kx x x k x x kx ⎧-+>⎪+=⎨⎪=+⎩,得则直线(21:4MQ x l y k x x '-=-()2122011214442x k k x x x k x ----=-整理得()(221284k x x k ---则2211112842D kx k x kx x x k x -+-=-则2101284142D kx k kx y k x ⎛-+-= -⎝【点睛】方法点睛:对于直线和圆锥曲线相交的问题,我们一般联立方程,然后用韦达定理来解决问题,特别是当一个交点知道的情况下,3.(23-24高三下·重庆·阶段练习)已知()()122,0,2,0C C -,动点P 满足1PC 与2PC 的斜率之积为定值14.(1)求动点P 的轨迹Γ的方程;(2)过点()4,0M 的直线l 与曲线Γ交于,A B 两点,且,A B 均在y 轴右侧,过点A 作直线:1l x '=的垂线,垂足为D .(i )求证:直线BD 过定点;(ii )求MBD 面积的最小值.【答案】(1)(22104x y y -=≠(2)(i )证明见解析;(ii )3【分析】(1)设动点P 的坐标,由题意列式并化简,即可得答案;(2)(i )设直线方程:l x my =结合题意有(2212212240Δ644884124m m m m y y m y y m ⎧-≠⎪=-⎪⎪-⎨+=⎪-⎪⎪⋅=<-⎩解得22m -<<,且122my y =又直线BD 的方程为1y y -=令0y =,则()122111y x x y y -=--()(122121235422=y y y y y y y y ++-=-4.(23-24高三上·重庆·阶段练习)已知点00(,)P x y 是椭圆E :221(0)a b a b +=>>上的动点,离心率2e =设椭圆左、右焦点分别为12,F F ,且12|||4|PF PF +=(1)求椭圆E 的标准方程;(2)若直线12,PF PF 与椭圆C 的另一个交点分别为A ,B ,问PAB 面积是否存在最大值,若存在,求出最大值;若不存在,请说明理由.【点睛】方法点睛:圆锥曲线中最值或范围问题的常见解法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.5.(23-24高三上·重庆·期中)已知椭圆C :()2210a b a b+=>>的左、右焦点分别为()()121,01,0F F -,,椭圆C 上一动点A 在第二象限内,点A 关于x 轴的对称点为点B ,当AB 过焦点1F 时,直线2AF 过点30,4⎛⎫⎪⎝⎭.(1)求椭圆C 的方程;(2)点B 与焦点2F 所在直线交椭圆C 于另一点P ,直线AP 交x 轴于点T ,求TAB △面积最大时,点A 横坐标的值.【答案】(1)22143x y +=(2)13-设直线PB 的方程为1x my =+,联立得()2234690m y my ++-=,由于直线则12122269,343m y y y y m m -+=-=++直线PA 的方程为(21121y y y y x x ++=-令0y =,得(1121212y my y x y x x y y ==++即(4,0)T ;()()1114||432TABS x AB x =-⋅=-6.(23-24高三上·重庆渝中·阶段练习)已知椭圆C :()2210a b a b +=>>的上、下顶点分别为A ,B ,左顶点为D ,ABD △(1)求椭圆C 的方程;(2)过椭圆外一点(),0M m 的直线交椭圆于P ,Q 两点,已知点P 与点P '关于x 轴对称,直线P Q '与x 轴交于点K ;若AKB ∠是钝角,求m 的取值范围.【点睛】方法点睛:求解椭圆的方程,关键是求得所以需要两个条件,如本题中,等边三角形以及等边三角形的面积,一共两个条件,用这两个条件列方程组,即可求得,a 7.(23-24高三上·重庆渝中·阶段练习)如图3所示,点1F ,A 分别为椭圆2222:1(0)x y E a b a b+=>>的左焦点和右顶点,点F 为抛物线2:16C y x =的焦点,且124OF OA OF ==(O 为坐标原点).(1)求椭圆E 的方程;(2)过点1F 作直线l 交椭圆E 于B ,D 两点,连接AB ,AD 并延长交抛物线的准线于点M ,N ,求证:1MF N ∠为定值.8.(23-24高三上·重庆渝中·阶段练习)已知椭圆()22:10x y C a b a b +=>>的离心率为e =,且经过点()1,e .(1)求椭圆C 的方程;(2)若A ,F 分别为椭圆C 的上顶点和右焦点,直线()3:0l y kx k =->与椭圆C 交于点B ,D ,F 到直线AB ,AD 的距离分别为1d 和2d ,求证:12d d =.。

圆锥曲线全国卷高考真题解答题(含解析))

圆锥曲线全国卷高考真题解答题(含解析))

圆锥曲线全国卷高考真题解答题一、解答题1,2019年全国统一高考数学试卷(理科)(新课标Ⅲ)已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.2.2019年全国统一高考数学试卷(理科)(新课标Ⅰ) 已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |.3.2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ)已知点A (0,-2),椭圆E :22221x y a b += (a >b >0)F 是椭圆E 的右焦点,直线AF ,O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程.已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.5.2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ带解析)在直角坐标系xoy 中,曲线C :y=24x与直线(),0y kx a a =+>交与M,N 两点,(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.6.2016年全国普通高等学校招生统一考试文科数学(新课标3) 已知抛物线:的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点.(Ⅰ)若在线段上,是的中点,证明;(Ⅱ)若的面积是的面积的两倍,求中点的轨迹方程.7.2016年全国普通高等学校招生统一考试理科数学(新课标2卷)已知椭圆E:2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为k (k > 0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (Ⅰ)当t=4,AM AN =时,求△AMN 的面积; (Ⅱ)当2AM AN =时,求k 的取值范围.设圆的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.9.2017年全国普通高等学校招生统一考试理科数学(新课标2卷)设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .10.2018年全国卷Ⅲ理数高考试题文已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:FA ,FP ,FB 成等差数列,并求该数列的公差.已知椭圆C :2222=1x y a b +(a>b>0),四点P 1(1,1),P 2(0,1),P 3(–1P 4(1中恰有三点在椭圆C 上. (Ⅰ)求C 的方程;(Ⅱ)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.12.2018年全国普通高等学校招生统一考试理数(全国卷II )设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.13.2018年全国普通高等学校招生统一考试理科数学(新课标I 卷)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.14.2018年全国普通高等学校招生统一考试文科数学(新课标I 卷)设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点. (1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN ∠=∠.15.2018年全国卷Ⅲ文数高考试题已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >.(1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:2FP FA FB =+.16.2017年全国普通高等学校招生统一考试文科数学(新课标1卷)设A 、B 为曲线C :24x y =上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM BM ⊥,求直线AB 的方程.17.2017年全国普通高等学校招生统一考试文科数学(新课标2卷)设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .18.2017年全国普通高等学校招生统一考试文科数学(新课标3卷)在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.19.(2016新课标全国卷Ⅰ文科)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :22(0)y px p =>于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H . (Ⅰ)求OH ON;(Ⅱ)除H 以外,直线MH 与C 是否有其它公共点?说明理由.20.2015年全国普通高等学校招生统一考试文科数学(新课标Ⅱ)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,点在C 上(1)求C 的方程(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点,A B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.21.2019年全国统一高考数学试卷(文科)(新课标Ⅲ)已知曲线2:,2x C y D =,为直线12y上的动点,过D 作C 的两条切线,切点分别为,A B .(1)证明:直线AB 过定点: (2)若以50,2E ⎛⎫⎪⎝⎭为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程.22.2014年全国普通高等学校招生统一考试理科数学(全国Ⅱ卷带解析)设1F , 2F 分别是椭圆C : 22221(0)x y a b a b+=>>的左、右焦点, M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且15MN F N =,求a , b .23.2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ) 已知点,圆:,过点的动直线与圆交于两点,线段的中点为,为坐标原点.(1)求的轨迹方程;(2)当时,求的方程及的面积24.2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (1)求k 的取值范围;(2)若OM ON ⋅=12,其中O 为坐标原点,求|MN |.一、解答题1,2019年全国统一高考数学试卷(理科)(新课标Ⅲ)已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.【答案】(1)见详解;(2) 3或【分析】(1)可设11(,)A x y ,22(,)B x y ,1(,)2D t -然后求出A ,B 两点处的切线方程,比如AD :1111()2y x x t +=-,又因为BD 也有类似的形式,从而求出带参数直线AB 方程,最后求出它所过的定点.(2)由(1)得带参数的直线AB 方程和抛物线方程联立,再通过M 为线段AB 的中点,EM AB ⊥得出t 的值,从而求出M 坐标和EM 的值,12,d d 分别为点,D E 到直线AB的距离,则12d d ==,结合弦长公式和韦达定理代入求解即可.【详解】(1)证明:设1(,)2D t -,11(,)A x y ,则21112y x =. 又因为212y x =,所以y'x =.则切线DA 的斜率为1x , 故1111()2y x x t +=-,整理得112210tx y -+=. 设22(,)B x y ,同理得222210tx y -+=.11(,)A x y ,22(,)B x y 都满足直线方程2210tx y -+=.于是直线2210tx y -+=过点,A B ,而两个不同的点确定一条直线,所以直线AB 方程为2210tx y -+=.即2(21)0tx y +-+=,当20,210x y =-+=时等式恒成立.所以直线AB 恒过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=, 于是2121212122,1,()121x x t x x y y t x x t +==-+=++=+212|||2(1)AB x x t =-==+.设12,d d 分别为点,D E 到直线AB的距离,则12d d ==.因此,四边形ADBE 的面积()(2121||32S AB d d t =+=+设M 为线段AB 的中点,则21,2M t t ⎛⎫+⎪⎝⎭, 由于EM AB ⊥,而()2,2EM t t =-,AB 与向量(1,)t 平行,所以()220t t t +-=,解得0t =或1t =±.当0t =时,3S =;当1t =±时S =因此,四边形ADBE 的面积为3或. 【点睛】此题第一问是圆锥曲线中的定点问题和第二问是求面积类型,属于常规题型,按部就班的求解就可以.思路较为清晰,但计算量不小. 2.2019年全国统一高考数学试卷(理科)(新课标Ⅰ) 已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |. 【答案】(1)12870x y --=;(2【分析】(1)设直线l :32y x m =+,()11,A x y ,()22,B x y ;根据抛物线焦半径公式可得1252x x +=;联立直线方程与抛物线方程,利用韦达定理可构造关于m 的方程,解方程求得结果;(2)设直线l :23x y t =+;联立直线方程与抛物线方程,得到韦达定理的形式;利用3AP PB =可得123y y =-,结合韦达定理可求得12y y ;根据弦长公式可求得结果. 【详解】(1)设直线l 方程为:32y x m =+,()11,A x y ,()22,B x y 由抛物线焦半径公式可知:12342AF BF x x +=++= 1252x x ∴+= 联立2323y x m y x ⎧=+⎪⎨⎪=⎩得:()229121240x m x m +-+= 则()2212121440m m ∆=--> 12m ∴<121212592m x x -∴+=-=,解得:78m =-∴直线l 的方程为:3728y x =-,即:12870x y --= (2)设(),0P t ,则可设直线l 方程为:23x y t =+联立2233x y t y x⎧=+⎪⎨⎪=⎩得:2230y y t --= 则4120t ∆=+> 13t ∴>-122y y ∴+=,123y y t =-3AP PB = 123y y ∴=- 21y ∴=-,13y = 123y y ∴=-则AB ===【点睛】本题考查抛物线的几何性质、直线与抛物线的综合应用问题,涉及到平面向量、弦长公式的应用.关键是能够通过直线与抛物线方程的联立,通过韦达定理构造等量关系. 3.2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ)已知点A (0,-2),椭圆E :22221x y a b += (a >b >0)的离心率为2,F 是椭圆E 的右焦点,直线AF ,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程.【答案】(1)2214x y += (2)2y x =-【解析】试题分析:设出F ,由直线AFc ,结合离心率求得a ,再由隐含条件求得b ,即可求椭圆方程;(2)点l x ⊥轴时,不合题意;当直线l 斜率存在时,设直线:2l y kx =-,联立直线方程和椭圆方程,由判别式大于零求得k 的范围,再由弦长公式求得PQ ,由点到直线的距离公式求得O 到l 的距离,代入三角形面积公式,化简后换元,利用基本不等式求得最值,进一步求出k 值,则直线方程可求. 试题解析:(1)设(),0F c ,因为直线AF,()0,2A -所以23c =,c =又222,2c b a c a ==- 解得2,1a b ==,所以椭圆E 的方程为2214x y +=.(2)解:设()()1122,,,P x y Q x y 由题意可设直线l 的方程为:2y kx =-,联立221{42,x y y kx +==-,消去y 得()221416120k x kx +-+=,当()216430k ∆=->,所以234k >,即k <或k > 1212221612,1414k x x x x k k+==++. 所以PQ ==214k =+ 点O 到直线l的距离d =所以12OPQS d PQ ∆==0t =>,则2243k t =+,244144OPQ t S t t t∆==≤=++, 当且仅当2t =2=,解得k =时取等号, 满足234k >所以OPQ ∆的面积最大时直线l的方程为:2y x =-或2y x =-. 【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用均值不等式法求三角形最值的.4.2015年全国普通高等学校招生统一考试理科数学(新课标Ⅱ)已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.【答案】(Ⅰ)详见解析;(Ⅱ)能,47-或47+. 【解析】试题分析:(1)设直线:l y kx b =+(0,0)k b ≠≠,直线方程与椭圆方程联立,根据韦达定理求根与系数的关系,并表示直线OM 的斜率,再表示;(2)第一步由 (Ⅰ)得OM 的方程为9y x k=-.设点P 的横坐标为P x ,直线OM 与椭圆方程联立求点P 的坐标,第二步再整理点的坐标,如果能构成平行四边形,只需,如果有值,并且满足0k >,3k ≠的条件就说明存在,否则不存在.试题解析:解:(1)设直线:l y kx b =+(0,0)k b ≠≠,11(,)A x y ,22(,)B x y ,(,)M M M x y .∴由2229y kx b x y m=+⎧⎨+=⎩得2222(9)20k x kbx b m +++-=, ∴12229M x x kbx k +==-+,299M M b y kx b k =+=+. ∴直线OM 的斜率9M OM M y k x k==-,即9OM k k ⋅=-. 即直线OM 的斜率与l 的斜率的乘积为定值9-. (2)四边形OAPB 能为平行四边形. ∵直线l 过点(,)3mm ,∴l 不过原点且与C 有两个交点的充要条件是0k >,3k ≠ 由 (Ⅰ)得OM 的方程为9y x k=-.设点P 的横坐标为P x . ∴由2229,{9,y x k x y m =-+=得,即将点(,)3m m 的坐标代入直线l 的方程得(3)3m k b -=,因此2(3)3(9)M mk k x k -=+.四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即2P M x x = 239k =+2(3)23(9)mk k k -⨯+.解得147k =247k =.∵0,3i i k k >≠,1i =,2,∴当l 的斜率为47-或47+时,四边形OAPB 为平行四边形. 考点:直线与椭圆的位置关系的综合应用【一题多解】第一问涉及中点弦,当直线与圆锥曲线相交时,点是弦的中点,(1)知道中点坐标,求直线的斜率,或知道直线斜率求中点坐标的关系,或知道求直线斜率与直线OM 斜率的关系时,也可以选择点差法,设,,代入椭圆方程,两式相减,化简为,两边同时除以得,而,,即得到结果,(2)对于用坐标法来解决几何性质问题,那么就要求首先看出几何关系满足什么条件,其次用坐标表示这些几何关系,本题的关键就是如果是平行四边形那么对角线互相平分,即2P M x x =,分别用方程联立求两个坐标,最后求斜率.5.2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ带解析)在直角坐标系xoy 中,曲线C :y=24x与直线(),0y kx a a =+>交与M,N 两点,(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由. 【答案】(Ⅰ0ax y a --=0ax y a ++=(Ⅱ)存在 【详解】试题分析:(Ⅰ)先求出M,N 的坐标,再利用导数求出M,N.(Ⅱ)先作出判定,再利用设而不求思想即将y kx a =+代入曲线C 的方程整理成关于x 的一元二次方程,设出M,N 的坐标和P 点坐标,利用设而不求思想,将直线PM ,PN 的斜率之和用a 表示出来,利用直线PM ,PN 的斜率为0,即可求出,a b 关系,从而找出适合条件的P 点坐标. 试题解析:(Ⅰ)由题设可得(2,)M a a ,(2,)N a -,或(22,)M a -,,)N a a .∵12y x '=,故24x y =在x =2a a C 在(22,)a a 处的切线方程为(2)y a a x a -=-,即0ax y a --=.故24x y =在x =-22a 处的导数值为-a ,C 在(22,)a a -处的切线方程为(2)y a a x a -=-+,即0ax y a ++=.故所求切线方程为0ax y a --=或0ax y a ++=. (Ⅱ)存在符合题意的点,证明如下:设P (0,b )为复合题意得点,11(,)M x y ,22(,)N x y ,直线PM ,PN 的斜率分别为12,k k . 将y kx a =+代入C 得方程整理得2440x kx a --=. ∴12124,4x x k x x a +==-. ∴121212y b y b k k x x --+=+=1212122()()kx x a b x x x x +-+=()k a b a+.当=-b a 时,有12k k +=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM=∠OPN ,所以(0,)P a -符合题意.考点:抛物线的切线;直线与抛物线位置关系;探索新问题;运算求解能力 6.2016年全国普通高等学校招生统一考试文科数学(新课标3) 已知抛物线:的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点.(Ⅰ)若在线段上,是的中点,证明;(Ⅱ)若的面积是的面积的两倍,求中点的轨迹方程.【答案】(Ⅰ)见解析;(Ⅱ).【解析】试题分析:设的方程为.(1)由在线段上,又;(2)设与轴的交点为(舍去),.设满足条件的的中点为.当与轴不垂直时.当与轴垂直时与重合所求轨迹方程为.试题解析:由题设,设,则,且.记过两点的直线为,则的方程为.............3分(1)由于在线段上,故,记的斜率为的斜率为,则,所以..................5分(2)设与轴的交点为,则,由题设可得,所以(舍去),.设满足条件的的中点为.当与轴不垂直时,由可得.而,所以.当与轴垂直时,与重合,所以,所求轨迹方程为.........12分考点:1.抛物线定义与几何性质;2.直线与抛物线位置关系;3.轨迹求法.7.2016年全国普通高等学校招生统一考试理科数学(新课标2卷)已知椭圆E:2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为k (k > 0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (Ⅰ)当t=4,AM AN =时,求△AMN 的面积; (Ⅱ)当2AM AN =时,求k 的取值范围. 【答案】(Ⅰ)14449;(Ⅱ))2.【解析】试题分析:(Ⅰ)先求直线AM 的方程,再求点M 的纵坐标,最后求AMN 的面积;(Ⅱ)设()11,M x y ,写出A 点坐标,并求直线AM 的方程,将其与椭圆方程组成方程组,消去y ,用,t k 表示1x ,从而表示AM ,同理用,t k 表示AN ,再由2AM AN =及t 的取值范围求k 的取值范围.试题解析:(Ⅰ)设()11,M x y ,则由题意知10y >,当4t =时,E 的方程为22143x y +=,()2,0A -.由已知及椭圆的对称性知,直线AM 的倾斜角为4π.因此直线AM 的方程为2y x =+. 将2x y =-代入22143x y +=得27120y y -=.解得0y =或127y =,所以1127y =.因此AMN 的面积AMNS11212144227749=⨯⨯⨯=.(Ⅱ)由题意3t >,0k >,()A .将直线AM的方程(y k x =代入2213x y t +=得()22222330tk xx t k t +++-=.由(221233t k tx tk -⋅=+得)21233tk x tk-=+,故1AM x =+=.由题设,直线AN 的方程为(1y x k =-+,故同理可得AN ==,由2AM AN =得22233k tk k t=++,即()()32321k t k k -=-. 当32k =时上式不成立,因此()33212k k t k -=-.3t >等价于()()232332122022k k k k k k k -+-+-=<--, 即3202k k -<-.由此得320{20k k ->-<,或320{20k k -<->,解得322k <<. 因此k 的取值范围是()32,2.【考点】椭圆的性质,直线与椭圆的位置关系【名师点睛】由直线(系)和圆锥曲线(系)的位置关系,求直线或圆锥曲线中某个参数(系数)的范围问题,常把所求参数作为函数值,另一个元作为自变量求解.8.2016年全国普通高等学校招生统一考试理科数学(新课标1卷) 设圆的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围. 【答案】(Ⅰ)答案见解析;(Ⅱ).【解析】试题分析:(Ⅰ)利用椭圆定义求方程;(Ⅱ)把面积表示为关于斜率k 的函数,再求最值。

圆锥曲线问题在高考的常见题型及解题技巧

圆锥曲线问题在高考的常见题型及解题技巧

圆锥曲线问题在高考的常见题型及解题技巧圆锥曲线作为高等数学中的重要内容,在高考中常常出现,并且是考察学生数学运算能力和理解能力的重要方面。

圆锥曲线问题在高考中的常见题型有:直线与圆锥曲线的交点问题、圆锥曲线的参数方程问题、圆锥曲线的性质和应用问题等。

下面我们来一一介绍这些常见题型的解题技巧。

一、直线与圆锥曲线的交点问题这是圆锥曲线问题中最常见的一个题型,题目通常要求求出直线与圆锥曲线的交点坐标。

解题技巧如下:1. 分析题目给出的直线和圆锥曲线,确定直线方程和圆锥曲线方程;2. 将直线方程代入圆锥曲线方程中,解方程得出交点坐标;3. 特别要注意,当圆锥曲线为椭圆或双曲线时,有两个交点,需要分别求解;4. 当圆锥曲线为抛物线时,还需要注意直线的位置与抛物线的开口方向。

二、圆锥曲线的参数方程问题圆锥曲线的参数方程问题通常考查学生对参数方程的理解和应用能力,解答这类问题的关键在于用参数代换替换变量。

解题技巧如下:1. 给出的圆锥曲线通常可以用参数方程表示,将已知的参数方程代入题目求解;2. 注意参数方程的参数范围,有时需要根据范围重新调整参数;3. 对于给出的参数方程,需要将参数代换替换变量,进而得出答案。

三、圆锥曲线的性质和应用问题圆锥曲线的性质和应用问题通常要求学生掌握圆锥曲线的基本性质,以及如何应用这些性质解决实际问题。

解题技巧如下:1. 需要牢记圆锥曲线的基本性质,例如椭圆的焦点、双曲线的渐近线等;2. 掌握各种类型圆锥曲线的标准方程和参数方程;3. 对于应用问题,需要在掌握了基本性质的前提下,将问题转化为数学模型,进而解决。

以上就是圆锥曲线问题在高考中的常见题型及解题技巧,希望对大家备战高考有所帮助。

在复习期间,建议大家多做练习题,加深对圆锥曲线知识的理解,提高解题能力。

多思考,灵活运用各种解题技巧,相信大家一定能在高考中取得好成绩!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(一)难度、分值及考查内容:
1. 难度:难.
2. 分值:12分(以课标全国卷为例).
3.考查内容:
(1)第一问较简单,一般为基本量的求解,例如椭圆方程中的a,b, c,e等,
也会有求某个动点的轨迹方程问题.
(2)后面的小题为综合题,通常考查圆锥曲线的面积问题、存在性、范围等综合
问题,或者与向量等知识相结合,涉及直线与圆锥曲线相交问题,与圆锥曲线相关的最值问题,定值问题等等.
通常圆锥曲线解答题,考查载体较多为椭圆或抛物线.
(二)解题模板(理科):
基本量的求解非常简单,弄清圆锥曲线中的相关概念,有的根据题意可以直接得出,有的建立等量关系即可求出.以下先看轨迹方程的求解.
模板一:轨迹方程的求解
第一步:建系设点,依题意建立适当的坐标系,设出动点坐标,例如M(x,y).
第二步:明确点M的变化因素,利用距离、斜率、中点等题目中的要求列出等量关系,注意联系所学过的曲线定义.
第三步:列出与M坐标(x,y)相关的等量关系后,得到关于x,y的方程,化简方程为最简形式.
第四步:检验特殊点是否均满足所求轨迹方程.
常见求轨迹方程方法有:定义法、直接法、相关点法、参数法、交轨法等.
练习:【2016年全国Ⅲ理,20,12分】分已知抛物线:的焦点为,平行于轴的两条直线分别
交于两点,交的准线于两点.
(Ⅰ)若在线段上,是的中点,证明;
(Ⅱ)若的面积是的面积的两倍,求中点的轨迹方程.
模板二:求参数的范围问题
第一步:联立方程,联立直线方程和圆锥曲线方程,消y后得到关于x的一元二次方程,利用韦达定理或弦长公式写出结论备用.
第二步:找不等关系:从题设条件中提取不等关系式.
第三步:列出所要求的参数相关的不等式,解不等式.
第四步:根据不等式的解集,并结合圆锥曲线中几何量的范围得到所求参数的取值范围.
注意特殊位置的取值要考虑到.
第五步:回顾检查,注意目标变量的范围所受题中其他因素的制约.
练习:【2016课标全国Ⅱ理,20,12分】已知椭圆的焦点在轴上,是的左顶点,斜率为的直线交于两点,点在上,.
(Ⅰ)当时,求的面积;
(Ⅱ)当时,求的取值范围.
模板三:最值、定值问题
圆锥曲线中,某些几何量在特定的关系结构中,不受相关变元的制约而恒定不变,则称定值问题,其解题步骤:
1.把相关几何量的变元特殊化,在特例中求出几何量的定值,再证明结论与特定状态无
关;
2.把相关几何量用曲线系里的参变量表示,再证明结论与所求参数无关.
最值问题步骤:
第一步:从特殊入手,求出定点或定值,再证明这个点(值)与变量无关,也可以在推理、计算过程中消去变量,直接得到定点(或定值).
第二步:建立目标函数求最值:先建立目标函数,再使用配方法、判别式法、三角函数值域法、基本不等式法、向量法等去确定目标函数的最值,这是解最值问题的“通法”,具有普遍性.
练习:【2016课标全国Ⅰ,20,12分】设圆
222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (Ⅰ)证明EA EB +为定值,并写出点E 的轨迹方程; (Ⅱ)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.
模板四:解析几何中的探索性问题
第一步:先假定,假设结论成立.
第二步:再推理,以假设结论成立为条件,进行推理求解.
第三步:下结论,若推出合理结果,经验证成立则肯定假设;
若推出矛盾则否定假设.
第四步:回顾,查看关键点,易错点(特殊情况、隐含条件等),审视解题规范性.
练习:已知定点C (-1,0)及椭圆x 2+3y 2
=5,过点C 的动直线与椭圆相交于A ,B 两点.
(1)若线段AB 中点的横坐标是-12
,求直线AB 的方程; (2)在x 轴上是否存在点M ,使MA →·MB →为常数?若存在,求出点M 的坐标;若不存在,请说
明理由.
答案:
(2)假设在x 轴上存在点M (m,0),使MA →·MB →为常数.
(ⅰ)当直线AB 与x 轴不垂直时,由(1)知x 1+x 2=-6k 23k 2+1,x 1x 2=3k 2-53k 2+1
. ③ 所以MA →·MB →=(x 1-m )(x 2-m )+y 1y 2=(x 1-m )(x 2-m )+k 2 (x 1+1)(x 2+1)
=(k 2+1)x 1x 2+(k 2-m )(x 1+x 2)+k 2+m 2.
将③代入,整理得MA →·MB →=6m -1k 2-53k 2+1+m 2 =⎝ ⎛⎭
⎪⎫2m -133k 2+1-2m -1433k 2+1+m 2
=m 2+2m -13-6m +1433k 2+1
.
注意到MA →·MB →是与k 无关的常数,从而有6m +14=0,m =-73
, 此时MA →·MB →=49
. (ⅱ)当直线AB 与x 轴垂直时,此时点A 、B 的坐标分别为⎝ ⎛⎭⎪⎫-1,
23、⎝ ⎛⎭⎪⎫-1,-23, 当m =-73时,也有MA →·MB →=49
. 综上,在x 轴上存在定点M ⎝ ⎛⎭
⎪⎫-73,0,使MA →·MB →为常数.。

相关文档
最新文档