初二数学第二学期期末试题-1
初二数学第二学期期末考试卷及答案

2009~2010学年第二学期期末考试卷 初二数学(满分100分,考试时间100分钟)一.选择题(本大题8小题,每小题2分,共16分.在每小题给出的四个选项中.只有一项是符合题目要求的)1.有一块多边形草坪,在市政建设设计图纸上的面积为2300cm ,其中一条边的长度为5cm .经测量,这条边的实际长度为15m ,则这块草坪的实际面积是( )A .2100mB .2270mC .22700mD .290000m2.若分式211x x --的值为0,则x 的值为( ).A .1x =-B .1x =C .1x =±D .x ≠l 3.若函数y =()1-mx22-m 是反比例函数,则m 的值是( ).A .±1B .1C .0D .-14.若函数y =kx +b(k ,b 为常数)的图象如下,那么当y >0时,x 的取值范围是 ( ) A .x >2 B .x >1 C x <2. D .x <15.已知点A (2-,y 1).B (5,y 2).C (3,y 3)都在反比例函数xy 3-=的图象上,则( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 3<y 2<y 17.在一个不透明的口袋中装有若干个只有颜色不同的球,如果口袋中装有4个红球,且摸出红球的概率为13,那么袋中共有球的个数为( )A.12个B.9个C.7个D.6个8.如图,等边△ABC 中,AB=3,P 为BC 上一点,D 为AC 上一点,若 BP=l ,CD=23,则∠APD 等于( )A .30°B .45°C .60°D .不确定二.填空题:(本大题共10小题,每小题2分,共20分,把答案填在题中横线上)9.地图上两点间的距离为3厘米,比例尺是1:1000000,那么两地的实际距离是________米. 10.如图,在平面直角坐标系中,过A(0,2)作x 轴的平行线,交函数2y x=-(x <0)的图象于B ,交函数6y x= (x >0)的图象于C ,则线段AB 与线段AC 的长度之比为__________.ABCD E12311.如图,∠1=∠2,若 (请补充一个条件),则△ABC ∽△ADE . 12.若方程51122m x x -=---无解,则实数m =__________.13.不等式x-8>3x-5的最大整数解是 .14.四边形ABCD ∽四边形A 1B 1C 1D 1,它们的面积比为9∶4,且它们的周长之差为16cm ,则四边形ABCD 的周长为______________ 15.已知反比例函数xm y )23(1-=,当m 满足 时,其图象的两个分支在第一.三象限内;当m 满足 时,其图象在每个象限内y 随x 的增大而增大.16.有4根细木棒,它们的长度分别是3cm ,4cm ,5cm ,7cm ,从中任取3根恰好能搭成一个三角形的概率是 .17.如图,∠1=∠2=∠3,则图中相似三角形有___________对. 18.观察下列分母有理化的计算:12121-=+,23231-=+,34341-=+…从计算的结果找规律,并利用这一规律计算⎝⎛+++231121()=+⋅⎪⎪⎭⎫+++++12003200220031341三.解答题(本大题共10小题,共64分,解答应写出必要的计算过程.推演步骤或文字说明) 19 求不等式组311(2)11x x x x->+⎧⎨--≤-⎩的解集,并在数轴上表示(6分)20.解方程:5131x x =+-(6分)第12题图21.先化简,再求值:(2+a+52a-)÷324aa--,其中a=12(6分)22.如图,在格点图中每个小正方形的边长为1,将△AOC各顶点的横纵坐标分别乘以一2作为对应顶点的横纵坐标,得到△A1O1C1.(1)在图中画出所得的△A1O1C1;(2)猜想△A1O1C1与△AOC的关系,并说明理由.(7分)23.为加强防汛工作,市工程队准备对长江堤岸一段长为2500米的江堤进行加固,在加固了1000米后,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了50%,因而完成此段加固工程所需天数将比原计划缩短5天,那么现在每天加固的长度是多少米?(7分)24.四张大小质地均相同的卡片上分别标有数字1,2,3,4,现将标有数字的一面朝下扣在桌子上,从中随机抽取一张(不放回),再从桌子上剩下的3张中随机抽取第二张. (1)用画树状图的方法,列出前后两次抽得的卡片上所标数字的所有可能情况;(2)计算抽得的两张卡片上的数字之和为奇数的概率是多少?(3)如果抽取第一张后放回,再抽第二张,(2)的问题答案是否改变?如果改变,变为多少?(只写出答案,不写过程)(7分)25(7分)如图,D 、E 、F 分别是ABC 各边的中点。
八年级数学第二学期期末试题(附答案)

八年级数学第二学期期末试题(附答案)八年级第二学期期末质量检测数学试卷答卷时间:100分钟满分:100分一、选择题(每小题3分,共30分)1.在式子中,分式的个数为()A.2个B.3个C.4个D.5个2.下列运算正确的是()A.B.C.D.3.若A(,b)、B(-1,c)是函数的图象上的两点,且<0,则b与c的大小关系为()A.b<cB.b>cC.b=cD.无法判断4.如图,已知点A是函数y=x与y=的图象在第一象限内的交点,点B 在x轴负半轴上,且OA=OB,则△AOB的面积为()A.2B.C.2D.45.如图,在三角形纸片ABC中,AC=6,∠A=30º,∠C=90º,将∠A沿DE折叠,使点A与点B重合,则折痕DE的长为()A.1B.C.D.26.△ABC的三边长分别为、b、c,下列条件:①∠A=∠B-∠C;②∠A:∠B:∠C=3:4:5;③;④,其中能判断△ABC是直角三角形的个数有()A.1个B.2个C.3个D.4个7.一个四边形,对于下列条件:①一组对边平行,一组对角相等;②一组对边平行,一条对角线被另一条对角线平分;③一组对边相等,一条对角线被另一条对角线平分;④两组对角的平分线分别平行,不能判定为平行四边形的是()A.①B.②C.③D.④8.如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=80º,那么∠CDE的度数为()A.20ºB.25ºC.30ºD.35º9.某班抽取6名同学进行体育达标测试,成绩如下:80,90,75,80,75,80.下列关于对这组数据的描述错误的是()A.众数是80B.平均数是80C.中位数是75D.极差是1510.某居民小区本月1日至6日每天的用水量如图所示,那么这6天的平均用水量是()A.33吨B.32吨C.31吨D.30吨二、填空题(每小题3分,共18分)11.反比例函数y=的图象分布在第一、三象限内,则k的取值范围是______.12.数据11,9,7,10,14,7,6,5的中位数是______,众数是______.13.观察式子:,-,,-,……,根据你发现的规律知,第8个式子为.14.老师给出一个函数,甲、乙各指出了这个函数的一个性质:甲:第一、三象限有它的图象;乙:在每个象限内,随的增大而减小.请你写一个满足上述性质的一个函数解析式________.15.如图,直线过正方形ABCD的顶点B,点A、C到直线的距离分别是和,则正方形的边长是________.(15题图)(16题图)16.如图,在平行四边形ABCD中,E、F分别为AB、DC的中点,连结DE、EF、FB,则图中共有________个平行四边形.三、解答题(共7题,共52分)17.(6分)解方程:18.(6分)先化简,再求值:,其中19.(7分)八年级一、二班举行投篮比赛,每班各挑选10名同学代表班级共参加5场投篮比赛,投篮得分如下:12345一班8588777585二班9585708080(1)分别求出两个班五场比赛得分的平均值;(2)你认为哪个班级的得分较稳定?为什么?20.(7分)如图,已知一次函数y=k1x+b的图象与反比例函数y=的图象交于A(1,-3),B(3,m)两点,连接OA、OB.(1)求两个函数的解析式;(2)求△ABC的面积.21.(8分)如图,以△ABC的三边为边,在BC的同侧作三个等边△ABD、△BEC、△ACF.(1)判断四边形ADEF的形状,并证明你的结论;(2)当△ABC满足什么条件时,四边形ADEF是菱形?是矩形?22.(8分)为了缓解用电紧张的矛盾,某电力公司特制定了新的用户用电收费标准,每月用电量(度)与应付电费(元)的关系如图所示.(1)根据图象,请分别求出当和>50时,关于的函数关系式;(2)请回答:当每月用电量不超过50度时,收费标准是________________;当每月的用电量越过50度时,收费标准是________________.23.(本题满分10分)如图,△ABC中,AD⊥BC于D点,E为BD上的一点,EG∥AD,分别交AB和CA的延长线于F、G两点,∠AFG=∠AGF(1)求证:△ABD≌△ACD.(2)若∠ABC=40°,求∠GAF的大小.八年级第二学期期末质量检测数学参考答案一、选择题(每小题3分,共30分)题号12345678910答案BDBCDCCCCB二、填空题(每小题3分,共18分)11.k>012.8、713.-14.15.16.4三、解答题(共7题,共52分)17.X=-18.原式=-,值为-319.解:(1)一班的平均分数为.二班的平均分数为.(2)一班的得分较稳定.一班得分的方差为.二班得分的方差为.所以,一班的得分较稳定.20.(1)y=x-4,y=-.(2)S△OAB=421.(1)(略)(2)AB=AC时为菱形,∠BAC=150º时为矩形. 22.(1)当月用电量办时,设函数解析式为,将(50,25)代入得:,函数解析式为当月用电量时,设函数解析式为,将(50,25),(100,75)代入得:解得函数解析式为(2)每度0.5元;其中的50度每度0.5元,超过部分每度1元.21.(1)证明:∵AD⊥BC,∴∠ADB=∠ADC=90°∵GE∥AD,∴∠CAD=∠AGF,∠BFE=∠BAD.∵∠BFE=∠AFG,∠AFG=∠AGF∴∠CAD=∠BAD.∴△ABD≌△ACD.(2)∵∠ABC=40°,∴∠C=40°.∴∠CAD=50°∴∠BAC=100°.∴∠GAF=80°.。
第二学期期末考试八年级数学试卷附答案

第二学期期末考试八年级数学试卷时间:90分钟 满分:100分一、选择题:(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案1.若代数式2-x x有意义,则实数x 的取值范围是( ). A.x >0 B.x ≥0 C.x >0且x ≠2 D.x ≥0且x ≠2 2.下列计算正确的是( ).A. 523=+B. 12223=-C. 332=D. 39±=3. 下列各组数据中,以它们为边长不能构成直角三角形的是( ). A.3,4,5 B.5,12,13 C.2,2,2 D.1,2,34. 已知一次函y=-2x+2,点A(-1,a),B(-2,b)在该函数图像上,则a 与b 的大小关系是( ).A. a < bB. a >bC.a ≥ bD.a = b5. 若一个菱形的两条对角线长分别是5cm 和10cm,则与该菱形面积相等的正方形的边长是( ). A.6cm B.5cm C.5cm D.7.5cm6. 如图,正方形ABCD 是由9个边长为1的小正方形组成,每个小正方形的顶点都叫格点,连接AE ,AF 则∠EAF=( ). A.30° B.45° C.60° D.35°7.鞋店卖鞋时,商家主要关注鞋尺码的( ) A.平均数 B.众数 C.中位数 D.方差8. 如图,已知菱形ABCD 的边长为4,∠ABC=120°,过B 作BE ⊥AD ,则BE 的长为( ). A. 32 B. 3 C.2 D.19. 在四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四组条件:①AB∥CD AD∥BC ②AB=CD AD=BC ③AO=CO BO=DO④AB∥CD AD=BC 其中一定能判断这个四边形是平行四边形的共有().A.1组B.2组C.3组D.4组10.已知点P(m,n)在第四象限,则直线y=nx+m图象大致是下列的().二、填空(每小题3分,共24分)11、计算)2-的结果是_________.2-1(212、若直角三角形三边长分别为6cm,8cm和Xcm,则X=_________.13、平行四边形ABCD中,AB=3cm,∠ABC的平分线BE交AD于E,DE=1cm,则BC=_________.14、顺次连接菱形四边中点所得四边形是_________.15、如图,直线L过正方形ABCD的顶点B,点A、C到L的距离分别是1和2,则正方形的面积为_________.16、如图,在平行四边形ABCD中,AC⊥BC,E为AB的中点,若CE=5,AC=8,则AD=_________.17、如图,一次函数的y=kx+b图象经过A(2,4)、B(0,2)两点,与x轴交于点C,则ΔAOC的面积为_________.18、如图,一次函数y=kx+b与x轴、y轴分别交于A、B两点,则不等式kx+b>1的解集是_________.三、解答题(共46分,19、 20每题8分,21、22每题9分,23题12分) 19.(本题8 分)为了学生的终身发展,某中学积极开展第二课堂,下面是该中学一部分学生参加五个学习小组的统计表和扇形统计图,请根据图表提供的信息回答下列问题:学习小组 体育 美术 音乐 写作 奥数 人数755430(1)参加课外小组学习的学生共有_________名 (2)在表格中的空格内填上相应的数字.(3)表格中的五个数据的中位数是_________,众数是________.20.(本题8分)如图, 一次函数y=-x+m 与y 轴交于点B ,与正比例函数y=21x的图象交于点P (2,n ) (1) 求m,n 的值(2) 写出当一次函数的函数值大于正比例函数的函数值时的x 的取值范围21.(本题9分)已知矩形ABCD中,AB=3cm,AD=4cm,点E、F分别在边AD、BC上,连接B、E,D、F.分别把RtΔBAE和RtΔDCF沿 BE,DF折叠成如图所示位置。
人教版八年级数学第二学期期末测试卷(含答案)

八年级数学第二学期期末测试卷、选择题 (每题 3分,共 30分)函数 y = x 的自变量 x 的取值范围是 ( ) x -2 6.赵老师是一名健步走运动的爱好者,她用手机软件记录了某个月 (30 天)每天健步走的步数 (单位:万步 ),将记录结果绘制成了如图所示的统计图.在每 天健步走的步数这组数据中,众数和中位数分别是 ( )7.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲、乙两组数据,如下表:1.2. 3. 5.A .x ≥0且 x ≠ 2B .x ≥0列二次根式中,最简二次根式是A. 2B. 12C .x ≠2 C.D .x >2D. a 2列运算正确的是A. 2+ 7= 3 B .2 2×3 2= 6 2 A .13B .13或 119C .13 或 15D .15B .1.4,1.3C .1.4,1.35D .1.3,1.3C. 24÷ 2= 2 3 D .3 2- 2=3 4.若直角三角形两边长为 12和 5,则第三边长为 (A .1.2,1.3甲26778乙23488关于以上数据,说法正确的是()8.如图,在△ABC中,点D、E、F 分别是边AB、AC、BC的中点,要判定四边形DBFE 是菱形,9.如图,点P是边长为1的菱形ABCD 对角线AC上的一个动点,点M、N分别是AB、BC边上的中点,则MP+PN的最小值是()1A.2B.1 C. 2 D.21110.已知直线y1=kx+1(k<0)与直线y2=mx(m>0)的交点坐标为2,2m ,则不等式组mx-2<kx+1<mx的解集为()1 1 3 3 3A .x> 2 B.2<x<2C.x<2D.0<x< 2二、填空题(每题3分,共24分) 11.计算:27-31=.12.如图,要使平行四边形ABCD 是正方形,则应添加的一组条件是(添加一组条件即可).13.若x,y 满足x+2+|y-5|=0,则(3x+y)2 019=_____ 14.某校规定学生的数学学期综合成绩是由平时、期中和期末三项成绩按3∶3∶4 的比计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分、90分和85分,则他本学期数学学期综合成绩是_______ 分.15.一组数据5,2,x,6,4 的平均数是4,这组数据的方差是 _____ .A.甲、乙的众数相同B.甲、乙的中位数相同C.甲的平均数小于乙的平均数D.甲的方差小于乙的方差列所添加条件不正确的是()C.BE 平分∠ ABC D.EF=CF16.一次函数y=(2m-1)x+3-2m 的图象经过第一、二、四象限,则m 的取值范围是 _______ .17.如图,两个大小完全相同的矩形ABCD 和AEFG 中AB=4 cm,BC=3 cm,则FC = _______ .18.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行 2 400 m,先到终点的人原地休息.已知甲先出发 4 min,在整个步行过程中,甲、乙两人的距离y(m)与甲出发的时间t(min)之间的关系如图所示,以下结论:① 甲步行的速度为60 m/min ;②乙走完全程用了32 min;③乙用16 min 追上甲;④乙到达终点时,甲离终点还有300 m,其中正确的结论有_______ (填序号).三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分)19.计算:(1)(3 2+48)(18-4 3);(2)(2-3)2 020·(2+3)2 019-2 -23-(-2)0.20.已知a,b,c 满足|a-7|+b-5+(c-4 2)=0.(1)求a,b,c 的值;(2)判断以a,b,c 为边能否构成三角形,若能够成三角形,此三角形是什么形状?21.如图,已知一次函数y=kx+b 的图象经过A(-2,-1),B(1,3)两点,并且交x轴于点C,交y 轴于点 D.(1)求该一次函数的解析式;(2)求△AOB 的面积.22.近年来,共享单车逐渐成为高校学生喜爱的“绿色出行”方式之一,自2016 年国庆后,许多高校均投放了使用手机支付就可随取随用的共享单车.某高校为了解本校学生出行使用共享单车的情况,随机调查了某天部分出行学生使用共享单车的情况,并整理成如下统计表:(1) ______ ,该中位数的意义是 ___________________________________________________(2)这天部分出行学生平均每人使用共享单车约多少次(结果保留整数)?(3) 若该校某天有 1 500名学生出行,请你估计这天使用共享单车次数在 3 次以上(含3 次)的学生有多少人?23.如图,在四边形ABCD中,∠ BAC=90°,E是BC的中点,AD∥ BC,AE∥ DC,EF⊥ CD 于点F.(1)求证:四边形AECD 是菱形;(2)若AB=6,BC=10,求EF 的长.24.某医药公司把一批药品运往外地,现有两种运输方式可供选择.方式一:使用快递公司的邮车运输,装卸收费400元,另外每千米再加收 4 元;方式二:使用快递公司的火车运输,装卸收费820元,另外每千米再加收 2 元.(1)请你分别写出邮车、火车运输的总费用y1(元),y2(元)与路程x(km) 之间的函数解析式;(2)你认为选用哪种运输方式较好,为什么?25.已知四边形ABCD是正方形,F是边AB,BC上一动点,DE⊥DF,且DE =DF ,M 为EF 的中点.(1)当点F在边AB上时(如图① ).①求证:点 E 在直线BC 上;②若BF=2,则MC 的长为_____ .BF(2)当点F 在BC 上时(如图② ),求CM的值.答案1.A2.A3.C4.B5.B6.B 7. D 8.A 9.B1 1 1 110.B 点拨:把 2,2m 代入 y 1=kx + 1,可得 2m =2k +1,解得 k = m -2, ∴y 1=(m -2)x +1.令 y 3= mx - 2,则:当 y 3<y 1时, mx -2<(m -2)x +1,3 解得 x < 32;当 kx +1<mx 时, (m -2)x +1<mx ,1解得 x >2.13∴不等式组 mx -2<kx +1<mx 的解集为 21<x <32. 11.8 3 11. 312.AB =BC ,AB ⊥BC(答案不唯一 ) 13.- 1 14.88 15.2116.m < 2 17.5 2cm18.① 点拨:由图象知,甲 4 min 步行了 240 m ,∴甲步行的速度为 2440=60(m/min),∴结论①正确;∵乙用了 16-4=12(min)追上甲,乙步行的速度比甲快 12 =20(m/min), ∴乙的速度为 60+20=80(m/min),从而结论③不正确;乙到达终点时,甲走了 34 min ,甲还有 40- 34=6(min)到达终点,离终点还有 60×6=360(m), ∴结论②④不正确.∵甲走完全程需要 2 40060 =40(min), 乙走完全程需要 2 400 80 =30(min),三、 19.解:(1)原式= (3 2+4 3)(3 2-4 3)=(3 2)1 2-(4 3)3 4= 18-48=- 30; (2)原式= [(2- 3)(2+ 3)]2 019·(2- 3)- 3-1=2- 3- 3-1=1-2 3.20.解:(1)∵a ,b ,c 满足|a - 7|+ b -5+(c -4 2)2=0,∴|a - 7|=0, b -5=0,(c -4 2)2=0, 解得 a = 7,b =5, c =4 2.(2)∵a = 7,b =5, c =4 2,∴a +b = 7+ 5>4 2.∴以 a ,b ,c 为边能构成三角形. ∵a 2+b 2= ( 7)2+52=32=(4 2)2=c 2, ∴此三角形是直角三角形.- 2k + b =- 1, 21.解:(1)把 A(-2,- 1),B(1,3)的坐标代入 y = kx +b ,得k +b =3,4 k =3,解得5b =3.45(2)把 x =0 代入 y =3x + 3,得 y = 53,5∴点 D 的坐标为 0, 3 .28+ 18+5(3)1 500 1×1+ 15+23+28+18+5=765(人).估计这天使用共享单车次数在 3次以上(含 3次)的学生有 765人.1 5 1 5 5∴S △AOB =S △AOD +S △BOD =2×3×2+2×3×1=2.22.解:(1)3;3;表示这部分出行学生在这天约有一半人使用共享单车的次数在 3次以上(含 3次)0×11+1×15+2×23+3×28+4×18+5×5 (2)∴一次函数的解析式为45 y =3x+3.≈ 2次( ).11+15+23+28+18+5 这天部分出行学生平均每人使用共享单车约 2 次.23.(1)证明:∵ AD∥BC,AE∥DC,∴四边形AECD 是平行四边形.∵在Rt△ABC 中,∠ BAC=90°,E是BC的中点,∴BE=EC=AE.∴四边形AECD 是菱形.在Rt△ABC中,∠ BAC=90°,AB=6,BC=10,由勾股定理得AC=8.11再根据面积关系,有S△ABC=2BC·AH=2AB·AC,24∴AH=254.∵点E是BC的中点,BC=10,四边形AECD是菱形,∴CD=CE=5.∵S菱形AECD=CD·EF=CE·AH,∴EF=AH=24.524.解:(1)由题意得:y1=4x+400,y2=2x+820.(2)令4x+400=2x+820,解得x=210,所以当运输路程小于210 km 时,y1<y2,选择邮车运输较好;当运输的路程等于210 km 时,y1=y2,两种方式一样;当运输路程大于210 km时,y1>y2,选择火车运输较好.25.(1)①证明:如图①,连接CE.∵DE⊥DF,∴∠FDE=90°.∵四边形ABCD 是正方形,∴∠ADC=∠DAF=∠DCB=90°,DA=DC.∴∠ ADC -∠ FDC =∠ FDE-∠ FDC,即∠ADF=∠CDE.又∵DF=DE,∴△DAF≌△DCE(SAS).∴∠DAF=∠DCE=90°,∴∠DCE+∠DCB=180°.∴点 E 在直线BC 上.②2(2)解:如图②,在DC 上截取DN=FC,连接MN,DM ,设EF,CD 相交于点H.∵△FDE 为等腰直角三角形,M为EF的中点,1 ∴DM=2EF=FM,DM⊥EF.∴∠ DMF =∠ FCD =90°.∴∠ CDM +∠ DHM =∠ MFC +∠CHF.∴∠CDM=∠MFC. ∴△DNM≌△FCM(SAS).∴MN=MC,∠DMN=∠FMC. ∴∠DMN+∠FMN=∠FMC+∠FMN,即∠ DMF =∠ NMC=90°.∴△CNM 是等腰直角三角形.∴ CN=2CM. 又∵DC=BC,DN=CF,∴CN=BF.∴ BF=2CM.BF∴=2.CM。
八年级数学第二学期期末试卷及答案解析

八年级数学第二学期期末试卷及答案解析一字一句,淡淡的墨香,深深的底蕴,一段一落,轻轻的几句,高高的内涵,一行一页,浅浅的道理,大大的智慧,下面是为您推举八年级数学第二学期期末试卷及答案解析。
有关八年级数学下期末试卷一、选择题〔本大题共6小题,共18.0分〕1.以下函数中,一次函数是〔〕A. B. C. D.2.以下推断中,错误的选项是〔〕A. 方程是一元二次方程B. 方程是二元二次方程C. 方程是分式方程D. 方程是无理方程3.已知一元二次方程x2-2x-m=0有两个实数根,那么m的取值范围是〔〕A. B. C. D.4.以下事件中,必定事件是〔〕A. "奉贤人都爱吃鼎丰腐乳'B. "2021年上海中考,小明数学考试成果是总分150分'C. "10只鸟关在3个笼子里,至少有一只笼子关的鸟超过3只'D. "在一副扑克牌中任意抽10张牌,其中有5张A'5.以下命题中,真命题是〔〕A. 平行四边形的对角线相等B. 矩形的对角线平分对角C. 菱形的对角线相互平分D. 梯形的对角线相互垂直二、填空题〔本大题共12小题,共24.0分〕6.一次函数y=2x-1的图象在轴上的截距为______7.方程x4-8=0的根是______8.方程-x=1的根是______9.一次函数y=kx+3的图象不经过第3象限,那么k的取值范围是______10.用换元法解方程-=1时,假如设=y,那么原方程化成以"y'为元的方程是______11.化简:〔〕-〔〕=______.12.某商品经过两次连续涨价,每件售价由原来的100元涨到了179元,设平均每次涨价的百分比为x,那么可列方程:______13.假如n边形的每一个内角都相等,并且是它外角的3倍,那么n=______14.既是轴对称图形,又是中心对称图形的四边形是______.15.在四边形ABCD中,AB=AD,对角线AC平分BAD,AC=8,S四边形ABCD=16,那么对角线BD=______.16.在矩形ABCD中,BAD的角平分线交于BC点E,且将BC分成1:3的两部分,若AB=2,那么BC=______17.如图,在平行四边形ABCD中,AC与BD相交于点OAOB=60,BD=4,将△ABC沿直线AC翻折后,点B落在点E处,那么S△AED=______三、解答题〔本大题共8小题,共64.0分〕18.解方程:-=219.解方程组:20.布袋中放有x只白球、y只黄球、2只红球,它们除颜色外其他都相同,假如从布袋中随机摸出一个球,恰好是红球的概率是.〔1〕试写出y与x的函数关系式;〔2〕当x=6时,求随机地取出一只黄球的概率P.21.如图,矩形ABCD中,对角线AC与BD相交于点O.〔1〕写出与相反的向量______;〔2〕填空:++=______;〔3〕求作:+〔保存作图痕迹,不要求写作法〕.22.中国的高铁技术已经然走在了世界前列,2021年的"复兴号'高铁列车较"和谐号'速度增加每小时70公里.上海火车站到北京站铁路距离约为1400公里,假如选择"复兴号'高铁,全程可以少用1小时,求上海火车站到北京火车站的"复兴号'运行时间.23.已知:如图,在△ABC中,ACB=90,点D是斜边AB 的中点,DE∥BC,且CE=CD.〔1〕求证:B=DEC;〔2〕求证:四边形ADCE是菱形.24.如图,一次函数y=2x+4的图象与x,y轴分别相交于点A,B,以AB为边作正方形ABCD〔点D落在第四象限〕.〔1〕求点A,B,D的坐标;〔2〕联结OC,设正方形的边CD与x相交于点E,点M 在x轴上,假如△ADE与△COM全等,求点M的坐标.25.已知,梯形ABCD中,AD∥BC,ABC=90,AB=3,BC=10,AD=5,M是BC边上的任意一点,联结DM,联结AM.〔1〕若AM平分BMD,求BM的长;〔2〕过点A作AEDM,交DM所在直线于点E.①设BM=x,AE=y求y关于x的函数关系式;②联结BE,当△ABE是以AE为腰的等腰三角形时,请直接写出BM的长.答案和解析1.【答案】A【解析】解:A、y=x属于一次函数,故此选项正确;B、y=kx〔k0〕,故此选项错误;C、y=+1,不符合一次函数的定义,故此选项错误;D、y=x2-2,不符合一次函数的定义,故此选项错误;应选:A.利用一般地,形如y=kx+b〔k0,k、b是常数〕的函数,叫做一次函数,进而推断即可.此题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.2.【答案】D【解析】解:A、方程x〔x-1〕=0是一元二次方程,不符合题意;B、方程xy+5x=0是二元二次方程,不符合题意;C、方程-=2是分式方程,不符合题意;D、方程x2-x=0是一元二次方程,符合题意,应选:D.利用各自方程的定义推断即可.此题考查了无理方程,分式的定义,一元二次方程的定义,以及分式方程的定义,娴熟把握各自的定义是解此题的关键.3.【答案】B【解析】解:∵一元二次方程x2-2x-m=0有两个实数根,△=4+4m0,解得:m-1.应选:B.由方程有两个实数根,得到根的判别式的值大于等于0,列出关于m的不等式,求出不等式的解集即可得到m的范围.考查了根的判别式,一元二次方程ax2+bx+c=0〔a0〕的根与△=b2-4ac有如下关系:①当△0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△0时,方程无实数根.上面的结论反过来也成立.4.【答案】C【解析】解:A、"奉贤人都爱吃鼎丰腐乳',是随机事件,故此选项错误;B、"2021年上海中考,小明数学考试成果是总分150分',是随机事件,故此选项错误;C、"10只鸟关在3个笼子里,至少有一只笼子关的鸟超过3只'是必定事件,故此选项正确;D、"在一副扑克牌中任意抽10张牌,其中有5张A',是不行能事件.应选:C.直接利用随机事件以及必定事件、不行能事件的定义分别分析得出答案.此题主要考查了随机事件以及必定事件、不行能事件的定义,正确区分各事件是解题关键.5.【答案】C【解析】解:A. 平行四边形的对角线平分,错误;B. 菱形的对角线平分对角,错误;C. 菱形的对角线相互平分,正确;D. 等腰梯形的对角线相互垂直,错误;应选:C.依据菱形、平行四边形、矩形、等腰梯形的性质分别推断得出即可.此题主要考查了菱形、平行四边形、矩形、等腰梯形的性质,娴熟把握相关定理是解题关键.6.【答案】-1【解析】解:一次函数y=2x-1的图象在y轴上的截距是-1,故答案为:-1,依据一次函数的图象与系数的关系即可得出结论.此题考查的是一次函数的性质,熟知一次函数的性质是解答此题的关键.7.【答案】2【解析】解:x4-8=0,x4=8,x4=16,开方得:x2=4,开方得:x=2,故答案为2.移项,系数化成1,再开方即可.此题考查了解高次方程,能把高次方程转化成低次方程是解此题的关键.8.【答案】x=3【解析】解:-x=1,=1+x,2x+10=〔1+x〕2,x2=9,解得:x=3,检验:把x=3代入方程-x=1得:左边=右边,所以x=3是原方程的解,把x=3代入方程-x=1得:左边右边,所以x=-3不是原方程的解,所以原方程的解为x=3,故答案为:x=3,移项后两边平方,即可得出整式方程,求出方程的解,再进行检验即可.此题考查了解无理方程,能把无理方程转化成有理方程是解此题的关键.9.【答案】k0【解析】解:∵一次函数y=kx+3的图象不经过第3象限,一次函数y=kx+3的图象即经过第一、二、四象限,k0.故答案为:k0,先推断出一次函数图象经过第一、二、四象限,则说明x的系数不大于0,由此即可确定题目k的取值范围.此题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答此题留意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k0时,直线必经过一、三象限;k0时,直线必经过二、四象限;b0时,直线与y轴正半轴相交;b=0时,直线过原点;b0时,直线与y轴负半轴相交.10.【答案】3y2-y-1=0【解析】解:-=1,设=y,原方程化为:3y-=1,即3y2-y-1=0,故答案为:3y2-y-1=0.设=y,原方程化为3y-=1,求出即可.此题考查了用换元法解分式方程,能够正确换元是解此题的关键.11.【答案】【解析】解:〔〕-〔〕=--+=〔+〕-〔+〕=-=.故答案为:.由去括号的法则可得:〔〕-〔〕=--+,然后由加法的交换律与结合律可得:〔+〕-〔+〕,继而求得答案.此题考查了平面向量的学问.此题难度不大,留意把握三角形法则的应用.12.【答案】100〔1+x〕2=179【解析】解:设平均每次涨价的百分比为x,那么可列方程:100〔1+x〕2=179.故答案为:100〔1+x〕2=179.设平均每次涨价的百分比为x,依据原价为100元,表示出第一次涨价后的价钱为100〔1+x〕元,然后再依据价钱为100〔1+x〕元,表示出第二次涨价的价钱为100〔1+x〕2元,依据两次涨价后的价钱为179元,列出关于x的方程此题考查了由实际问题抽象出一元二次方程,属于平均增长率问题,一般状况下,假设基数为a,平均增长率为x,增长的次数为n〔一般状况下为2〕,增长后的量为b,则有表达式a〔1+x〕n=b,类似的还有平均降低率问题,留意区分"增'与"减'.13.【答案】8【解析】解:∵每个内角都相等,并且是它外角的3倍,设外角为x,可得:x+3x=180,解得:x=45,边数=36045=8.故答案为:8.依据正多边形的内角与外角是邻补角求出每一个外角的度数,再依据多边形的边数等于360除以每一个外角的度数列式计算即可得到边数.此题考查了多边形的内角与外角,娴熟把握多边形的外角和、多边形的每一个外角的度数、多边形的边数三者之间的关系是解题的关键.14.【答案】矩形〔答案不唯一〕【解析】解:矩形〔答案不唯一〕.依据轴对称图形与中心对称图形的概念,写一个则可.把握中心对称图形与轴对称图形的概念.轴对称图形的关键是查找对称轴,图形两部分折叠后可重合;中心对称图形是要查找对称中心,旋转180度后两部分重合.15.【答案】4【解析】解:∵对角线AC平分BAD,BAO=DAO,在△BAO与△DAO中,,△BAO≌△DAO〔SAS〕,BOA=DOA,ACBD,∵AC=8,S四边形ABCD=16,BD=1628=4.故答案为:4.依据角平分线的定义可得BAO=DAO,依据SAS可证△BAO ≌△DAO,再依据全等三角形的性质可得BOA=DOA,可得ACBD,再依据对角线相互垂直的四边形面积公式计算即可求解.考查了多边形的对角线,角平分线,全等三角形的判定与性质,四边形面积,关键是依据SAS证明△BAO≌△DAO.16.【答案】8或【解析】解:①如图1中,∵四边形ABCD是矩形,AE平分BAD,BAE=AEB=45,AB=BE=2,当EC=3BE时,EC=6,BC=8.②如图2中,当BE=3EC时,EC=,BC=BE+EC=.故答案为8或分两种情形画出图形分别求解即可解决问题;此题考查矩形的性质、等腰直角三角形的判定和性质等学问,解题的关键是学会用分类商量的思想思索问题,属于中考常考题型.17.【答案】【解析】解:如图连接EO.∵AOB=EOA=60,EOD=60,∵OB=OE=OD,△EOD是等边三角形,EDO=AOB=60,DE∥AC,S△ADE=S△EOD=22=.故答案为如图连接EO.首先证明△EOD是等边三角形,推出EDO=AOB=60,推出DE∥AC,推出S△ADE=S△EOD即可解决问题;此题考查了折叠的性质,平行四边形的性质以及勾股定理的应用等学问.此题难度适中,解题的关键是精确作出帮助线,利用数形结合思想求解.18.【答案】解:方程两边都乘以〔x+2〕〔x-2〕得:〔x-1〕〔x+2〕-4=2〔x+2〕〔x-2〕,即x2-x-2=0,解得:x=-1或2,检验:当x=-1时,〔x+2〕〔x-2〕0,所以x=-1是原方程的解,当x=2时,〔x+2〕〔x-2〕=0,所以x=2不是原方程的解,所以原方程组的解为:x=-1【解析】先去分母,把分式方程转化成整式方程,求出整数方程的解,再进行检验即可.此题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.19.【答案】解:由①得:x=4+y③,把③代入②得:〔4+y〕2-2y2=〔4+y〕y,解得:y1=4,y2=-2,代入③得:当y1=4时,x1=8,当y2=-2时,x2=2,所以原方程组的解为:,.【解析】由①得出x=4+y③,把③代入②求出y,把y的值代入③求出x即可.此题考查了解高次方程组,能把高次方程组转化成一元二次方程是解此题的关键.20.【答案】解:〔1〕因为布袋中放有x只白球、y只黄球、2只红球,且红球的概率是.所以可得:y=14-x〔2〕把x=6,代入y=14-6=8,所以随机地取出一只黄球的概率P==【解析】〔1〕让红球的个数除以球的总个数即为从布袋中随机摸出一个球是红球的概率,进而得出函数解析式.〔2〕让黄球的个数除以球的总个数即为从布袋中随机摸出一个球是黄球的概率.此题考查了概率公式的应用.用到的学问点为:概率=所求状况数与总状况数之比.21.【答案】,【解析】解:〔1〕与相反的向量有,,故答案为有,.〔2〕∵+=,+=,++=故答案为.〔3〕如图,作平行四边形OBEC,连接AE,即为所求;〔1〕依据相反的向量的定义即可解决问题;〔2〕利用三角形加法法则计算即可;〔3〕如图,作平行四边形OBEC,连接AE,即为所求;此题考查平面向量、作图-冗杂作图、矩形的性质等学问,解题的关键是娴熟把握向量的加法法则,属于中考常考题型.22.【答案】解:设复兴号用时x小时,则和谐号用时〔x+1〕小时,依据题意得:=70+,解得:x=4或x=-5〔舍去〕答:上海火车站到北京火车站的"复兴号'运行时间为4小时.【解析】复兴号用时x小时,则和谐号用时〔x+1〕小时,然后根据"复兴号'高铁列车较"和谐号'速度增加每小时70公里列方程求解即可.此题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程,解分式方程时要留意检验.23.【答案】〔1〕证明:在△ABC中,∵ACB=90,点D是斜边AB的中点,CD=DB,B=DCB,∵DE∥BC,DCB=CDE,∵CD=CE,CDE=CED,B=CED.〔2〕证明:∵DE∥BC,ADE=B,∵B=DEC,ADE=DEC,AD∥EC,∵EC=CD=AD,四边形ADCE是平行四边形,∵CD=CE,四边形ADCE是菱形.【解析】〔1〕利用等腰三角形的性质、直角三角形斜边中线定理证明即可;〔2〕首先证明AD=EC,AD∥EC,可得四边形ADCE是平行四边形,再依据CD=CE可得四边形是菱形;此题考查菱形的判定和性质、平行四边形的性质、等腰三角形的判定和性质等学问,解题的关键是敏捷运用所学学问解决问题,属于中考常考题型.24.【答案】解:〔1〕∵一次函数y=2x+4的图象与x,y轴分别相交于点A,B,A〔-2,0〕,B〔0,4〕,OA=2,OB=4,如图1,过点D作DFx轴于F,DAF+ADF=90,∵四边形ABCD是正方形,AD=AB,BAD=90,DAF+BAO=90,ADF=BAO,在△ADF和△BAO中,,△ADF≌△BAO〔AAS〕,DF=OA=2,AF=OB=4,OF=AF-OA=2,∵点D落在第四象限,D〔2,-2〕;〔2〕如图2,过点C作CGy轴于G,连接OC,作CMOC交x轴于M,同〔1〕求点D的方法得,C〔4,2〕,OC==2,∵A〔-2,0〕,B〔0,4〕,AB=2,∵四边形ABCD是正方形,AD=AB=2=OC,∵△ADE与△COM全等,且点M在x轴上,△ADE≌△OCM,OM=AE,∵OM=OE+EM,AE=OE+OA,EM=OA=2,∵C〔4,2〕,D〔2,-2〕,直线CD的解析式为y=2x-6,令y=0,2x-6=0,x=3,E〔3,0〕,OM=5,M〔5,0〕.【解析】〔1〕先利用坐标轴上点的特点求出点A,B的坐标,再构造全等三角形即可求出点D坐标;〔2〕先求出点C坐标,进而求出OC,推断出AD=OC,再用待定系数法求出直线CD解析式,即可求出点E坐标,即可得出结论.此题是一次函数综合题,主要考查了待定系数法,正方形的性质,全等三角形的判定和性质,构造全等三角形求出点D坐标是解此题的关键.25.【答案】解:〔1〕如图1中,作DHBC于H.则四边形ABHD是矩形,AD=BH=5,AB=DH=3.当MA平分DMB时,易证AMB=AMD=DAM,可得DA=DM=5,在Rt△DMH中,DM=AD=5,DH=3,MH===4,BM=BH-MH=1,当AM平分BMD时,同法可证:DA=DM,HM=4,BM=BH+HM=9.综上所述,满足条件的BM的值为1或9.〔2〕①如图2中,作MHAD于H.在Rt△DMH中,DM==,∵S△ADM=ADMH=DMAE,53=yy=.②如图3中,当AB=AE时,y=3,此时53=3,解得x=1或9.如图4中,当EA=EB时,DE=EM,∵AEDM,DA=AM=5,在Rt△ABM中,BM==4.综上所述,满足条件的BM的值为1或9或4.【解析】〔1〕如图1中,作DHBC于H.则四边形ABHD是矩形,AD=BH=5,AB=DH=3.分两种情形求解即可解决问题;〔2〕①如图2中,作MHAD于H.利用面积法构建函数关系式即可;②分两种情形:如图3中,当AB=AE时,y=3,此时53=3,解方程即可;如图4中,当EA=EB时,DE=EM,利用勾股定理求解即可;此题考查四边形综合题、等腰三角形的判定和性质、勾股定理、三角形的面积等学问,解题的关键是学会添加常用帮助线,构造直角三角形解决问题,学会用分类商量的思想思索问题,属于中考压轴题.。
八年级数学下学期期末考试试题(共2套,含参考答案,人教版)

第二学期期末考试试卷八年级数学本试卷由填空题、选择题和解答题三大题组成.共28小题,满分130分.考试时间120分钟.注意事项:1.答题前,考生务必将自己的考试号、学校、姓名、班级,用0.5毫米黑色墨水签字笔填写在答题卡相对应的位置上,并认真核对;2.答题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持纸面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中.只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上.1.下列图形中,既是轴对称图形又是中心对称图形的是A.等边三角形B.菱形C.等腰直角三角形D.平行四边形2.下列调查中,适宜采用普查的是A.检测一批灯泡的使用寿命B.了解长江中现有鱼的种类C.了解某校八(1)班学生校服的尺码D.了解2015年央视春节联欢晚会的收视率3.下列式子中,属于最简二次根式的是A.125B. C.0.5 D.1224.下列事件中,属于必然事件的是A.某校初二年级共有480人,则至少有两人的生日是同一天B.经过路口,恰好遇到红灯C.打开电视,正在播放动画片D.抛一枚硬币,正面朝上5.如图,点A为反比例函数y=4x图像上一点,AB⊥y轴于点B,点C为x轴上的一动点,则∆ABC的面积为A.2B.4C.8D.不能确定6.下列二次根式的运算:①2⨯6=23,②18-8=2,③225=55,④(-2)2=-2;其中运算正确的有A.1个B.2个C.3个D.4个7.如图,在ABCD中,BM是∠ABC的平分线,交CD于点M,且DM=2,ABCD的周长是14,则BC+ 2 2的长等于A.2B. 2. 5C.3D. 3. 58. 已知关于 x 的方程2 x + m x - 2= 3 的解是正数,则 m 的取值范围为A. m > -6B. m ≥ -6C. m > -6 且 m ≠ -4D. m > -44 1 19. 已知点 P (a , b ) 是反比例函数 y = 图像上异于点 (-2, -2) 的一个动点,则的值为 x 2 + a 2 + b1 3A.B. 1C.D. 42210. 如图,在边长为 6 2 的正方形 ABCD 中, E 是边 CD 的中点, F 在 BC 边上,且 ∠EAF = 45︒ ,连接EF ,则 BF 的长为A. 2 2B. 3C. 3 2D. 4二、填空题 本大题共 8 小题,每小题 3 分,共 24 分,把答案直接填在答题纸相对应位置上.11. 若最简二次根式 2a - 3 与 5 是同类二次根式,则 a 的值为.12. 要使式子 x + 2有意义,则 x 的取值范围是x - 1.13. 某一时刻,身高 1. 6m 的小明在阳光下的影长是 0. 4m ,同一时刻同一地点测得旗杆的影长是 5m ,则该旗杆的高度是m.14. 如图, Rt ∆ABC 中, D 为斜边 AB 的中点, AB = 7 ,延长 AC 到 E 使得 CE = CA ,连结 BE ,则线段 BE 的长为 .15. 如图, ABCD 中,E 为 AD 的中点,连结 CE ,与对角线 BD 交于点 F ,若 ABCD 的面积为 24cm 2,则 ∆DEF 的面积为.16. 实数 a 、 b 在数轴上的位置如图所示,则化简(-a ) + b 2 - (a + b )的结果为.22. (本题满分 7 分)已知反比例函数 y =k2 2 1 217. 如图,已知反比例函数 y = 2 2与一次函数 y = x + 1的图像交于点 A (a , -1) 、B (1,b ) ,则不等式 ≥ x + 1x x的解集为.18. 如图,在平面直角坐标系中,点 D 为 x 轴上的一点,且点 D 坐标为(4,0),过点 D 的直线l ⊥ x 轴,点 A 为直线 l 上的一动点,连结 OA , O B ⊥ OA 交直线 l 于点 B ,则1 1+ 的值OA 2 OB 2为.三、解答题 本大题共 10 小题,共 76 分.把解答过程写在答题纸相对应的位置上,解答时应写出必要的计算过程、推演 步骤或文字说明.作图时用 2B 铅笔或黑色墨水签字笔.19. (本题满分 5分)计算:1 4 124 - 18 ÷ ( 8 ⨯ 54) 2 3 320. (本题满分 5 分)解方程:x + 2 4 - x - 2 x 2 - 4= 121. (本题满分 6 分)先化简x 2 + 2 x + 1 1 - 3x÷ ( x - ) ,并回答:原代数式的值可能等于 1 吗,为什么? 2 x - 6 x - 35的图像经过点 (1,- ) ; x 2(1)求 k 的值,并判断反比例函数的图像所在的象限;3 1(2)如果反比例函数的图像上有两点 (- , y ) 和 (- , y ) ,试比较 y 和 y 的大小关系. 1 223. (本题满分 8 分)为了解某市初中学生每天进行体育锻炼的时间,随机抽样调查了 100 名初中学生,根据调查结果得到如图所示的统计图表.请根据图表信息解答下列问题:(1)在统计表中,m=,n=,并补全条形统计图;(2)扇形统计图中“C组”所对应的圆心角的度数是;(3)据了解该市大约有3万名初中学生,请估计该市初中学生每天进行体育锻炼时间在1小时以上的人数.24.(本题满分8分)如图,在菱形ABCD中,对角线AC、BD相交于点O,DE//AC,AE//BD.(1)求证:四边形AODE是矩形;(2)若AB=6,∠BCD=120︒,求四边形AODE的面积.25.(本题满分7分)为推进“足球进校园活动”,某校计划利用3600元添置某品牌同一型号的足球若干只;实际购买时足球的单价按原价打九折销售,比原计划多购买了4只足球.问每个足球的原价为多少元?(3)在(2)的条件下,若BD26.(本题满分10分)已知:如图,在Rt∆ABC中,O为斜边AC的中点,D为BC边上一点,过点A作AE//BC,交DO的延长线于点E.(1)求证:四边形ADCE是平行四边形;(2)连结OB,如果OB⊥AD,求证:AD⋅AB=AC⋅BD;5=,AC=10,求AE的长.AD527.(本题满分10分)如图,点A是反比例函数y=8x(x>0)的图像上的一个动点,AC⊥x轴于点C;E是线段AC的中点,过点E作AC的垂线,与y轴和反比例函数的图像分别交于点B、D两点;连结AB、BC、CD、DA.设点A的横坐标为m.(1)求点D的坐标(用含有m的代数式表示);(2)判断四边形ABCD的形状,并说明理由;(3)当m为何值时,四边形ABCD是正方形?并求出此时AD所在直线的解析式.28.(本题满分10分)如图,矩形ABCD中,AB=3,AD=4,E为对角线AC上的一个动点,连结DE,EF⊥DE交射线BC与点F,设AE为x.(1)当x取何值时,DE的值最小;(2)设CF=y,当点F在线段BC上时,求y与x之间的函数关系式;(3)试探索:当x为何值时,∆EFC为等腰三角形?人教版八年级下学期期末考试数学试题一、选择题(本大题共12小题,每小题4分,共48分)1.“抛一枚均匀的硬币,落地后正面朝上”这一事件是()A.必然事件B.随机事件C.确定事件D.不可能事件2.下列条件中不能判断四边形是平行四边形的是()A.AB=CD,AD=BC B.AB=CD,AB∥CDC.AB=CD,AD∥BC D.AB∥CD,AD∥BC3.方程x(x+3)=0的根是()A.x=0B.x=-3C.x1=0,x2=3D.x1=0,x2=-34.某几何体的三视图如图所示,则这个几何体是()A.圆柱B.正方形C.球D.圆锥5.如图,在口ABCD中,过点C的直线CE⊥AB,垂足为E,∠EAD=53°,则∠BCE的度数为()A.37°B.47°C.53°D.127°EA DB C6.关于x的一元二次方程kx2+2x-1=0有两个不相等的实数根,则k的取值范围是()A.k>-1B.k≥-1C.k≠0D.k>-1且k≠07.同一时刻,小明在阳光下的影长为2米,与他邻近的旗杆的影长为6米,小明的身高为1.6米,则旗杆的高为()A.3.2米B.4.8米C.5.2米D.5.6米8.若菱形的周长为8cm,高为1cm,则菱形两邻角的度数比为()A.3∶1B.4∶1C.5∶1D.6∶19.下列各组图形可能不相似的是()A .各有一个角是 45°的两个等腰三角形B .各有一个角是 60°的两个等腰三角形C .各有一个角是 105°的两个等腰三角形 D .两个等腰直角三角形10.如图,P 为口 ABCD 的边 AD 上的一点,E 、F 分别是 PB 、PC 的中点,△PEF 、△PDC 、△PAB 的面积分别为 S 、S 1、S 2,若 S =3,则 S 1+S 2 的值是()A .3B .6C .12D .2411.如图,正方形 ABCD 的边长为 3,点 E 、F 分 别在边 BC 、CD 上,将 AB 、AD 分别沿 AE 、AF 折叠,点 B 、D恰好都落在点 G 处,已知 BE =1,则 EF 的长为() 3 5 9 A .2B .2C .4D .312.如图,已知在 △Rt ABC 中,AB =AC =△2,在 ABC 内作第一个内接正方形 DEFG ;然后取 GF 的中点 P ,连 接 PD 、△PE ,在 PDE 内作第二个内接正方形 HIKJ ,再取 线段 KJ 的中点 △Q ,在QHI 内作第三个内接正方形……依次进行下去,则第 n 个内接正方形的边长为() 2 1 2 2 1 2 1 2 2 1 A .3×(2)n -1B . 3 ×(2)n -1C .3×(2)nD . 3 ×(2)n二、填空题(本大题共 6 小题,每小题 4 分,共 24 分)13.一个多边形图案在一个有放大功能的复印机上复印出来,它的一条边由原来的1cm 变成了 2cm ,那么它的面积会由原来的 6cm 2 变为___________.14.有一个正多边形的每一个外角都是 60°,则这个多边形的边数是_______________.15.如图所示,直线 a 经过正方形 ABCD 的顶点 A ,分别过此正方形的顶点 B 、D 作 BF ⊥a 于点 F 、DE ⊥a 于8点E,若DE=4,BF=3,则EF的长为____________.16.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、c m,AE⊥BC于点E,则AE的长为____________.17.设a,b是方程x2+x-2017=0的两个不相等的实数根,则a2+2a+b的值为_________________.18.如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是___________________.三、解答题(本大题共9小题,共78分)19.解方程:(1)x2-2x-3=0;(2)x2-4x+1=020.如图,在口ABCD中,∠ABC的平分线交CD于点E,∠ADC的平分线交AB于点F.求证:BF=DE..21.小玲用下面的方法来测量学校教学大楼 AB 的高度:如图,在水平面上放一面平面镜,镜子与教学楼的距离 EA =12 米,当她与镜子的距离 CE =2 米时,她刚好能从镜子中看到教学楼的顶端 B .已知她的眼睛距地面的高度 DC =1.5 米.请你帮助小玲计算出教学楼的高度 AB 是多少米(根据光的反射定律:反射角等于入射角.)w!w!w.!x!k!b! 22.某市为改善生态环境,积极开展向雾霾宣战,还碧水蓝天专项整治活动 已知 2014 年共投资 1000 万元,2016 年共投资 1210 万元.(1)求 2014 年到 2016 年的平均增长率;(2)该市预计 2017 年的投资增长率与前两年相同,则 2017 年的投资预算是多少万元?23.小明和小丽用形状大小相同,面值不同的 5 张邮票设计了一个游戏,将面值 1 元、2 元、3 元的邮票各一张装入一个信封,面值 4 元、5 元的邮票各一张装入另一个信封,游戏规定:分别从两个信封中各抽取1 张邮票,若它们的面值和是偶数,则小明赢;若它们的面值之和 是奇数,则小丽赢.请你判断这个游戏是否公平,并说明理由.处24.如图1,将矩形ABCD沿DE折叠,使顶点A落在DC上的点A′,然后将矩形展平,沿EF折叠,使顶点A落在折痕DE上的点G处,再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE上的点H处,如图2.(1)求证:EG=CH;(2)已知AF=2,求AD和AB的长.25.如图,在萎形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.xkb126.如图,在△Rt ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t(0<t≤15).过点D作DE⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.27.如图1,四边形ABHC与四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由;(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G,交AC于点M,求证:BD⊥CF;(3)在(2)的条件下,当AB=4,AD=2时,求线段CM的长.x k b1参考答案。
八年级数学下册期末试卷(附含答案)精选全文完整版

可编辑修改精选全文完整版八年级数学下册期末试卷(附含答案)(满分:120分;考试时间:120分)一、选择题(共10小题,每小题3分,满分30分) 1、使1x -有意义的x 的取值范围是( )A x >1B x >-1C x ≥1D x ≥-1 2、在根式xy 、12、2ab 、x y -、2x y 中,最简二次根式有( )A 1个B 2个C 3个D 4个 3、下列计算正确的是( )A 20210=B 5630⨯=C 2236⨯=D 2(3)3-=- 4、一元二次方程x (x-2)=2-x 的根式( )A -1B 2C 1和2D -1和2 5、下列命题中,真命题的个数有( )①对角线互相平分的四边形是平行四边形; ②两组对角分别相等的四边形是平行四边形; ③一组对边平行,另一组对边相等的四边形是平行四边形;A 3个B 2个C 1个D 0个 6、在△ABC 中,三边长分别为a 、b 、c ,且a+c=2b ,c-a=12b ,则△ABC 是( )A 直角三角形B 等边三角形C 等腰三角形D 等腰直角三角形 7、某公司为了解职工参加体育锻炼情况,对职工某一周平均每天锻炼 (跑步或快走)的里程进行统计(保留整数),并将他们平均每天锻炼 的里程数据绘制成扇形统计图,关于他们平均每天锻炼里程数据 下列说法不正确的是( )A 平均每天锻炼里程数据的中位数是2B 平均每天锻炼里程数据的众数是2C 平均每天锻炼里程数据的平均数是2.34D 平均每天锻炼里程数不少于4km 的人数占调查职工的20% 8、疫情期间居民为了减少外出时间,更愿意使用APP 在线上购物,某购物APP 今年二月份用户比一月份增加了44%,三月份用户比二月份增加了21%,则二、三两个月用户的平均每月增长率是( )A 28%B 30%C 32%D 32.5% 9、有两个一元二次方程:M :ax 2+bx+c=0,N :cx 2+bx+a=0,以下四个结论中,错误的是( ) A 如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根 B 如果方程M 有两根符号相同,那么方程N 也有两根符号相同 C 如果5是方程M 的一个根,那么15是方程N 的一个根D 如果方程M和方程N有一个相同的实数根,那么这个跟必是x=110、△ABC中,∠C=30°,AC=6,BD是△ABC的中线,∠ADB=45°,则AB=()二、填空题(共6小题,每小题3分,满分18分)11的结果是12、已知关于x的一元二次方程x2-bx+8=0,一个根为2,则另一个根是13、有一棵9米高的大树,如果大树距离地面4米处这段(没有断开),则小孩至少离开大树米之处才是安全的。
八年级下册期末数学试题附答案

八年级下册期末数学试题附答案数学如何不经常的练习以及活动大脑思维的话,那学习起来会非常的困难,下面是小编给大家带来的八年级下册期末数学试题,希望能够帮助到大家!八年级下册期末数学试题(附答案)(满分:150分,时间:120分钟)一、选择题(每小题3分,共24分)每题有且只有一个答案正确,请把你认为正确的答案前面的字母填入答题卡相应的空格内.1.不等式的解集是( )A B C D2.如果把分式中的x和y都扩大2倍,那么分式的值( )A 扩大2倍B 不变C 缩小2倍D 扩大4倍3. 若反比例函数图像经过点,则此函数图像也经过的点是( )A B C D4.在和中,,如果的周长是16,面积是12,那么的周长、面积依次为( )A 8,3B 8,6C 4,3D 4,65. 下列命题中的假命题是( )A 互余两角的和是90°B 全等三角形的面积相等C 相等的角是对顶角D 两直线平行,同旁内角互补6. 有一把钥匙藏在如图所示的16块正方形瓷砖的某一块下面,则钥匙藏在黑色瓷砖下面的概率是( )A B C D7.为抢修一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车,问原计划每天修多少米?若设原计划每天修x 米,则所列方程正确的是 ( )A B C D8.如图,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AD=4,AB=5,BC=6,点P是AB上一个动点,当PC+PD的和最小时,PB的长为 ( )A 1B 2C 2.5D 3二、填空题(每小题3分,共30分)将答案填写在答题卡相应的横线上.9、函数y= 中,自变量的取值范围是 .10.在比例尺为1∶500000的中国地图上,量得江都市与扬州市相距4厘米,那么江都市与扬州市两地的实际相距千米.11.如图1,,,垂足为 .若,则度.12.如图2,是的边上一点,请你添加一个条件:,使 .13.写出命题“平行四边形的对角线互相平分”的逆命题:_________________________________________________________________________.14.已知、、三条线段,其中,若线段是线段、的比例中项,则 = .15. 若不等式组的解集是,则 .16. 如果分式方程无解,则m= .17. 在函数 ( 为常数)的图象上有三个点(-2, ),(-1, ),( , ),函数值,,的大小为 .18.如图,已知梯形ABCO的底边AO在轴上,BC∥AO,AB⊥AO,过点C的双曲线交OB于D,且,若△OBC的面积等于3,则k的值为 .三、解答题(本大题10小题,共96分)解答应写出文字说明、证明过程或演算步骤.19.(8分)解不等式组,并把解集在数轴上表示出来.20.(8分)解方程:21.(8分)先化简,再求值:,其中 .22.(8分) 如图,在正方形网格中,△OBC的顶点分别为O(0,0), B(3,-1)、C(2,1).(1)以点O(0,0)为位似中心,按比例尺2:1在位似中心的异侧将△OBC放大为△OB′C′ ,放大后点B、C两点的对应点分别为B′、C′ ,画出△OB′C′,并写出点B′、C′的坐标:B′( , ),C′( , );(2)在(1)中,若点M(x,y)为线段BC上任一点,写出变化后点M 的对应点M′的坐标( , ).23.(10分)如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.能否由上面的已知条件证明AB∥ED?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使AB∥ED成立,并给出证明.供选择的三个条件(请从其中选择一个):①AB=ED;②BC=EF;③∠ACB=∠DFE.24.(10分)有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字,和-4.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(2)求点Q落在直线y= 上的概率.25.(10分)如图,已知反比例函数和一次函数的图象相交于第一象限内的点A,且点A的横坐标为1. 过点A作AB⊥x轴于点B,△AOB的面积为1.(1)求反比例函数和一次函数的解析式;(2)若一次函数的图象与x轴相交于点C,求∠ACO的度数;(3)结合图象直接写出:当 > >0 时,x的取值范围.26.(10分)小明想利用太阳光测量楼高,他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD= ,CE= ,CA= (点A、E、C在同一直线上).已知小明的身高EF是,请你帮小明求出楼高AB.27.(12分)某公司为了开发新产品,用A、B两种原料各360千克、290千克,试制甲、乙两种新型产品共50件,下表是试验每件新产品所需原料的相关数据:A(单位:千克) B(单位:千克)甲 9 3乙 4 10(1)设生产甲种产品x件,根据题意列出不等式组,求出x的取值范围;(2)若甲种产品每件成本为70元,乙种产品每件成本为90元,设两种产品的成本总额为y元,求出成本总额y(元) 与甲种产品件数x(件)之间的函数关系式;当甲、乙两种产品各生产多少件时,产品的成本总额最少?并求出最少的成本总额.28.(12分)如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为,若∆ABC固定不动,∆AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n(1)请在图1中找出两对相似而不全等的三角形,并选取其中一对证明它们相似 ;(2)根据图1,求m与n的函数关系式,直接写出自变量n的取值范围;(3)以∆ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2). 旋转∆AFG,使得BD=CE,求出D点的坐标,并通过计算验证 ;(4)在旋转过程中,(3)中的等量关系是否始终成立,若成立,请证明,若不成立,请说明理由.八年级数学参考答案一、选择题(本大题共8小题,每小题3分,共24分)题号 1 2 3 4 5 6 7 8答案 D B D A C C A D二、填空题(本大题共10小题,每题3分,共30分)9、x≠1 10、20 11、40 12、或或13、对角线互相平分的四边形是平行四边形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初 二 数学第二学期期末考试试卷
一.选择题 (共10题,每题3分) 1.如果,5)5(2x x -=-那么( )
A .x>0 B.x≤ 5 C . 不存在 D. 以上都不对
2.在直角坐标系中,点P (-3,5)关于Y 轴对称的点的坐标是( ) A .(3,5) B .(3,-5)C .(-3,5)D .(-3,-5)
3
由图象可知,不挂物体时,弹簧的长度为( )
A . 7cm
B . 8cm
C . 9cm
D . 10cm
4.下列结论不成立的是 ( ) A .顶角相等的两个等腰三角形相似
B .直角边对应成比例的两个直角三角形相似
C .一对锐角对应相等的两个直角三角形相似
D .底和腰对应成比例的两个等腰三角形相似
5.一个三角形三边之比为3:5:7,与之相似的另一个三角形最长边为21cm ,则其余两边之和为( )
A .24cm
B .26 cm
C . 28 cm
D . 32 cm
6.在∆ABC 中,∠A :B ∠:C ∠=1:2:3,则tanA+cosB 等于( ) A .
223+ B . 2
3
C . 635
D .6332+
7.小明放一线长125米的风筝,他的风筝线与水平地面构成39º角,他的风筝高为( ) A . ︒•39sin 125 B .︒•39cos 125 C .︒•39tan 125 D .︒•39cot 125
x(kg)
8.直角三角形ABC 中,∠C =90º,如果sinA =
3
2
,那么cosB 的值为( ) A .
3
2
B .35
C .25
D .不确定
9. 初中生的视力状况受到全社会的广泛关注。
某市有关部门对全市3万名初中生视力状况进行了一次抽样调查,如图就是利用所得的数据绘制的频数分布直方图,如果视力在4.9~5.1
(含4.9和5.1)均属正常,那么全市视力
正常的初中生有( )
A .11250人
B .7500人
C .5000人
D .3750人
10.甲、乙两名同学在相同条件下各射靶10次,命中环数如下:
甲: 7 8 6 8 6 5 9 10 7 4 乙: 9 5 7 8 6 8 7 6 7 7
若想选一个成绩稳定的人参加比赛,最好选择( ) A .甲 B 乙 C 都可 D 不能确定
二.填空题 (共6题,每题3分)
11.若点(2+a,2a+3)在第四象限,则a的取值是
12.已知函数的图像经过(2,-4),(-2,4)两点,请写出满足上述条件的两个不同的函数的解析式 、 。
13.如图,在∆ABC 中,DE 与BC 不平行,则添加
条件 时,∆ABC ∽ΔAED 14.小辉沿着坡度i=1:3的梯子向上走30米,这时她离地面的高度是 米。
15.如图,在矩形ABCD 中,E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点, 若tan ∠AEH =
3
4
,四边形EFGH 的周长为40cm , A B
C
D
E
2
D
G
则矩形ABCD 的面积为 2
cm . 16.如图,Rt ΔABC ,∠C =90º,CD 是斜边上的高,已知AD =3,DB =7,则CD =
三.计算 (共2题,每题6分)
17.315.01812-
+
+
18.0045cos 2
260sin 21⨯ +tan37ºcot37º
四.作图题(6分)
19.以P 为位似中心,将ΔABC 扩大2倍。
•
五.解答题
20.(7分)在Rt ΔABC 中,∠C =90º,已知sinA=13
12
, 求 tanB 的值。
C
A
D
B
P A B
C C
F
B
21.(9分)已知两个一次函数y=4x-4与y=-x+6的图像与x轴分别交于A、C两点,且这两个函数的图像交点为E,求:
(1)交点E的坐标
(2)ΔAEC的面积
22.(8分)如图,河的对岸有一棵树AB,在C点处测得树顶A的仰角为30º,向前走20米到达D点处,又测得树顶A的仰角为45º,求树高AB。
(结果带根号)
C
A D
B
23.(10分)如图为住宅区内的两栋楼,它们的高AB =CD =30m,两楼间的距离AC =24m,现在需了解甲楼对乙楼的采光的影响情况,当太阳光与水平线的夹角为30º时,求甲楼的影子在乙楼上有多高?(精确到0.1m)
24.(10分)小明去商店准备买一条毛巾和一个浴花,恰好商店仅剩4条毛巾且颜色分别是白、黄、蓝、粉和2个浴花且颜色分别是蓝和粉。
小明对营业员说:“我想买一条毛巾和一个浴花”,如果营业员随机抽取毛巾和浴花
(1) 利用“树状图”画出所有可能出现的情况
(2) 抽取到同样颜色的毛巾和浴花与抽取到不同颜色的毛巾和浴花与抽取到不同颜色的毛
巾和浴花的机会相同吗?哪个机会更大一些?
乙 A C
25.(10分)如图,已知ΔABC 中,∠C =90º,∠B =30º, BC =3,M 是AC 上一点,将ΔBCM 沿BM 折叠,使C 点落在D 点处, (1) tan ∠DBM 的值。
(结果保留根号)
(2) 在以BC 所在直线为X 轴,点B 为坐标原点的直角坐标系XOY 中,延长MD 交y 轴于
N ,求点N 的坐标。
(3) 求
BCD
BMN
S S ∆∆的值。
(其中S ΔBMN 和S ΔBCD 分别表示ΔBMN 和ΔBCD
的面积)。