机械原理课程设计压床

合集下载

机械原理课程设计压床机构分析 设计说明书

机械原理课程设计压床机构分析 设计说明书
视图选择:选择合适的视图, 如主视图、俯视图、侧视图 等
尺寸标注:准确、清晰、完 整
装配关系:明确各部件之间 的装配关系,如螺栓、螺母、
轴承等
安全要求:考虑安全因素, 如防护罩、安全开关等
设计说明:对设计进行说明, 如设计思路、设计目的、设 计特点等
设计图纸的说明及标注
设计图纸包括:机构图、零件图、装配图等 机构图:表示机构各部分之间的相对位置和运动关系 零件图:表示零件的形状、尺寸、材料、加工方法等 装配图:表示各零件之间的装配关系和连接方式 标注:包括尺寸、公差、技术要求等,用于指导生产和检验
设计图纸的审核与修改
审核标准:是否符合设计要求,是否满足使用需求 审核内容:图纸的完整性、准确性、清晰度、规范性 修改建议:根据审核结果,提出修改意见和建议 修改流程:根据修改建议,进行图纸的修改和完善 审核确认:修改后的图纸再次进行审核,确认无误后提交使用
07 总结与展望
总结本次设计的主要内容与成果
压床机构的基本组成
压床机构主要由压床、压板、压杆、弹簧、螺栓等部件组成。
压床机构通过压床、压板、压杆等部件的配合,实现对工件的压紧和松 开。 弹簧和螺栓等部件用于调节压床机构的压力和行程,保证压床机构能够 稳定、准确地工作。
压床机构还配有安全装置,如限位开关、安全阀等,以确保操作安全。
03 压床机构的工作原理
压床机构的优化方法
提高压床机构的稳 定性:通过优化设 计,提高压床机构 的稳定性,减少振 动和噪音。
提高压床机构的效 率:通过优化设计, 提高压床机构的工 作效率,减少能耗。
提高压床机构的精 度:通过优化设计 ,提高压床机构的 精度,减少误差。
提高压床机构的安 全性:通过优化设 计,提高压床机构 的安全性,减少事 故发生。

机械原理课程设计压床机构说明书

机械原理课程设计压床机构说明书

机械原理课程设计压床机构说明书机械原理课程设计压床机构说明书一、设计背景压床是一种常见的机械加工设备,广泛应用于金属材料的冲压加工过程中。

本设计旨在设计一种压床机构,以实现在金属材料上施加高压力的功能,从而满足工业生产中对于高效、稳定的压制需求。

二、设计目标本设计的目标是设计并搭建一台能够产生高压力的压床机构,具备如下特点:1. 结构简单,易于制造和安装;2. 压床操作简便,安全可靠;3. 压床机构运行平稳,能够稳定施加压力;4. 具备一定的自调节功能,能够适应不同压制需求;5. 机构材料选取合适,能够在长时间的工作环境下保持稳定性。

三、机构设计根据设计目标和要求,本压床机构采用了简单的液压系统来实现高压力的施加。

其主要组成部分包括压力源、液压缸和工作台面。

其中,压力源提供稳定的高压液体,液压缸将液体的压力转化为机械力,施加在工作台面上。

液压系统采用闭式回路,以确保稳定的压力输出。

在设计中,需要注意液压缸的规格和材料的选取,以保证经久耐用,并且能够承受所需施加的压力。

在液压系统中加入减压阀和溢流阀等辅助装置,来实现对压力的调节和自动保护功能,提高机构的安全性和稳定性。

此外,在机械结构的设计中,还需要确保液压缸和工作台面的密封性能良好,以防止液体泄漏,影响机构的正常工作。

同时,机床的底座和支架也需要足够坚固,能够支撑和固定整个机构。

四、操作说明使用本设计的压床机构时,需要注意以下操作要点:1. 在使用前检查压力源和液压系统各部分的工作状态,确保正常运行;2. 将待加工的金属材料放置在工作台面上,并调整好位置;3. 打开压力源,液压系统开始工作,液压缸施加压力在材料上;4. 当达到所需压制力时,关闭压力源,停止液压系统工作;5. 完成操作后,及时清理工作台面和液压系统,保持整个机构的清洁。

五、安全注意事项在使用本设计的压床机构时,需要遵循以下安全注意事项:1. 在操作前,熟悉压床机构的使用说明书,确保操作正确;2. 操作人员应进行必要的安全培训,熟悉压床机构的操作要点;3. 在操作过程中,严禁将手指和其他身体部位放置在压力源和液压系统的运动范围内;4. 避免过大压力施加在工作台面上,以免造成工作台面和液压系统的损坏;5. 定期检查液压系统的工作状态,如发现异常及时维修和更换部件。

机械原理课程设计----压床机构

机械原理课程设计----压床机构
余能耗
03
优点:
载荷能力强、适用范围广、可扩展性强
各优缺点分析方案
优点:
该机构能够完成压床所需要的工序,且在普通
四杆机构的基础上添加了一个固定杆件,并通
过杆件将冲头移动夫设置成不需要机架,大大
提高了机械的传动效率,机构更加稳定
缺点:
缺点:杆件
运动工程压
力角较大,
实际பைடு நூலகம்功较

04
各优缺点分析方案

柄轴上装有大齿轮6 并起飞轮的
作用。在曲柄轴的另一端装有油
泵凸轮,驱动油泵向连杆机构的
供油。
压床机构设计数据
压床机构简介
02
创新方案介绍
各方案优缺点分析
优点:该机构在设计上不存在影响机构运动的死角,机构在运转工
程中不会因为机构本身的问题而突然停下来。机构使用凸轮和连
杆机构,设计简单,维修、检测都很方便。该机构使用的连杆和
3.计算方法差异:图解法通常是通过几何关系和运动学原理进行计算,而软件进行运动
仿真分析时,可能采用了更为复杂的数值计算方法,例如有限元法、牛顿-欧拉法等。
这些计算方法的差异可能导致图解法和仿真分析得出的数据存在一定的差异。
4.模型精度:软件进行运动仿真分析时,需要建立模型来描述系统的运动规律。模型的
精度和准确性会直接影响仿真分析的结果。如果模型的参数、约束条件等设置不准确,
或者模型本身存在一定的误差,那么得出的数据与实际情况可能存在偏差。
我的收获
◂ 创新设计的能力
◂ 团队合作的能力
◂ 查阅资料的能力
◂ 短时间内解决问题的能力
◂ 自主学习的能力
后记
THANKS!
1、采用曲柄摇杆结构,制造工艺简单,

机械原理课程设计压床机构说明书

机械原理课程设计压床机构说明书

机械原理课程设计压床机构说明书一、设计目标及任务本次课程设计的目标是设计一种能够满足工业生产需求的压床机构。

通过对压床机构的设计,学生需要掌握机械原理的基本知识和设计方法,并能够应用这些知识和方法解决实际工程问题。

设计任务包括:1.压床机构的结构设计,包括压床的底座、上压板、滑块等主要零部件的设计。

2.压床机构的运动学分析,包括底座和上压板的运动关系、滑块的运动方式等。

3.压床机构的动力学分析,包括对驱动机构和压力传感器的选型和设计等。

4.压床机构的强度和刚度分析,包括对底座和上压板的刚度和强度进行计算和验证。

二、压床机构的结构设计压床的底座是整个机构的支撑结构,其设计应考虑到机械的稳定性和强度要求。

底座的形状和材料选用应根据实际情况进行确定。

上压板是压床机构的主要工作部件,其设计应考虑到压力传递、工作平稳性和刚度等要求。

上压板可以采用整体结构或分段结构,根据具体需求选择材料和加工工艺。

滑块是实现上压板运动的关键组成部分,其设计应满足工作平稳、拆装方便和耐磨损等要求。

滑块的材料可以选择高强度合金钢或铸铁等。

三、压床机构的运动学分析压床机构的运动学分析主要研究底座和上压板之间的相对运动关系,以及滑块的运动方式。

通过分析运动学特性,可以确定机构的工作行程、机械转换原理和机构的运动速度等参数。

四、压床机构的动力学分析压床机构的动力学分析主要研究驱动机构和压力传感器的设计和选型。

驱动机构可以选择液压或气动驱动,根据工作要求确定驱动力和行程。

压力传感器的选型需根据工作负荷大小和精度要求进行选择。

五、压床机构的强度和刚度分析压床机构的强度和刚度分析主要研究底座和上压板的刚度和强度。

通过计算和验证,确定机构在工作过程中不会发生变形或断裂,且能够承受工作负荷。

六、总结通过机械原理课程设计压床机构,学生能够综合运用所学的机械原理知识和设计方法,掌握机械结构设计的基本原理和方法。

在整个设计过程中,学生需要注意结构的稳定性、强度和刚度,以及机械的工作平稳性和精度要求。

机械原理课程设计压床

机械原理课程设计压床

机械原理课程设计压床一、课程目标知识目标:1. 让学生掌握压床的基本结构及其工作原理,理解机械原理在压床设计中的应用。

2. 使学生了解并掌握压床的力学分析方法,能够运用力学知识对压床的受力情况进行解析。

3. 帮助学生掌握压床设计中涉及的参数计算和优化方法,提高其解决实际问题的能力。

技能目标:1. 培养学生运用机械原理分析和解决实际工程问题的能力,学会设计简单的压床结构。

2. 培养学生运用绘图软件绘制压床零件图和装配图,提高其绘图技能。

3. 培养学生运用计算软件对压床结构进行力学分析和优化,提高其计算和数据处理能力。

情感态度价值观目标:1. 激发学生对机械原理和工程设计的兴趣,培养其探究精神和创新意识。

2. 培养学生的团队合作精神,使其在小组合作中学会互相尊重、协作解决问题。

3. 强化学生的工程伦理观念,使其在设计过程中充分考虑安全、环保和节能等因素,树立正确的价值观。

本课程针对高年级学生,课程性质为理论与实践相结合。

在教学过程中,注重培养学生的动手能力和实际操作技能,将理论知识与实际工程案例相结合,提高学生的应用能力。

根据学生特点和教学要求,课程目标分解为具体的学习成果,以便于教学设计和评估。

通过本课程的学习,使学生能够具备一定的压床设计能力,为将来从事相关领域工作打下坚实基础。

二、教学内容1. 压床概述- 了解压床的定义、分类及其在工业中的应用。

- 熟悉压床的主要结构组成及功能。

2. 压床工作原理- 学习并掌握压床的工作原理和力学基础。

- 分析不同类型压床的工作过程及其优缺点。

3. 压床设计基础- 掌握压床设计的基本要求、原则和方法。

- 学习压床设计中涉及的力学计算和参数优化。

4. 压床结构设计- 学习压床主要零件的结构设计方法。

- 掌握压床装配图的绘制方法。

5. 压床力学分析- 学习并运用力学分析方法对压床进行受力分析。

- 掌握使用计算软件进行压床力学计算和结果分析。

6. 压床设计实例分析- 分析典型压床设计案例,了解设计过程和注意事项。

机械原理课程设计压床机构说明书

机械原理课程设计压床机构说明书

机械原理课程设计压床机构说明书机械原理课程设计是机械工程专业的重要课程之一,旨在培养学生运用机械原理、机构设计等知识解决实际工程问题的能力。

压床机构是机械工程领域中一种常见的基本机构,用于对工件进行压制、成型、冲裁等工艺操作。

本文将详细介绍压床机构的设计原理和相关参考内容。

一、设计原理:压床机构的设计原理是将电机的旋转运动转化为线性压力,通过压床机构的设计,可以将电机的高速旋转运动转化为工作台的上下运动,从而实现对工件的压制、冲裁等工艺操作。

二、设计要求:1.设计压床机构时,需要考虑压力传递的稳定性和可靠性,确保能够传递足够的压力给工件。

2.设计要满足工艺要求,确保能够对工件进行准确的压制、成型或冲裁操作。

3.设计要尽量简化结构,减少零部件数量,提高生产效率和降低成本。

4.设计要考虑机械安全性,确保操作员的人身安全。

三、设计步骤:1.确定需求:根据实际工艺需求确定机床的规格和性能参数,例如压力、行程等。

2.选择电机:根据需求选择合适的电机,一般会选择步进电机或伺服电机,需要考虑转速、转矩等参数。

3.确定传动方式:根据转动运动转化为线性运动的需求选择适当的传动方式,可以采用滚珠丝杆传动或链条传动等。

4.确定机构类型:根据工艺要求选择压床机构的类型,例如C型压床、H型压床等。

5.绘制机床图纸:根据选定的机构类型和传动方式绘制机床的三维图纸,要确保各部件之间的配合和运动正常。

6.进行运动学分析:利用机械原理中的运动学知识对机床进行分析,包括位置分析、速度分析和加速度分析等。

7.进行强度分析:通过强度学分析,对机床的各个部件进行强度校核,确保机床的使用安全性。

8.选择材料和加工工艺:根据强度分析的结果选择合适的材料和加工工艺,确保机床的质量和使用寿命。

四、参考内容:1.陈静、马乔. 《机械原理及机械设计基础》. 机械工业出版社, 2017.2.邹柏青,马编宏,战士,邢悦. 《机械原理与设计》. 清华大学出版社,2015.3.林杰,张兆龙. 《机构学与机械原理》.北京大学出版社,2013.4.陈锐. 《机械原理》. 清华大学出版社,2014.5.朱斌. 《机械原理》. 清华大学出版社,2012.通过以上参考内容,可以系统地学习和研究机械原理和机构设计的相关知识,为压床机构的设计提供了理论基础和实践指导。

机械原理课程设计压床机构

机械原理课程设计压床机构

机械原理课程设计压床机构机械原理课程设计说明书姓名:***学号:班级:指导老师:成绩:XXX2017年12月8日目录一、机构简介与设计数据1.1 机构简介本文介绍的机构是一个压床机构,用于压制金属材料。

该机构由凸轮机构和传动机构组成。

1.2 机构的动态静力分析在设计机构之前,需要进行动态静力分析,以确保机构的稳定性和可靠性。

1.3 凸轮机构构设计凸轮机构是压床机构的核心部分,它通过旋转运动来驱动压床。

在设计凸轮机构时,需要考虑凸轮的形状、尺寸和旋转速度等因素。

1.4 设计数据在设计压床机构时,需要确定各种参数,包括压力、速度、功率等。

这些参数将直接影响到机构的性能和效率。

二、压床机构的设计2.1 确定传动机构各杆的长度传动机构是指将凸轮机构的旋转运动转化为压床的线性运动的机构。

在设计传动机构时,需要确定各杆的长度,以确保机构的稳定性和准确性。

三、传动机构运动分析3.1 速度分析传动机构的速度分析是指对各杆的速度进行计算和分析。

这将有助于确定机构的速度和加速度。

3.1.1 确定凸轮的旋转速度凸轮的旋转速度是传动机构速度分析的重要参数。

在确定凸轮的旋转速度时,需要考虑机构的稳定性和效率。

3.1.2 确定压床的运动速度压床的运动速度是压床机构的重要参数之一。

在确定压床的运动速度时,需要考虑机构的稳定性和准确性。

3.2 加速度分析传动机构的加速度分析是指对各杆的加速度进行计算和分析。

这将有助于确定机构的加速度和动态性能。

EFDE14BS2BC12DS31DE2根据三角函数可得:$DF=\frac{y}{\sin\angle DFE}$,$FE=\frac{DF}{\tan\angle DFE}$,$DE=DF+FE$。

代入已知数值,计算得到$DF=230.94mm$,$FE=133.74mm$,$DE=364.68mm$。

因此,传动机构各杆的长度为:$AB=60mm$,$BC=182.26mm$,$CD=91.13mm$,$DE=364.68mm$,$EF=91.17mm$,$FG=170mm$。

机械原理课程设计-压床机构(方案二) (2)

机械原理课程设计-压床机构(方案二) (2)

机械原理课程设计-压床机构(方案二)方案二:压床机构的设计一、设计要求:1. 设计一个压床机构,能够实现对工件的快速压制和松开操作;2. 必须满足工件的精确定位和稳定保持;3. 需要符合机械原理的基本原理和规范。

二、方案设计:1. 结构设计:压床机构采用双柱式结构,由上柱和下柱组成。

上柱上装有压力表和手动压床控制器,能够实时监测压床的压力和实现对压床的手动控制。

下柱上安装压床座,用以固定和定位工件。

柱和座都采用高强度材料制成,以确保其刚性和稳定性。

2. 压紧机构设计:压紧机构由压床座和压床头组成。

压床头通过传动装置与驱动装置相连接。

驱动装置可以是液压缸、气压缸、电动机等之一,具体根据实际需求选择。

压床头上安装压力传感器,能够实时监测压紧力并反馈给手动压床控制器。

3. 定位机构设计:定位机构由导轨、滑块、刀架等组成。

导轨安装在床身上,滑块设有可调节的锁紧螺母。

刀架通过滑块与导轨相连接,能够沿着导轨上下移动,以实现对工件的定位。

刀架上还可以安装减震装置,以减少冲击和振动,提高精度。

4. 操作控制设计:压床机械的操作由手动压床控制器控制,可以实现对压床的手动控制,以适应不同工件的压制需求。

同时,为了确保压制的安全和稳定,手动压床控制器会设有压紧力过大或过小的报警功能,即在达到设定的压紧力范围内进行警报提示。

5. 安全设计:为了确保操作人员的安全,压床机构应设有紧急停机开关和防护罩。

只有在紧急情况下,操作人员可以按下紧急停机开关停止机械运转。

防护罩能够有效防止操作人员接触到运动部件,避免事故发生。

三、设计优点:1. 结构紧凑,占地面积小;2. 操作简单,稳定可靠;3. 设计合理,既保证了定位精度,又提高了工作效率;4. 安全性能良好,操作员安全。

方案二是一种基于双柱式结构的压床机构设计。

它满足了压床机构的基本要求,并兼顾了定位精度、工作效率和安全性等方面的因素。

通过手动压床控制器的控制,操作简单易懂,并且具有压紧力过大或过小报警功能,确保了操作的安全可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录一. 设计要求-------------------------------------------------------3 1. 压床机构简介---------------------------------------------------32. 设计内容--------------------------------------------------------3(1) 机构的设计及运动分折----------------------------------------3(2) 机构的动态静力分析-------------------------------------------3(4) 凸轮机构设计---------------------------------------------------3 二.压床机构的设计: -------------------------------------------- 41. 连杆机构的设计及运动分析------------------------------- 4(1) 作机构运动简图--------------------------------------------- 4(2) 长度计算----------------------------------------------------- 4(3) 机构运动速度分析------------------------------------------- 5(4) 机构运动加速度分析----------------------------------------6(5) 机构动态静力分析-------------------------------------------8三.凸轮机构设计-------------------------------------------------11四.飞轮机构设计-------------------------------------------------12五.齿轮机构设计-------------------------------------------------13六.心得体会-------------------------------------------------------14 七、参考文献-----------------------------------------------------14一、压床机构设计要求1.压床机构简介图9—6所示为压床机构简图。

其中,六杆机构ABCDEF为其主体机构,电动机经联轴器带动减速器的三对齿轮z1-z2、z3-z4、z5-z6将转速降低,然后带动曲柄1转动,六杆机构使滑块5克服阻力Fr而运动。

为了减小主轴的速度波动,在曲轴A上装有飞轮,在曲柄轴的另一端装有供润滑连杆机构各运动副用的油泵凸轮。

2.设计内容:(1)机构的设计及运动分折已知:中心距X1、X2、y, 构件3的上、下极限角,滑块的冲程H,比值CE/CD、EF/DE,各构件质心S的位置,曲柄转速n1。

要求:设计连杆机构 , 作机构运动简图、机构1~2个位置的速度多边形和加速度多边形、滑块的运动线图。

以上内容与后面的动态静力分析一起画在l号图纸上。

(2)机构的动态静力分析已知:各构件的重量G及其对质心轴的转动惯量Js(曲柄1和连杆4的重力和转动惯量(略去不计),阻力线图(图9—7)以及连杆机构设计和运动分析中所得的结果。

要求:确定机构一个位置的各运动副中的反作用力及加于曲柄上的平衡力矩。

作图部分亦画在运动分析的图样上。

(3)凸轮机构构设计已知:从动件冲程H,许用压力角[α?].推程角δ。

,远休止角δ?,回程角δ',从动件的运动规律见表9-5,凸轮与曲柄共轴。

要求:按[α]确定凸轮机构的基本尺寸.求出理论廓线外凸曲线的最小曲率半径ρ。

选取滚子半径r,绘制凸轮实际廓线。

以上内容作在2号图纸上二、压床机构的设计1、连杆机构的设计及运动分析设计内容连杆机构的设计及运动分析(2)长度计算:已知:X 1=50mm ,X 2=140mm ,Y =220mm ,ψ13=60°,ψ113=120°,H =140mm ,CE/CD=1/2, EF/DE=1/2, BS 2/BC=1/2, DS 3/DE=1/2。

由条件可得;∠EDE ’=60° ∵DE=DE ’∴△DEE ’等边三角形过D 作DJ ⊥EE ’,交EE ’于J ,交F 1F 2于H ∵∠JDI=90°∴HDJ 是一条水平线, ∴DH ⊥FF ’ ∴FF ’∥EE ’过F 作FK ⊥EE ’ 过E ’作E ’G ⊥FF ’,∴FK =E ’G在△FKE 和△E ’GF ’中,KE =GF ’,FE=E ’F ’,∠FKE=∠E ’GF ’=90°∴△FKE ≌△E ’GF ’ ∴KE= GF ’∵EE ’=EK+KE', FF ’=FG+GF ’ ∴EE ’=FF ’=H∵△DE'E 是等边三角形 ∴DE=EF=H=150mm∵EF/DE=1/2, CE/CD=1/2∴EF=DE/4=150/4=37.5mm CD=2*DE/3=2*150/3=100mm 连接AD,有tan ∠ADI=X 1/Y=5/22 又∵AD=√X2+Y2=148.7mm∴在三角形△ADC 和△ADC ’中,由余弦定理得: AC=√AD2+CD2+2AD*CD*cos(60-19.7)=174mm AC ’=√AD2+CD2-2AD*CD*cos(120-19.7)=275mm∴AB=(AC-AC ’)/2=48mm BC=(AC+AC ’)/2=224.5mm AB BC BS 2 CD DE DS 3 EF48mm 224.5mm 112.25mm 100mm 150mm 75mm 37.5mm单位 mm (o ) mmr/min符号 X 1 X 2 y ρ' ρ'' H CE/CD EF/DEn1 BS 2/BC DS 3/DE 数据50 140 220 60 120 150 1/2 1/41001/2 1/2(3)机构运动速度分析: 已知:n1=90r/min ;1ω = π2601•nrad/s = 100/60*2π =10.46 逆时针vB= 1ω·l AB = 10.46×0.048=0.523m/sC v = B v + Cb v大小 ? 0.523 ? 方向 ⊥CD ⊥AB ⊥BC选取比例尺μv=0.01(mm/s)/mm ,作速度多边形v C =u v ·pc =0.58m/sv CB=u v ·bc =0.315m/sv E =u v ·pe =0.87m/s v F=u v ·pf=0.85m/s v FE=uv ·ef=0.08m/s∴2ω=BCCBl v =1.4rad/s (逆时针) ω3=CDCl v =5.8rad/s (顺时针) ω4=EFFEl v =2.13rad/s (顺时针)(4a B =ω12L AB =5.47m/s 2 a n CB =ω22L BC =0.196m/s 2 a n CD =ω32L CD =3.364m/s 2 a n FE =ω42L EF =0.17m/s 2c a ρ= anCD+ a t CD = a B + a t CD + a n CB大小: ? √ ? √ ? √ 方向: ? C →D ⊥CD B →A ⊥BC C →B选取比例尺μa=0.1(mm/s2)/mm,作加速度多边形图acd=u a·''c p=3.7m/s2aE=u a·''e p=5.4m/s2a tCB=u a· =8.9m/s2a tCD =u a·"'n c=1.4m/s2aF= aE+ a nEF+ a tEF大小: ? √√ ?方向:√√F→E ⊥EFaF=u a·''f p=1.3m/s2as2=u a·=4.5m/s2as3=u a·=2.8m/s2α2= a t CB/LCB=39.7 rad/s2α3= a t CD/LCD=14radm/s2项目数值 5.47 3.7 5.5 1.3 4.5 2.8 39.7 14 单位m/s2rad/s2 G2 G3 G5 Js2 Js3方案Ⅲ660 440 300 0.28 0.085单位 N Kg.m2Fi2=m2*as2=G2*as2/g=303N(与as2方向相反)Fi3=m3*as3= G3*as3/g=125N(与as3方向相反)Fi5= m5*aF=G5*af/g=40N(与aF方向相反)Fr=11000*0.1=1100 N.m(返回行程)Ms2=Js2*α2=11.1N.m (顺时针)Ms3=Js3*α3=1019N.m (逆时针)Ls2= Ms2/Fi2=36mmLs3= Ms3/Fi3=10mm2).计算各运动副的反作用力(1)分析构件5对构件5进行力的分析,选取比例尺μF=20N/mm,作其受力图构件5力平衡:F45+F65+Fi5+G5=0则F45= 300.0N;F65=100.0NF43=F45(方向相反)(2)对构件2受力分析对构件2进行力的分析,选取比例尺杆2对B 点求力矩,可得: -F i2*L I2-G 2*L 2 +F t 32*L BC =0F t32= 322N杆2对S2点求力矩,可得:F t 12*L BS2 –F i2*L s2 -F t 32*L s2 =0 F t 12=224N(3) 对构件3受力分析对构件2进行力的分析,选取比例尺63CD 43S3I3I33G3F t 63=97.9N构件3力平衡:F n 23+ F t 23+F 43+F I3+F t 63+F n 63+G 3=0 则 F n 23=900N ;F n 63=330N构件2力平衡:F 32 +G 2+F I2+F t 12+F n 12=0 则 F n 12=860N ;F 12=890N(4)求作用在曲柄AB 上的平衡力矩MbF61=F21=890N.Mb=F21* L =890×48×0.001项目 F I2 F I3F I5M S2 M S3F t 63数值 303 125 40 11.1 1.1977.6 单位 N N.mN 项目 F t 12 F n 23 F t 23 F 12 F 45 F 65 F 61数值 224 90097.9890 300 160.0 890.0单位N三、凸轮机构设计有基圆符号 h [α] δδsδ'单位 mm (0) 方案11730552585半径R 0=40mm e=8mm 滚子半径 R=8mm 在推程过程中:由a=2πh ω2 sin(2πδ/δ0)/δ02得当δ0 =650时,且00<δ<32.50,则有a>=0,即该过程为加速推程段, 当δ0 =650时,且δ>=32.50, 则有a<=0,即该过程为减速推程段 所以运动方程S=h [(δ/δ0) -sin(2πδ/δ0)/(2π)] 在回程阶段,由a=-2πh ω2 sin(2πδ/δ0’)/ δ0’ 2得当δ0’ =750时,且00<δ<37.50,则有a<=0,即该过程为减速回程段, 当δ0’ =750时,且δ>=37.50, 则有a>=0,即该过程为加速回程段 所以运动方程S=h[1-(δ/δ0’)+sin(2πδ/δ0’) /(2π)] 当δ0 =650时,且00<δ<32.50,则有a>=0,即该过程为加速推程段, 当δ0 =650时,且δ>=32.50, 则有a<=0,即该过程为减速推程段 所以运动方程S=h [(δ/δ0) -sin(2πδ/δ0)/(2π)]凸轮廓线如下:五、 齿轮机构设计已知:齿轮6,,32,112065====m oZ Z 模数分度圆压力角α,齿轮为正常齿制,工作情况为开式传动,齿轮Z 6与曲柄共轴。

相关文档
最新文档