(完整版)圆锥曲线历年高考题ti
全国卷高考数学圆锥曲线大题(带答案)

全国卷高考数学圆锥曲线大题(带答案)1. 如图,直线l 1与l 2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l 1上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l 1上的射影点是N ,且|BN|=2|DM|.(Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程.(Ⅱ)过点D 且不与l 1、l 2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足:①(R);AG AD λλ=∈②2;GE GF GH +=③0.GH EF ⋅= 求点G 的横坐标的取值范围.2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率23=e ,已知点)3,0(P 到这个椭圆上的点的最远距离是4,求这个椭圆的方程.3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是,425=x 其左、右顶点分别 是A 、B ;双曲线1:22222=-b y a x C 的一条渐近线方程为3x -5y=0.(Ⅰ)求椭圆C1的方程及双曲线C2的离心率;(Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB并延长交椭圆C1于点N,若=. 求证:.0=•4. 椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为αa.(1)用半焦距c表示椭圆的方程及tanα;(2)若2<tanα<3,求椭圆率心率e的取值范围.5. 已知椭圆2222byax+(a>b>0)的离心率36=e,过点A(0,-b)和B(a,0)的直线与原点的距离为23(1)求椭圆的方程(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C D两点问:是否存在k的值,使以CD为直径的圆过E点?请说明理由6. 在直角坐标平面中,ABC ∆的两个顶点B A ,的坐标分别为)0,1(-A ,)0,1(B ,平面内两点M G ,同时满足下列条件: ①0=++GC GB GA MCMB MA ==GM ∥AB(1)求ABC ∆的顶点C 的轨迹方程;(2)过点)0,3(P 的直线l 与(1)中轨迹交于F E ,两点,求PF PE ⋅的取值范围7. 设R y x ∈,,j i,为直角坐标平面内x 轴.y 轴正方向上的单位向量,若jy i x b j y i x a)2(,)2(-+=++=,且8||||=+b a(Ⅰ)求动点M(x,y)的轨迹C 的方程;(Ⅱ)设曲线C 上两点A .B ,满足(1)直线AB 过点(0,3),(2)若OB OA OP +=,则OAPB 为矩形,试求AB 方程.8. 已知抛物线C :)0,0(),(2>≠+=n m n x m y 的焦点为原点,C 的准线与直线 )0(02:≠=+-k k y kx l 的交点M 在x 轴上,l 与C 交于不同的两点A 、B ,线段AB 的垂直平分线交x 轴于点N (p ,0).(Ⅰ)求抛物线C 的方程; (Ⅱ)求实数p 的取值范围;(Ⅲ)若C 的焦点和准线为椭圆Q 的一个焦点和一条准线,试求Q 的短轴的端点的轨迹方程.9. 如图,椭圆的中心在原点,长轴AA 1在x 轴上.以A 、A 1为焦点的双曲线交椭圆于C 、D 、D 1、C 1四点,且|CD|=21|AA 1|.椭圆的一条弦AC 交双曲线于E ,设λ=EC AE ,当4332≤≤λ时,求双曲线的离心率e 的取值范围.x10. 已知三角形ABC 的三个顶点均在椭圆805422=+y x 上,且点A 是椭圆短轴的一个端点(点A 在y 轴正半轴上).若三角形ABC 的重心是椭圆的右焦点,试求直线BC 的方程; 若角A 为090,AD 垂直BC 于D ,试求点D 的轨迹方程.11. 如图,过抛物线24x y =的对称轴上任一点(0,)(0)P m m >作直线与抛物线交于,A B两点,点Q 是点P 关于原点的对称点.(1) 设点P 分有向线段AB 所成的比为λ,证明:()QP QA QB λ⊥-;(2) 设直线AB 的方程是2120x y -+=,过,A B 两点的圆C 与抛物线在点A 处有共同的切线,求圆C 的方程.12. 已知动点P (p ,-1),Q (p ,212p +),过Q 作斜率为2p 的直线l ,P Q 中点M 的轨迹为曲线C.(1)证明:l 经过一个定点而且与曲线C 一定有两个公共点; (2)若(1)中的其中一个公共点为A ,证明:AP 是曲线C 的切线; (3)设直线AP 的倾斜角为α,AP 与l 的夹角为β,证明:βα+或βα-是定值.13. 在平面直角坐标系内有两个定点12F F 、和动点P ,12F F 、坐标分别为)0,1(1-F 、)0,1(F 2,动点P 满足22|PF ||PF |21=,动点P 的轨迹为曲线C ,曲线C 关于直线y x =的对称曲线为曲线'C ,直线3-+=m x y 与曲线'C 交于A 、B 两点,O 是坐标原点,△ABO 的面积为7,(1)求曲线C 的方程;(2)求m 的值。
(word完整版)圆锥曲线高考题及答案

数学圆锥曲线测试高考题选讲4=1的一条渐近线方程为X ,则双曲线的离心率为(b23B 、C 在椭圆彳+ y 2 = 1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ ABC 的周长是、填空题:2 29. (2006全国卷I )双曲线 mx y10. (2006上海卷)已知在平面直角坐标系 xOy 中的一个椭圆,它的中心在原点,左焦点为F ( \ 3,0)右顶点为D (2,0)、选择题: 1. (2006全国II )已知双曲线x2 y2 a25 (A )34(B)35 (C)4(D )32. (2006全国II )已知△ ABC 的顶点(A ) 2 3(B )(C ) 4 3 (D ) 123.( 2006全国卷I )抛物线y 2x 上的点到直线4x 3y 80距离的最小值是(B.C. 854. (2006广东高考卷) 已知双曲线 3x 2 y 2 9,则双曲线右支上的点P 到右焦点的距离与点 P 到右准线的距离之比5. 等于( A. 2) 2 2B.3C. 2D. 4(2006辽宁卷)方程 2x 25x 0的两个根可分别作为(A. —椭圆和一双曲线的离心率C. 一椭圆和一抛物线的离心率E.两抛物线的离心率 D.两椭圆的离心率6. x 2 (2006辽宁卷)曲线10 mx 21(m6)与曲线5 -1(5 m 9)的( ) m7.8. (A )焦距相等 (B )离心率相等(C )焦点相同(D )准线相同2(2006安徽高考卷)若抛物线 y2px 的焦点与椭圆2y_ 21的右焦点重合,贝U p 的值为(B . 2C. 4 (2006辽宁卷)直线y 2k 与曲线9k 2x 2 y 2 18k 2(k R,且k 0)的公共点的个数为((A)1(B)2(C)3(D)41的虚轴长是实轴长的 2倍,则m标为(2, 0), AM 为/ F 1AF 2的角平分线•则|AF 2| =三、解答题:15•已知抛物线关于y 轴对称,它的顶点在坐标原点,并且经过点20,椭圆C:二 y 2 1 , F 1,F 2分别为椭圆C 的左、右焦点。
圆锥曲线十年高考题(带详细解析)

答案解析1将方程a 2x 2+b 2y 2=1与ax +by 2=0转化为标准方程:x b ay b y a x -==+22222,111.因为a >b >0,因此,ab 11>>0,所以有:椭圆的焦点在y 轴,抛物线的开口向左,得D 选项. 4.答案:B 2.答案:D ∵θ∈(0,4π),∴sin θ∈(0,22),∴a 2=tan θ,b 2=c ot θ∴c 2=a 2+b 2=tan θ+c ot θ,∴e 2=θθθθ222sin 1tan cot tan =+=a c ,∴e =θsin 1,∴e ∈(2,+∞) 3.答案:D 由双曲线方程判断出公共焦点在x 轴上∴椭圆焦点(2253n m -,0),双曲线焦点(2232n m +,0)∴3m 2-5n 2=2m 2+3n 2∴m 2=8n 2又∵双曲线渐近线为y =±||2||6m n ⋅²x∴代入m 2=8n 2,|m |=22|n |,得y =±43x 4答案:C 由F 1、F 2的坐标得2c =3-1,c =1,又∵椭圆过原点a -c =1,a =1+c =2,又∵e =21=a c ,∴选C. 5.答案:D 由题意知a =2,b =1,c =3,准线方程为x =±ca 2,∴椭圆中心到准线距离为6.答案:C 渐近线方程为y =±b a x ,由b a ²(-ba )=-1,得a 2=b 2,∴c =2a ,14.答案:B y =-x 2的标准式为x 2=-y ,∴p =21,焦点坐标F (0,-41). 7.答案:A 不妨设F 1(-3,0),F 2(3,0)由条件得P (3,±23),即|PF 2|=23,|PF 1|=2147,因此|PF 1|=7|PF 2|,故选A.8.答案:A 将已知椭圆中的x 换成-y ,y 换成-x 便得椭圆C 的方程为9)3(4)2(22+++y x=1,所以选A.9.答案:A 由已知有⇒⎪⎪⎩⎪⎪⎨⎧==2142a c c a a =2,c =1,b 2=3,于是椭圆方程为3422y x +=1, 10.答案:C 如图8—14,原点O 逆时针方向旋转90°到O ′,则O ′(-4,4)为旋转后椭圆的中心,故旋转后所得椭圆方程为25)4(9)4(22-++y x =1.所以选C. 11.答案:B 把已知方程化为25)1(9)3(22++-y x =1,∴a =5,b =3,c =4 ∵椭圆的中心是(3,-1),∴焦点坐标是(3,3)和(3,-5).12.答案:A 由已知,直线l 的方程为ay +bx -ab =0,原点到直线l 的距离为43c ,则有c b a ab 4322=+,又c 2=a 2+b 2,∴4ab =3c 2,两边平方,得16a 2(c 2-a 2)=3c 4,两边同除以a 4,并整理,得3e 4-16e 2+16=0∴e 2=4或e 2=34.而0<a <b ,得e 2=222221ab a b a +=+>2,∴e 2=4.故e =2.13.答案:D ,得2)cos 2(2θ-x +(y +sin θ)2=1.∴椭圆中心的坐标是(2cos θ,-sinθ).其轨迹方程是⎩⎨⎧-==θθsin cos 2y x θ∈[0,2π].即22x +y 2=1(0≤x ≤2,-1≤y ≤0).30.答案:C 将双曲线方程化为标准形式为x 2-32y=1,其焦点在x 轴上,且a =1,b =3,故其渐近线方程为y =±abx =±3x ,所以应选C.14.答案:D 原方程可变为ky x 2222+=1,因为是焦点在y 轴的椭圆,所以⎪⎩⎪⎨⎧>>220k k ,解此不等式组得0<k <1,因而选D.15.答案:A 解法一:由双曲线方程知|F 1F 2|=25,且双曲线是对称图形,假设P (x ,142-x ),由已知F 1P ⊥F 2 P ,有151451422-=+-⋅--x x x x ,即1145221,52422=-⋅⋅==x S x ,因此选A.16.答案:23因为F 1、F 2为椭圆的焦点,点P 在椭圆上,且正△POF 2的面积为3,所以S =21|OF 2|²|PO |sin60°=43c 2,所以c 2=4.∴点P 的横、纵坐标分别为23,2c c ,即P (1,3)在椭圆上,所以有2231b a +=1,又b 2+c 2=a 2,⎩⎨⎧+==+22222243ba b a a b17.答案:(3,2)解法一:设直线y =x -1与抛物线y 2=4x 交于A (x 1,y 1),B (x 2,y 2),其中点为P (x 0,y 0).由题意得⎩⎨⎧=-=xy x y 412,(x -1)2=4x ,x 2-6x +1=0.∴x 0=221x x +=3.y 0=x 0-1=2.∴P (3,2). 18.答案:1625)2(22y x +- =1由两焦点坐标得出椭圆中心为点(2,0),焦半径c =3 ∵长轴长为10,∴2a =10,∴a =5,∴b =22c a -=4∴椭圆方程为1625)2(22y x +-=1 19答案:(±7,0)由双曲线方程得出其渐近线方程为y =±2m x ∴m =3,求得双曲线方程为3422y x -=1,从而得到焦点坐标. 20.答案:(2,1)抛物线(y -1)2=4(x -1)的图象为抛物线y 2=4x 的图象沿坐标轴分别向右、向上平移1个单位得来的.∵抛物线y 2=4x 的焦点为(1,0)∴抛物线(y -1)2=4(x -1)的焦点为(2,1)21.答案:-1椭圆方程化为x 2+ky 52-=1∵焦点(0,2)在y 轴上,∴a 2=k -5,b 2=1又∵c 2=a 2-b 2=4,∴k =-122答案:x 2-4y 2=1设P (x 0,y 0) ∴M (x ,y )∴2,200y y x x == ∴2x =x 0,2y =y 0∴442x -4y 2=1⇒x 2-4y 2=1 23.答案:516设|PF 1|=M ,|PF 2|=n (m >n )a =3 b =4 c =5∴m -n =6 m 2+n 2=4c 2 m 2+n 2-(m -n )2=m 2+n 2-(m 2+n 2-2mn )=2mn =4³25-36=64 mn =32.又利用等面积法可得:2c ²y =mn ,∴y =516 24.答案:16922y x -=1由已知a =3,c =5,∴b 2=c 2-a 2=16又顶点在x 轴,所以标准方程为16922y x -=1. 25.解:(1)椭圆C 的焦点在x 轴上,由椭圆上的点A 到F 1、F 2两点的距离之和是4,得2a =4,即a =2.又点A (1,23)在椭圆上,因此222)23(21b +=1得b 2=3,于是c 2=1.所以椭圆C 的方程为3422y x +=1,焦点F 1(-1,0),F 2(1,0). (2)设椭圆C 上的动点为K (x 1,y 1),线段F 1K 的中点Q (x ,y )满足:2,2111yy x x =+-=, 即x 1=2x +1,y 1=2y . 因此3)2(4)12(22y x ++=1.即134)21(22=++y x 为所求的轨迹方程.(3)类似的性质为:若M 、N 是双曲线:2222by a x -=1上关于原点对称的两个点,点P 是双曲线上任意一点,当直线PM 、PN 的斜率都存在,并记为k PM 、k PN 时,那么k PM 与k PN之积是与点P 位置无关的定值.设点M 的坐标为(m ,n ),则点N 的坐标为(-m ,-n ),其中2222bn a m -=1.又设点P 的坐标为(x ,y ),由mx ny k m x n y k PN PM++=--=,, 得k PM ²k PN =2222m x n y m x n y m x n y --=++⋅--,将22222222,ab n b x a b y =-=m 2-b 2代入得k PM ²k PN =22ab .26解:(1)设F 2(c ,0)(c >0),P (c ,y 0),则2222by a c -=1.解得y 0=±a b 2∴|PF 2|=a b 2在直角三角形PF 2F 1中,∠PF 1F 2=30°解法一:|F 1F 2|=3|PF 2|,即2c =ab 23将c 2=a 2+b 2代入,解得b 2=2a 2 解法二:|PF 1|=2|PF 2|由双曲线定义可知|PF 1|-|PF 2|=2a ,得|PF 2|=2a .∵|PF 2|=a b 2,∴2a =ab 2,即b 2=2a 2,∴2=a b故所求双曲线的渐近线方程为y =±2x .27.(Ⅰ)解:由椭圆定义及条件知2a =|F 1B |+|F 2B |=10,得a =5,又c =4所以b =22c a -=3.故椭圆方程为92522y x +=1. (Ⅱ)由点B (4,y B )在椭圆上,得|F 2B |=|y B |=59.(如图8—18) 因为椭圆右准线方程为x =425,离心率为54根据椭圆定义,有|F 2A |=54(425-x 1),|F 2C |=54(425-x 2)由|F 2A |,|F 2B |,|F 2C |成等差数列,得54(425-x 1)+54(425-x 2)=2³59由此得出x 1+x 2=8.设弦AC 的中点为P (x 0,y 0) 则x 0=28221=+x x =4. (Ⅲ)由A (x 1,y 1),C (x 2,y 2)在椭圆上,得⎪⎩⎪⎨⎧⨯=+⨯=+25925925925922222121y x y x 图8—18④⑤由④-⑤得9(x 12-x 22)+25(y 12-y 22)=0. 即)))(2(25)2(921212121x x y y y y x x --+++=0(x 1≠x 2) 将kx x y y y y y x x x 1,2,422121021021-=--=+==+(k ≠0)代入上式,得 9³4+25y 0(-k1)=0(k ≠0). 由上式得k =3625y 0(当k =0时也成立). 由点P (4,y 0)在弦AC 的垂直平分线上,得y 0=4k +m . 所以m =y 0-4k =y 0-925y 0=-916y 0. 由P (4,y 0)在线段BB ′(B ′与B 关于x 轴对称,如图8—18)的内部,得-59<y 0<59. 所以-516<m <516. 28.解法一:由已知|PF 1|+|PF 2|=6,|F 1F 2|=25,根据直角的不同位置,分两种情况:若∠PF 2F 1为直角,则|PF 1|2=|PF 2|2+|F 1F 2|2即|PF 1|2=(6-|PF 1|)2+20, 得|PF 1|=314,|PF 2|=34,故27||||21=PF PF ;若∠F 1PF 2为直角,则|F 1F 2|2=|PF 1|2+|PF 2|2,即20=|PF 1|2+(6-|PF 1|)2,得|PF 1|=4,|PF 2|=2,故||||21PF PF =2.29.证法一:依题设得椭圆的半焦距c =1,右焦点为F (1,0),右准线方程为x =2,点E 的坐标为(2,0),EF 的中点为N (23,0). 若AB 垂直于x 轴,则A (1,y 1),B (1,-y 1),C (2,-y 1),∴AC 中点为N (23,0),即AC 过EF 中点N .若AB 不垂直于x 轴,由直线AB 过点F ,且由BC ∥x 轴知点B 不在x 轴上,故直线AB 的方程为y =k (x -1),k ≠0.记A (x 1,y 1)和B (x 2,y 2),则(2,y 2)且x 1,x 2满足二次方程22x +k 2(x -1)2=1,即(1+2k 2)x 2-4k 2x +2(k 2-1)=0∴2221222121)1(2,214kk x x k k x x +-=+=+. 又x 12=2-2y 12<2,得x 1-23≠0,故直线AN 、CN 的斜率分别为 )1(2232,32)1(22322211111-=-=--=-=x k yk x x k x y k .∴k 1-k 2=2k ²32)32)(1()1(1121-----x x x x∵(x 1-1)-(x 2-1)(2x 1-3)=3(x 1+x 2)-2x 1x 2-4 =2211k+[12k 2-4(k 2-1)-4(1+2k 2)]=0, ∴k 1-k 2=0,即k 1=k 2.故A 、C 、N 三点共线.所以,直线AC 经过线段EF 的中点N .30.解:设椭圆C 的方程为12222=+b y a x ,由题意a =3,c =22,于是b =1.∴椭圆C 的方程为92x +y 2=1.由⎪⎩⎪⎨⎧=++=19222y x x y 得10x 2+36x +27=0, 因为该二次方程的判别式Δ>0,所以直线与椭圆有两个不同的交点, 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=518-, 故线段AB 的中点坐标为(51,59-).图8—22。
(完整版)圆锥曲线经典题目(含答案)

圆锥曲线经典题型一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.27.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=110.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)【解答】解:∵直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,∴1>b>0或b>1.∴e==>1且e≠.故选:D.2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.【解答】解:由题意,=(﹣﹣x0,﹣y0)•(﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.【解答】解:取PF2的中点A,则∵,∴⊥∵O是F1F2的中点∴OA∥PF1,∴PF1⊥PF2,∵|PF1|=3|PF2|,∴2a=|PF1|﹣|PF2|=2|PF2|,∵|PF1|2+|PF2|2=4c2,∴10a2=4c2,∴e=故选C.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.【解答】解:设F(c,0),则直线AB的方程为y=(x﹣c)代入双曲线渐近线方程y=﹣x得A(,﹣),由=2,可得B(﹣,﹣),把B点坐标代入双曲线方程﹣=1,即=1,整理可得c=a,即离心率e==.故选:C.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)【解答】解:∵双曲线渐近线为bx±ay=0,与圆(x﹣2)2+y2=2相交∴圆心到渐近线的距离小于半径,即∴b2<a2,∴c2=a2+b2<2a2,∴e=<∵e>1∴1<e<故选C.6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.2【解答】解:设F(c,0),渐近线方程为y=x,可得F到渐近线的距离为=b,即有圆F的半径为b,令x=c,可得y=±b=±,由题意可得=b,即a=b,c==a,即离心率e==,故选C.7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,又|PF1|=2|PF2|,得|PF2|=2a,|PF1|=4a;在RT△PF1F2中,|F1F2|2=|PF1|2+|PF2|2,∴4c2=16a2+4a2,即c2=5a2,则b2=4a2.即b=2a,双曲线=1一条渐近线方程:y=2x;故选:C.8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)【解答】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a2<b2,∴c2=a2+b2>4a2,∴e=>2故选:C.9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【解答】解:由双曲线的一条渐近线方程为y=x,可设双曲线的方程为x2﹣y2=λ(λ≠0),代入点P(2,),可得λ=4﹣2=2,可得双曲线的方程为x2﹣y2=2,即为﹣=1.故选:B.10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.【解答】解:由双曲线C:x2﹣=1的右焦点F(2,0),PF与x轴垂直,设(2,y),y>0,则y=3,则P(2,3),∴AP⊥PF,则丨AP丨=1,丨PF丨=3,∴△APF的面积S=×丨AP丨×丨PF丨=,同理当y<0时,则△APF的面积S=,故选D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是20.【解答】解:∵|PF1|+|QF1|=|PQ|=8∵双曲线x2﹣=1的通径为==8∵PQ=8∴PQ是双曲线的通径∴PQ⊥F1F2,且PF1=QF1=PQ=4∵由题意,|PF2|﹣|PF1|=2,|QF2|﹣|QF1|=2∴|PF2|+|QF2|=|PF1|+|QF1|+4=4+4+4=12∴△PF2Q的周长=|PF2|+|QF2|+|PQ|=12+8=20,故答案为20.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.【解答】解:取PF2的中点A,则∵,∴2•=0,∴,∵OA是△PF1F2的中位线,∴PF1⊥PF2,OA=PF1.由双曲线的定义得|PF1|﹣|PF2|=2a,∵|PF1|=|PF2|,∴|PF2|=,|PF1|=.△PF1F2中,由勾股定理得|PF1|2+|PF2|2=4c2,∴()2+()2=4c2,∴e=.故答案为:.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.【解答】解:(1)设F2,M的坐标分别为,因为点M在双曲线C上,所以,即,所以,在Rt△MF2F1中,∠MF1F2=30°,,所以…(3分)由双曲线的定义可知:故双曲线C的方程为:…(6分)(2)由条件可知:两条渐近线分别为…(8分)设双曲线C上的点Q(x0,y0),设两渐近线的夹角为θ,则点Q到两条渐近线的距离分别为,…(11分)因为Q(x0,y0)在双曲线C:上,所以,又cosθ=,所以=﹣…(14分)14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.【解答】(Ⅰ)解:由题知:a2+b2=2,曲线C2的离心率为…(2分)∵曲线C1的离心率是曲线C2的离心率的倍,∴=即a2=b2,…(3分)∴a=b=1,∴曲线C1的方程为x2﹣y2=1;…(4分)(Ⅱ)证明:由直线AB的斜率不能为零知可设直线AB的方程为:x=ny+…(5分)与双曲线方程x2﹣y2=1联立,可得(n2﹣1)y2+2ny+1=0设A(x1,y1),B(x2,y2),则y1+y2=﹣,y1y2=,…(7分)由题可设点C(,y2),由点斜式得直线AC的方程:y﹣y2=(x﹣)…(9分)令y=0,可得x===…(11分)∴直线AC过定点(,0).…(12分)15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.【解答】解:(Ⅰ)由题意可得e==,当P为右顶点时,可得PF取得最小值,即有c﹣a=﹣1,解得a=1,c=,b==,可得双曲线的方程为x2﹣=1;(Ⅱ)过点P(1,1)假设存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点.设R(x1,y1),T(x2,y2),可得x12﹣=1,x22﹣=1,两式相减可得(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2),由中点坐标公式可得x1+x2=2,y1+y2=2,可得直线l的斜率为k===2,即有直线l的方程为y﹣1=2(x﹣1),即为y=2x﹣1,代入双曲线的方程,可得2x2﹣4x+3=0,由判别式为16﹣4×2×3=﹣8<0,可得二次方程无实数解.故这样的直线l不存在.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.【解答】解:(Ⅰ)∵C:的离心率e=,且b=,∴=,且b=,∴a=1,c=∴双曲线C的方程;(Ⅱ)令|PE|=p,|PF|=q由双曲线定义:|p﹣q|=2a=2平方得:p2﹣2pq+q2=4•=0,∠EPF=90°,由勾股定理得:p2+q2=|EF|2=12所以pq=4即S=|PE|•|PF|=2.。
高考数学圆锥曲线专题练习及答案解析

X = —½距离为6,点P,Q是椭圆上的两个动点©
C
(1)求椭圆C的方程;
(2)若直线AP丄40,求证:直线P0过泄点R,并求出R点的坐标。
【例二・】已知一动圆经过点M(2,0),且在y轴上截得的弦长为4,设该动圆圆心的轨迹为曲 线C。
(1)求曲线C的方程;
(2)过点N(1,O)任意作两条互相垂直的直线∕1,∕2,分别交曲线C于不同的两点A,B和
的焦点,直线4F的斜率为少,O为坐标原点。
3
(1)求E方程;
(2)设过点A的直线/与E相交于PQ两点,当AOP0的面积最大时,求/的方
程。
专题练习
1•在平面直角坐标系XOy中,已知点A(O,—OB点在直线y = -3±, M点满足
MB//QA,莎•亦=屁•鬲M点的轨迹为曲线C。
(1)求C的方程:
(2)P为C上的动点,/为C在P点处的切线,求O点到/距离的最小值。
10.抛汤钱屮阿基来德三角形鲂纟见般质及疝用
11.(S傩曲钱屮的戒切後龜哩
锥曲线中的求轨迹方程问题
解题技巧
求动点的轨迹方程这类问题可难可易是高考中的髙频题型,求轨迹方程的主要方法有直译法、
相关点法、泄义法、参数法等。它们的解题步骤分别如下:
1.直译法求轨迹的步骤:
(1)设求轨迹的点为P(χ,y);
(2)由已知条件建立关于x,y的方程;
D,Q设线段ABQE的中点分别为几。・
①求证:直线P0过左点R,并求出泄点/?的坐标;
②求PGl的最小值。
专题练习
1.设椭圆E:丄y+ =y=l(α> b > 0)的右焦点到直线x-y + 2√z2=0的距离为3,且过点Cr Ir
I
(完整版)历年高考数学圆锥曲线试题汇总,推荐文档

A. ( 15 , 8) 33
B. ( 15 , 7) 3
C. ( 4 , 8) 33
D. ( 4 , 7) 3
37.圆心在 y 轴上,半径为 1,且过点(1,2)的圆的方程为( )
A. x2 ( y 2)2 1
B. x2 ( y 2)2 1
我C去. (人x 1也)2 就(y 有3)2 人1 !为UDR.扼x2 腕(y入 3)2站1内信不存在向你偶同意调剖沙
Dy 1 x 2
16.已知双曲线
x2 2
y2 2
1的准线过椭圆
x2 4
y2 b2
1的焦点,则直线
y
kx 2 与椭圆至多有一个
交点的充要条件是
A.
K
1 2
,
1 2
B.
K
,
1 2
1 2
,
C.
K
2 ,
2
2
2
D.
K ,
2 2
2 2
,
x2
17.已知双曲线
2
y2 b2
只有一个公共点,则双曲线的离心率为(
).
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙
Word 完美格式
5
A.
4
.
5
B. 5
C.
2
.
D. 5
7.设斜率为 2 的直线 l 过抛物线 y2 ax (a 0) 的焦点 F,且和 y 轴交于点 A,若△OAF(O 为坐标原点)
的面积为 4,则抛物线方程为( ).
.
.
(B) (x 1)2 ( y 1)2 2
(C) (x 1)2 ( y 1)2 2
(D) (x 1)2 ( y 1)2 2
高考数学理试题分类圆锥曲线(含答案及解析)

高考数学试题分类汇编:圆锥曲线(理科)一、选择题1、(2016年四川高考)设O 为坐标原点,P 是以F 为焦点的抛物线22(p 0)y px => 上任意一点,M 是线段上的点,且PM =2MF ,则直线的斜率的最大值为(A (B )23(C )2 (D )1【答案】C2、(2016年天津高考)已知双曲线2224=1x y b-(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A 、B 、C 、D 四点,四边形的的面积为2b ,则双曲线的方程为( )(A )22443=1y x -(B )22344=1y x -(C )2224=1x y b -(D )2224=11x y - 【答案】D3、(2016年全国I 高考)已知方程–=1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是(A )(–1,3) (B )(–1) (C )(0,3) (D )(0)【答案】A4、(2016年全国I 高考)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知,C 的焦点到准线的距离为(A )2 (B )4 (C )6 (D )8 【答案】B5、(2016年全国高考)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则( )(A )43- (B )34- (C (D )2 【答案】A6、(2016年全国高考)圆已知12,F F 是双曲线2222:1x y E a b-=的左,右焦点,点M 在E 上,1MF 与x 轴垂直,211sin 3MF F ∠=,则E 的离心率为( )(A (B )32(C (D )2【答案】A7、(2016年全国高考)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线经过的中 点,则C 的离心率为(A )13(B )12(C )23(D )34【答案】A8、(2016年浙江高考) 已知椭圆C 1:22x m 2=1(m >1)与双曲线C 2:22x n–y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1 【答案】A二、填空题1、(2016年北京高考)双曲线22221x y a b-=(0a >,0b >)的渐近线为正方形的边,所在的直线,点B 为该双曲线的焦点,若正方形的边长为2,则a =. 【答案】22、(2016年山东高考)已知双曲线E :22221x y a b-= (a >0,b >0),若矩形的四个顶点在E 上,,的中点为E 的两个焦点,且23,则E 的离心率是. 【答案】2【解析】由题意c 2=BC ,所以3c =AB ,于是点),23(c c 在双曲线E 上,代入方程,得1492222=b c -a c , 在由2c b a =+22得E 的离心率为2==ace ,应填2.3、(2016年上海高考)已知平行直线012:,012:21=++=-+y x l y x l ,则21,l l 的距离【答案】54、(2016年浙江高考)若抛物线y 2=4x 上的点M 到焦点的距离为10,则M 到y 轴的距离是. 【答案】9三、解答题1、(2016年北京高考) 已知椭圆C :22221+=x y a b(0a b >>)的离心率为2 ,(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1.(1)求椭圆C 的方程;(2)设P 的椭圆C 上一点,直线PA 与y 轴交于点M ,直线与x 轴交于点N. 求证:BM AN ⋅为定值.【解析】⑴由已知,112c ab a ==,又222a b c =+,解得2,1,a b c ===∴椭圆的方程为2214x y +=.⑵方法一:设椭圆上一点()00,P x y ,则220014x y +=.直线PA :()0022y y x x =--,令0x =,得0022M y y x -=-. ∴00212y BM x =+- 直线PB :0011y y x x -=+,令0y =,得001N x x y -=-. ∴0021x AN y =+- 0000000000220000000000221122222214448422x y AN BM y x x y x y x y x y x y x y x y x y ⋅=+⋅+--+-+-=⋅--++--+=--+将220014x y +=代入上式得=4AN BM ⋅故AN BM ⋅为定值.方法二:设椭圆 上一点()2cos ,sin P θθ,直线:()sin 22cos 2y x θθ=--,令0x =,得sin 1cos M y θθ=-. ∴sin cos 11cos BM θθθ+-=-直线PB :sin 112cos y x θθ-=+,令0y =,得2cos 1sin N x θθ=-. ∴2sin 2cos 21sin AN θθθ+-=-2sin 2cos 2sin cos 11sin 1cos 22sin 2cos 2sin cos 21sin cos sin cos 4AN BM θθθθθθθθθθθθθθ+-+-⋅=⋅----+=--+=故AN BM ⋅为定值.2、(2016年山东高考)平面直角坐标系xOy 中,椭圆C :()222210x y a b a b+=>> 的离心率是2,抛物线E :22x y =的焦点F 是C 的一个顶点.(I )求椭圆C 的方程;()设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交与不同的两点A ,B ,线段的中点为D ,直线与过P 且垂直于x 轴的直线交于点M . (i )求证:点M 在定直线上;()直线l 与y 轴交于点G ,记PFG △的面积为1S ,PDM △的面积为2S ,求12S S的最大值及取得最大值时点P 的坐标.【解析】(Ⅰ) 由离心率是23,有224=b a , 又抛物线y x 2=2的焦点坐标为)21,0(F ,所以21=b ,于是1=a , 所以椭圆C 的方程为1=4+22y x .(Ⅱ) (i )设P 点坐标为)0>(),2m m ,P 2m (, 由y x 2=2得x y =′,所以E 在点P 处的切线l 的斜率为m , 因此切线l 的方程为2=2m mx -y ,设),(),,(2211y x B y x A ,),(00y x D ,将2=2m mx -y 代入1=4+22y x ,得0=1+4)4+12322-m x m -x m (.于是23214+14=+m m x x ,232104+12=2+=m m x x x , 又)4+1(2=2=22200m -m m -mx y ,于是 直线OD 的方程为x m-y 41=. 联立方程x m -y 41=与m x =,得M 的坐标为)41M(m,-.所以点M 在定直线41=y -上.()在切线l 的方程为2=2m mx -y 中,令0=x ,得2m =y 2-,即点G 的坐标为)2m G (0,-2,又)2m P(m,2,)21F(0,, 所以4)1+(=×21=S 21m m GF m ;再由)1)+2(4m -m ,1+4m 2m D(2223,得 )1+4(8)1+2(=1+4+2×41+2×21=S 2222322m m m m m m m 于是有 222221)1+2()1+)(1+4(2=S S m m m . 令1+2=2m t ,得222111+2=)1+)(21(2=S S t -t t t t - 当21=1t时,即2=t 时,21S S 取得最大值49.此时21=2m ,22=m ,所以P 点的坐标为)41,22P(. 所以21S S 的最大值为49,取得最大值时点P 的坐标为)41,22P(.3、(2016年上海高考) 有一块正方形菜地EFGH ,EH 所在直线是一条小河,收货的蔬菜可送到F 点或河边运走。
(完整版)圆锥曲线经典题目(含答案)

圆锥曲线经典题型一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.27.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=110.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)【解答】解:∵直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,∴1>b>0或b>1.∴e==>1且e≠.故选:D.2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.【解答】解:由题意,=(﹣﹣x0,﹣y0)•(﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.【解答】解:取PF2的中点A,则∵,∴⊥∵O是F1F2的中点∴OA∥PF1,∴PF1⊥PF2,∵|PF1|=3|PF2|,∴2a=|PF1|﹣|PF2|=2|PF2|,∵|PF1|2+|PF2|2=4c2,∴10a2=4c2,∴e=故选C.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.【解答】解:设F(c,0),则直线AB的方程为y=(x﹣c)代入双曲线渐近线方程y=﹣x得A(,﹣),由=2,可得B(﹣,﹣),把B点坐标代入双曲线方程﹣=1,即=1,整理可得c=a,即离心率e==.故选:C.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)【解答】解:∵双曲线渐近线为bx±ay=0,与圆(x﹣2)2+y2=2相交∴圆心到渐近线的距离小于半径,即∴b2<a2,∴c2=a2+b2<2a2,∴e=<∵e>1∴1<e<故选C.6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.2【解答】解:设F(c,0),渐近线方程为y=x,可得F到渐近线的距离为=b,即有圆F的半径为b,令x=c,可得y=±b=±,由题意可得=b,即a=b,c==a,即离心率e==,故选C.7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,又|PF1|=2|PF2|,得|PF2|=2a,|PF1|=4a;在RT△PF1F2中,|F1F2|2=|PF1|2+|PF2|2,∴4c2=16a2+4a2,即c2=5a2,则b2=4a2.即b=2a,双曲线=1一条渐近线方程:y=2x;故选:C.8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)【解答】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a2<b2,∴c2=a2+b2>4a2,∴e=>2故选:C.9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【解答】解:由双曲线的一条渐近线方程为y=x,可设双曲线的方程为x2﹣y2=λ(λ≠0),代入点P(2,),可得λ=4﹣2=2,可得双曲线的方程为x2﹣y2=2,即为﹣=1.故选:B.10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.【解答】解:由双曲线C:x2﹣=1的右焦点F(2,0),PF与x轴垂直,设(2,y),y>0,则y=3,则P(2,3),∴AP⊥PF,则丨AP丨=1,丨PF丨=3,∴△APF的面积S=×丨AP丨×丨PF丨=,同理当y<0时,则△APF的面积S=,故选D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是20.【解答】解:∵|PF1|+|QF1|=|PQ|=8∵双曲线x2﹣=1的通径为==8∵PQ=8∴PQ是双曲线的通径∴PQ⊥F1F2,且PF1=QF1=PQ=4∵由题意,|PF2|﹣|PF1|=2,|QF2|﹣|QF1|=2∴|PF2|+|QF2|=|PF1|+|QF1|+4=4+4+4=12∴△PF2Q的周长=|PF2|+|QF2|+|PQ|=12+8=20,故答案为20.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.【解答】解:取PF2的中点A,则∵,∴2•=0,∴,∵OA是△PF1F2的中位线,∴PF1⊥PF2,OA=PF1.由双曲线的定义得|PF1|﹣|PF2|=2a,∵|PF1|=|PF2|,∴|PF2|=,|PF1|=.△PF1F2中,由勾股定理得|PF1|2+|PF2|2=4c2,∴()2+()2=4c2,∴e=.故答案为:.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.【解答】解:(1)设F2,M的坐标分别为,因为点M在双曲线C上,所以,即,所以,在Rt△MF2F1中,∠MF1F2=30°,,所以…(3分)由双曲线的定义可知:故双曲线C的方程为:…(6分)(2)由条件可知:两条渐近线分别为…(8分)设双曲线C上的点Q(x0,y0),设两渐近线的夹角为θ,则点Q到两条渐近线的距离分别为,…(11分)因为Q(x0,y0)在双曲线C:上,所以,又cosθ=,所以=﹣…(14分)14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.【解答】(Ⅰ)解:由题知:a2+b2=2,曲线C2的离心率为…(2分)∵曲线C1的离心率是曲线C2的离心率的倍,∴=即a2=b2,…(3分)∴a=b=1,∴曲线C1的方程为x2﹣y2=1;…(4分)(Ⅱ)证明:由直线AB的斜率不能为零知可设直线AB的方程为:x=ny+…(5分)与双曲线方程x2﹣y2=1联立,可得(n2﹣1)y2+2ny+1=0设A(x1,y1),B(x2,y2),则y1+y2=﹣,y1y2=,…(7分)由题可设点C(,y2),由点斜式得直线AC的方程:y﹣y2=(x﹣)…(9分)令y=0,可得x===…(11分)∴直线AC过定点(,0).…(12分)15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.【解答】解:(Ⅰ)由题意可得e==,当P为右顶点时,可得PF取得最小值,即有c﹣a=﹣1,解得a=1,c=,b==,可得双曲线的方程为x2﹣=1;(Ⅱ)过点P(1,1)假设存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点.设R(x1,y1),T(x2,y2),可得x12﹣=1,x22﹣=1,两式相减可得(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2),由中点坐标公式可得x1+x2=2,y1+y2=2,可得直线l的斜率为k===2,即有直线l的方程为y﹣1=2(x﹣1),即为y=2x﹣1,代入双曲线的方程,可得2x2﹣4x+3=0,由判别式为16﹣4×2×3=﹣8<0,可得二次方程无实数解.故这样的直线l不存在.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.【解答】解:(Ⅰ)∵C:的离心率e=,且b=,∴=,且b=,∴a=1,c=∴双曲线C的方程;(Ⅱ)令|PE|=p,|PF|=q由双曲线定义:|p﹣q|=2a=2平方得:p2﹣2pq+q2=4•=0,∠EPF=90°,由勾股定理得:p2+q2=|EF|2=12所以pq=4即S=|PE|•|PF|=2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题:
1.(2007安徽文)椭圆1422=+y x 的离心率为( )
(A )
23 (B )43 (C )22 (D )32
2.(2008上海文)设p 是椭圆2212516x y +=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于( )
A .4
B .5
C .8
D .10
3.(2005广东)若焦点在x 轴上的椭圆1
22
2=+m y x 的离心率为21,则m=( )
A .3
B .23
C .38
D .32
4.(2006全国Ⅱ卷文、理)已知△ABC 的顶点
B 、
C 在椭圆x 23
+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )
(A )2 3 (B )6 (C )4 3 (D )12
5.(2003北京文)如图,直线022:=+-y x l 过椭圆的左焦点F 1和 一个顶点B ,该椭圆的离心率为( )
A .51
B .52
C .55
D .552
6.(2002春招北京文、理)已知椭圆的焦点是
F 1、F 2、P 是椭圆上的一个动点.如果延
长F 1P 到Q ,使得|PQ|=|PF 2|,那么动点Q
的轨迹是( )
(A )圆 (B )椭圆
(C )双曲线的一支 (D )抛物线
7.(2004福建文、理)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是( )
(A )32 (B )
33 (C )22 (D )23
8.(2007重庆文)已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线043=++y x 有且仅有一个交点,则椭圆的长轴长为( )
(A )23 (B )62 (C )72 (D )24
二、填空题:
9.(2008全国Ⅰ卷文)在ABC △中,90A ∠=o ,3tan 4B =.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .
10.(2006上海理)已知椭圆中心在原点,一
个焦点为F (-23,0),且长轴长是短轴长的2倍,则该椭圆的标准方程
是 .
11.(2007江苏)在平面直角坐标系xOy 中,已知ABC ∆顶点(4,0)A -和(4,0)C ,顶点B 在椭
圆192522=+y x 上,则sin sin sin A C B += .
12.(2001春招北京、内蒙、安徽文、理)椭
圆
4422=+y x 长轴上一个顶点为A ,以A 为直角顶点作一个内接于椭圆的等腰直角三角形,该三角形的面积是_______________.
历届高考中的“双曲线”试题精选(自我测试)
一、选择题:
1.(2005全国卷Ⅱ文,2004春招北京文、理)双曲线22149x y -=的渐近线方程是( )
(A )23y x =± (B )49y x =±
(C )32y x =± (D )94y x =±
2.(2006全国Ⅰ卷文、理)双曲线
221mx y +=的虚轴长是实轴长的2倍,则m =( ) A .14- B .4- C .4 D .14
3.(2000春招北京、安徽文、理)双曲线
122
22=-a
y b x 的两条渐近线互相垂直,那么该 双曲线的离心率是( )
A .2
B .3
C .2
D .23
4.(2007全国Ⅰ文、理)已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线方程为( )
(A )112422=-y x (B )14122
2=-y x
(C )16102
2=-y x
(C )110622=-y x
5.(2008辽宁文) 已知双曲线
22291(0)y m x m -=>的一个顶点到它的一条渐近线的距离为1
5, 则m =( )
A .1
B .2
C .3
D .4
6.(2005全国卷III 文、理)已知双曲线
1222=-y x 的焦点为F 1、F 2,点M 在双曲线上且120,MF MF ⋅=u u u u r u u u u r 则点M 到x 轴的距离为( )
A .43
B .53 C
.3 D
.
7.(2008福建文、理)双曲线22
221x y a b -=(a >0,b
>0)的两个焦点为12,F F ,若P 为其上的一点,且12||2||PF PF =,则双曲线离心率的取值范围为( )
A.(1,3) B.(1,3]
C.(3,)+∞ D.[3,)+∞
8.(2007安徽理)如图,1F 和2F 分
别是双曲线
)0,0(122
22φφb a b
r a x =-的两个焦点,A 和B 是以O 为圆心,以1F O 为半径
的圆与该双曲线左支的两个交点,且△
AB F 2是等边三角形,则双曲线的离心率为
(A )3 (B )5 (C )
25 (D )
31+
二、填空题:
9.(2008
安徽文)已知双曲线22112x y n n -=-的离心率是3。
则n =
10.(2006上海文)已知双曲线中心在原点,一个顶点的坐标为(3,0),且焦距与虚轴长之比为5:4,则双曲线的标准方程是
____________________.
11.(2001广东文、理)双曲线11692
2=-y x 的两个焦点为F1、F2,点P 在双曲线上,若PF
1⊥PF2,则点P 到x轴的距离为 _________
12.(2005浙江文、理)过双曲线
()22
2210,0x y a b a b
-=>>的左焦点且垂直于x 轴的直线与双曲线相交于M 、N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_____ ___.
历届高考中的“抛物线”试题精选(自我测试 )
一、选择题:
1.(2006浙江文)抛物线28y x =的准线方程是
(A) 2x =- (B) 4x =-
(C) 2y =- (D) 4y =-
2.(2005江苏)抛物线24x y =上的一点M 到
焦点的距离为1,则点M 的纵坐标是( )
A .1617
B .1615
C .87
D .0
3.(2004春招北京文)在抛物线y px 2
2=上横坐标为4的点到焦点的距离为5,则p 的值为( )
A. 12
B. 1
C. 2
D. 4
4.(2004湖北理)与直线2x-y+4=0平行的抛物线y=x 2的切线方程是( )
(A) 2x-y+3=0 (B) 2x-y-3=0
(C) 2x-y+1=0 (D) 2x-y-1=0
5.(2001江西、山西、天津文、理)设坐标原
点为O ,抛物线x y 22=与过焦点的直线交于A 、
B 两点,则=⋅OB OA ( )
(A )43 (B )-43 (C )3 (D )-3
6.(2008海南、宁夏理)已知点P 在抛物线
y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( )
A. (41,-1)
B. (41,1)
C. (1,2)
D. (1,-2)
7.(2007全国Ⅰ文、理)抛物线y 2=4x 的焦点为F ,准线为l,经过F 且斜率为3的直线与抛物线在x 轴上方的部分相交于点A ,AK ⊥l,垂足为K ,则△AKF 的面积是( )
(A )4 (B )33 (C) 43 (D)8
8.(2006江苏)已知两点M (-2,0)、N (2,
0),点P 为坐标平面内的动点,满足||||MN MP MN NP ⋅+⋅u u u u r u u u r u u u u r u u u r =0,则动点P (x ,y )
的轨迹方程为( )
(A )x y 82= (B )x y 82-=
(C )x y 42= (D )x y 42-=
二.填空题:
9.( 2007广东文)在平面直角坐标系xOy 中,已
知抛物线关于x 轴对称,顶点在原点O ,且
过点P(2,4),则该抛物线的方程
是 .
10.(2008上海文)若直线10ax y -+=经过
抛物线24y x =的焦点,则实数a =
11.(2004春招上海)过抛物线x y 42=的焦点F
作垂直于x 轴的直线,交抛物线于A 、B 两点,则以F 为圆心、AB 为直径的圆方程是________________.
12.(2006山东文、理)已知抛物线x y 42=,
过点P(4,0)的直线与抛物线相交于
A(),(),2211y x B y x 、 两点,则
y 2221y +的最小值是。