大学物理矢量运算
《大学物理》矢量运算

一、矢量和标量的定义及表示
1.标量:只有大小和正负而无方向的量,如质量、时间、 温度、功、能量。 表示:一般字母:m、t、T, 运算法则:代数法则
2.矢量:既有大小又有方向的量,如位移、加速度、电场强度
表示:粗体字母A 或 A ,其大小用 A 或 A 表示 。
A A A0
(3) A B Ax B x A y B y Az Bz
(4)引入矢量标积后,功就可以表示为 W F s Fcos s
3.矢量的叉乘
矢积
两矢量相乘得到矢量的乘法叫叉乘,其乘积称为矢积(叉积)
大小: C ABsin
C A B
垂直于A 、 B 组成的平面, 方向: 指向用右手螺旋法则确定。
位移、速度等 的合成
矢量作业
1. 矢量应如何正确表示? 2. 矢量减法满足什么规律(请附图说明)?
3. 写出矢量点乘的解析表达式。
4. 矢量叉乘的右手螺旋法则如何操作?
5. 已知: a与b 夹角为45 , a 6, b 2 2 , 求 a 2b a 3b
2 2 Ax Ay Az2
Az
z
k
Ax x
cos 2 cos 2 cos 2 1
4.矢量合成的解析法
A B ( Ax Bx ) i ( Ay By ) j
y 已知 A、B,(如图)求 A B 、B 用平行四边形法则合成 C 解:先将 A A C A B 然后将 A、B 正交分解,其解析式为 O A Ax i Ay j B Bx i B y j
大学物理矢量代数

Ax dAx , Ay dAy ,
Az dAz
A Axi Ay j Azk
8
矢量代数基本知识
1
矢量代数的基本知识
标量:只有大小, 例如:质量、长度、时间、密度、能量、温度等。
矢量:既有大小又有方向,并有一定的运算规则,
例如:位移、速度、加速
z
度、角速度、电场强度等。
1、矢量的两种表示方式: 几何表示
A
o
y
——有指向的线段。
x
2
解析表示(直角坐标系)
A Axi Ay j Azk
Байду номын сангаас
AB
结论:两个矢量叉乘得到
B
的结果仍然是一个矢量。
注意 A B B A
A
7
(4)矢量的求导
dA dt
d dt
( Axi
Ay
j
Azk )
d dt
( Axi )
d dt
( Ay
j)
d dt
( Azk )
dAx
i
dAy
j
dAz
k
dt dt dt
(5)矢量的积分
先对矢量的各分量分别进行积分,再 对得到的各分量值进行矢量合成。
那么 A B (Axi Ay j Azk ) (Bxi By j Bzk )
Ax Bx Ay By Az Bz
请问: A dA与 AdA是否相等 ?
6
矢量的叉乘
A
是
B |
A与
A
B
|| B | sin
的夹角,
是一个单位矢量。
并且的跟方矢向量:垂A 直、B于形由成A右、手B 螺所旋构关成系的:平面,
大学物理矢量运算公式(二)2024

大学物理矢量运算公式(二)引言概述:矢量运算在大学物理中起着重要的作用,它涉及到向量的加减法、点积、叉积等运算。
在本文中,我们将深入探讨大学物理中的矢量运算公式,包括向量的加法和减法、点积的定义和计算、叉积的定义和计算等内容。
理解这些公式不仅对于解决物理问题具有重要意义,也有助于加深对矢量概念的理解。
正文内容:I. 向量的加法和减法1. 向量的加法原理a. 同向向量的加法b. 反向向量的加法2. 向量的减法原理a. 原理解释b. 向量减法的计算方法3. 向量加法和减法的性质a. 加法的交换律b. 加法的结合律c. 减法的性质II. 点积运算1. 点积的定义和意义b. 几何意义和物理意义2. 点积的计算方法a. 分量法计算b. 对易性和非对易性3. 点积的性质a. 交换律和结合律b. 点积与向量的长度和夹角的关系III. 叉积运算1. 叉积的定义和意义a. 定义解释b. 叉积与向量垂直的性质2. 叉积的计算方法a. 分量法计算b. 右手法则3. 叉积的性质a. 反对称性和非交换性b. 叉积与向量的长度和夹角的关系IV. 矢量运算公式的应用1. 应用于力学问题b. 飞行器问题2. 应用于电磁学问题a. 磁场问题b. 电场问题V. 矢量运算公式的扩展1. 多维空间中的矢量运算a. 三维空间中的矢量运算b. 更高维度空间中的矢量运算2. 张量运算与矢量运算的关系a. 张量的定义和性质b. 张量与向量的关系总结:本文介绍了大学物理中的矢量运算公式,包括向量的加法和减法、点积的定义和计算、叉积的定义和计算等内容。
理解这些公式对于解决物理问题具有重要的意义,并且可以加深对矢量概念的理解。
同时,我们还探讨了矢量运算公式在力学和电磁学问题中的应用,以及矢量运算的拓展和与张量的关系。
深入理解和掌握这些公式,将有助于提高物理学习的效果。
大学物理矢量基础(一)2024

大学物理矢量基础(一)引言:矢量是描述物理量的重要工具,它有大小和方向,可以用来表示力、速度、加速度等物理量。
掌握矢量的基础知识对于学习大学物理至关重要。
本文将介绍大学物理中关于矢量的基础知识,包括矢量的定义、表示以及矢量运算,以便读者更好地理解并应用矢量概念于物理学。
正文:一、矢量的定义和性质:1. 矢量的定义及其与标量的区别;2. 矢量的性质:大小、方向和代表的物理量;3. 矢量的分类:自由矢量和固定矢量;4. 矢量的表示方法:箭头、加粗和小写斜体字母。
二、矢量的坐标表示:1. 极坐标和直角坐标系的介绍;2. 矢量在直角坐标系中的表示方法;3. 矢量的坐标分量及其计算方法;4. 矢量的单位矢量表示及其定义;5. 矢量的分解和合成。
三、矢量的运算:1. 矢量的加法及其几何意义;2. 矢量的减法及其几何意义;3. 矢量的数乘及其几何意义;4. 矢量的数量积及其几何意义;5. 矢量的向量积及其几何意义。
四、矢量的运算定律:1. 矢量的交换律和结合律;2. 矢量的分配律和数量积的交换律;3. 矢量的数量积和向量积的分配律;4. 矢量的向量积和数量积的混合积;5. 应用运算定律解决物理问题的例子。
五、矢量的应用:1. 矢量运算在力学中的应用;2. 矢量运算在电磁学中的应用;3. 矢量运算在热学中的应用;4. 矢量运算在光学中的应用;5. 矢量运算在其他学科中的应用。
总结:通过本文的介绍,我们了解了大学物理中关于矢量的基础知识。
我们学习了矢量的定义和性质,以及矢量的坐标表示和运算。
我们还了解了矢量的运算定律和应用示例。
矢量的基础知识是学习物理学的重要基石,它可以帮助我们更好地理解和分析物理现象。
希望本文对读者的物理学习有所帮助。
大学物理矢量运算公式(一)2024

大学物理矢量运算公式(一)引言概述:
大学物理中,矢量运算是一门重要的基础课程。
矢量运算公式是在处理矢量量的运算过程中所使用的关键工具。
本文将介绍大学物理矢量运算公式的一些基本概念和常见公式,以帮助读者更好地理解和应用矢量运算。
正文内容:
一、矢量的表示和性质
1. 矢量的定义和表示方法
2. 矢量的加法和减法运算
3. 矢量的数量积和矢量积定义及其性质
4. 矢量的分解和合成
5. 矢量的单位化和模长计算
二、矢量的坐标表示
1. 直角坐标系和矢量的坐标表示
2. 极坐标系和矢量的坐标表示
3. 球坐标系和矢量的坐标表示
三、矢量的运算公式
1. 矢量的加法和减法公式
2. 矢量的数量积公式和性质
3. 矢量的矢量积公式和性质
4. 矢量的混合积公式和性质
5. 矢量的分解和合成公式
四、应用举例
1. 矢量运算在力学中的应用
2. 矢量运算在电磁学中的应用
3. 矢量运算在波动学中的应用
4. 矢量运算在光学中的应用
5. 矢量运算在热学中的应用
五、矢量运算的常见错误和注意事项
1. 矢量运算中常见的错误类型
2. 矢量运算中需要注意的细节
3. 矢量运算的常见问题及解答
4. 矢量运算的常见应用技巧
5. 矢量运算的进一步深入学习建议
总结:
本文概述了大学物理矢量运算公式的基本概念和常见公式,包括矢量的表示和性质、矢量的坐标表示、矢量的运算公式、应用举例以及矢量运算的常见错误和注意事项。
矢量运算公式在物理学中有着广泛的应用,通过学习和掌握这些公式,读者可以更好地理解和应用矢量运算。
对于进一步深入学习,本文还提出了建议。
学习大学物理必备数学知识

r
r
r
自矢矢 量量的BAr 的 末端末画端出画矢出量矢量 ,CBr,则再从就Cr矢是量 和A的Ar 始端的Br到合
矢量。
4
利用矢量平移不变性: r
d
A r
c
r
C
r
B a
r
B b
A
图4 两矢量相加的平行四边形法则
2、利用计算方法计算合矢量的大小和方向:
r
C A2 B2 2AB cos arctan B sin
r B
•
r dA
dt
dt
dt
(4)
d
rr A B
r A
r dB
r dA
r B
dt
dt dt
26
2、矢量的积分:
设
r A
和
r B
均在同一平面直角坐标系内,且
r dB
Ar,
则有:dBr
r Adt
dt
r B
r Adt
r Axi
Ay
r j
dt
r
r
Axdt i Aydt j
r
的模,用符号 A 表示。
A
图1 矢量的图像表示
2
2、矢量平移的不变性:
r
r
把矢量 A在空间平移,则矢量 A的大小和方向都不
会因平移而改变。
r
r
A
A
r A
图2 矢量平移
3
二 矢量合成的几何方法
1、利用质点在平面上的位移说明矢量相加法则:
r
c
理论力学(矢量运算基本知识)

ai = i aix+ jaiy + kaiz 则有: Rx= aix
4.矢量的矢积 (1)定义: c = a × b
R = ai Rz= aiz
Ry= aiy
c
c a b sin a b
b a
6
(2)直角坐标中的解析表示
i a b ax bx
j ay by
k az bz
y
xE+2xA= c1
xB+(xB - xA) = c2
xC+(xC - xB) = c3
C
E
xD - xC =c4
D
x
18
对上述各式微分得:
2 dxB - dxA = 0 dxD - dxC = 0
dxE + 2 dxA = 0
2 dxC - dxB = 0
8dxD = -d xE
8vD= - vE 8aD= - aE aE = 2 vE =10 aE = 2
18 5
14
二.绪论
1.理论力学的研究对象
(1)机械运动
(2)质点,质点系,刚体和多刚体系统
(3)静力学,运动学,动力学和分析力学概论
2.理论力学的学习目的 3.理论力学的研究方法 4.理论力学的学习方法
15
例题2.如图所示,滑轮和绳子的质量均不计,物块A和B
的质量分别为m1和m2 且m1< m2 ,试求物块A的加速度. 解:
理 论 力一.矢量运算的基本知识 1.单位矢量 2.矢量的加法 3.矢量的标积 4.矢量的矢积 5.矢量的导数
2
二.绪论
1. 理论力学的研究对象 2. 理论力学的学习目的 3. 理论力学的研究方法 4. 理论力学的学习方法
大学物理矢量运算

chap0 矢量代数0.1矢量与标量一.标量定义:只有大小,没有方向的量。
表示:数字(可带正负号)。
加法:代数和。
二.矢量定义:既有大小,又有方向的量。
表示:0A v v 矢量的模)矢量的大小A v (:1)A A = 方向的单位矢量沿A A v:0 2)有向线段 矢量的方向方向矢量的模)矢量的大小长度:(:加法:平行四边形法则或三角形法则。
0.2矢量的合成与分解一.矢量的合成Av Av v C v B v Bv Cv Av Bv Cv Dv Ev 说明:)(B A B A vv v v −+=−BA C v v v +=BA C v v +=DC B A E v v v v v +++=A v Bv Cv Bv −Av Cv Bv二.矢量的分解把一个矢量看成两个或两个以上的矢量相加。
1.矢量的分解Ø一般一个矢量有无穷多种分解法Av Cv B v A v xA v yA v CB A v v v +→yx A A A v v v +→2.矢量的正交分解z三.矢量和(差)的正交分量表示k A j A i A A z y x v vv v ++=v vv v k B j B i B B z y x ++=k B A j B A i B A B A z z y y x x v vv v v )()()(±+±+±=±0.3矢量的乘积定义:一.矢量乘以标量Am B v v=二.矢量的标积定义:性质:1)A B B A v v v v ⋅=⋅v θψcos AB B A =⋅=vv )],([B A v v =θ2)C A B A C B A v v v v v v ⋅+⋅=+⋅)(3)B A B A v v v v ⊥⇔=⋅0 4)2A A A =⋅v v 矢量的标积的正交分量表示:zz y y x x B A B A B A B A ++=⋅vv 1=⋅=⋅=⋅=⋅=⋅=⋅k k j j i i i k k j j i v v v v v v v v v v v v三.矢量的矢积定义:==×=大小:)],([sin B A AB S BA S vv v v v θθ性质:⊥⊥满足右螺旋定则方向:,,B S A S v v v v 1)A B B A v v v v ×−=×2)C A B A C B A v v v v v v v ×+×=+×)(3)B A B A v v v v //0↔=×4)0=×A A v v矢量的标积的正交分量表示:0.4矢量函数的导数与积分一.矢量函数矢量A v与变量t 之间存在一定的关系,如果当变量t 取定某个值后,矢量A v有唯一确定的值(大小和方向)与之对应,则A v称为t 的矢量函数,即:)(t A A v v =二.矢量函数的导数定义tt A t t A t Adt A d t t ∆∆∆∆∆∆)()(lim lim 00v v vv −+==→→zv xy)(t A A v v =)('t t A A ∆+=v)()(t A t t A A v v v −+=∆∆O1)dtBd dt A d B A dt d vv v v ±=±)(2)dtAd m A dt dm A m dt d vv v +=)(B d A d d v v v v v v 性质三.矢量函数的积分定义v v v v B d v v,若)(t A A =,)(t B B =,且A dt=则B v称为A v 的积分,记为:∫=dt A B v v性质1)dt B dt A dt B A ∫∫∫±=±v v v v )(2)dt A m dt A m ∫∫=vv )( 常量)=m (3)dt A C dt A C ∫∫⋅=⋅vv v v )(常量)=C r (r 矢量函数积分的正交分量表示k dt A j dt A i dt A dt A z y x v v v v )()()(∫∫∫∫++=4)dt A C dt A C ∫∫×=×vv v v )(常量)=C (例题0-1 两矢量:k j i a v v v v−+=34,k j i b v v v v 543+−=,通过矢量运算求:求:(1)以a v 、b v为两邻边所作的平行四边形两对角线的长度;例0-2 两矢量函数:j i t a v v v2)12(+−=,j t i b v v v )32(−+−=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
chap0 矢量代数
0.1矢量与标量
一.标量
定义:只有大小,没有方向的量。
表示:数字(可带正负号)。
加法:代数和。
二.矢量
定义:既有大小,又有方向的量。
表示:
0A v v 矢量的模)矢量的大小A v (:1)A A = 方向的单位矢量
沿A A v
:0 2)有向线段 矢量的方向
方向矢量的模)
矢量的大小长度:(:
加法:平行四边形法则或三角形法则。
0.2矢量的合成与分解
一.矢量的合成
A
v A
v v C v B v B
v C
v A
v B
v C
v D
v E
v 说明:)(B A B A v
v v v −+=−
B
A C v v v +=B
A C v v +=D
C B A E v v v v v +++=A v B
v C
v B
v −A
v C
v B
v
二.矢量的分解
把一个矢量看成两个或两个以上的矢量相加。
1.矢量的分解
Ø一般一个矢量有无穷多种分解法
A
v C
v B v A v x
A v y
A v C
B A v v v +→y
x A A A v v v +→
2.矢量的正交分解
z
三.矢量和(差)的正交分量表示
k A j A i A A z y x v v
v v ++=
v v
v v k B j B i B B z y x ++=
k B A j B A i B A B A z z y y x x v v
v v v )()()(±+±+±=±
0.3矢量的乘积
定义:
一.矢量乘以标量
A
m B v v
=
二.矢量的标积
定义:性质:
1)A B B A v v v v ⋅=⋅
v θ
ψcos AB B A =⋅=v
v )]
,([B A v v =θ2)C A B A C B A v v v v v v ⋅+⋅=+⋅)(
3)B A B A v v v v ⊥⇔=⋅0 4)2A A A =⋅v v 矢量的标积的正交分量表示:
z
z y y x x B A B A B A B A ++=⋅v
v 1
=⋅=⋅=⋅=⋅=⋅=⋅k k j j i i i k k j j i v v v v v v v v v v v v
三.矢量的矢积
定义:
==×=大小:
)],([sin B A AB S B
A S v
v v v v θθ性质:
⊥⊥满足右螺旋定则方向:
,,B S A S v v v v 1)A B B A v v v v ×−=×
2)C A B A C B A v v v v v v v ×+×=+×)(
3)B A B A v v v v //0↔=×
4)0=×A A v v
矢量的标积的正交分量表示:
0.4矢量函数的导数与积分
一.矢量函数
矢量A v
与变量t 之间存在一定的关系,如果当变
量t 取定某个值后,矢量A v
有唯一确定的值(大小和
方向)与之对应,则A v
称为t 的矢量函数,即:
)(t A A v v =
二.矢量函数的导数
定义
t
t A t t A t A
dt A d t t ∆∆∆∆∆∆)()(lim lim 00v v v
v −+==→→z
v x
y
)
(t A A v v =)
('t t A A ∆+=v
)
()(t A t t A A v v v −+=∆∆O
1)dt
B
d dt A d B A dt d v
v v v ±=±)(
2)dt
A
d m A dt dm A m dt d v
v v +=)(
B d A d d v v v v v v 性质
三.矢量函数的积分
定义
v v v v B d v v
,若)(t A A =,)(t B B =,且A dt
=
则B v
称为A v 的积分,记为:
∫=dt A B v v
性质
1)dt B dt A dt B A ∫∫∫±=±v v v v )(
2)dt A m dt A m ∫∫=v
v )( 常量)=m (
3)dt A C dt A C ∫∫⋅=⋅v
v v v )(常量)=C r (
r 矢量函数积分的正交分量表示
k dt A j dt A i dt A dt A z y x v v v v )()()(∫
∫∫∫++=4)dt A C dt A C ∫∫×=×v
v v v )(常量)=C (
例题0-1 两矢量:k j i a v v v v
−+=34,k j i b v v v v 543+−=,
通过矢量运算求:
求:(1)以a v 、b v
为两邻边所作的平行四边形
两对角线的长度;
例0-2 两矢量函数:j i t a v v v
2)12(+−=,j t i b v v v )32(−+−=。
求:(1)?=t 时b a v
v ⊥;
0.5场和波
❖场其实是一个广义范畴。
❖数学概念,场就是具有某种性质的空间比如无旋场,无散场,它并没有实际的存在形式
❖物理概念,场是物质的一种存在形式场被赋予了物质的意义,具有物质的基本性质
❖在物理学上,场主要是指电磁场,是一种物质
波是在空间上分布的幅度和方向随时间变化的场,本质上波是一种特殊形式的场。
因此有波必然有场存在,但是并不是所有的场都能形成波。
比如在一个静止电荷周围产生的静电场,就不能认为是波。
0.6散度、旋度和梯度
1、散度
τ
τ∆⋅=∫
→∆S
S d A A div v v v
lim
物理意义:包围单位体积闭合面的通量。
2、旋度
n
)A rot S
l d A c
s v
v v v ⋅=∆⋅∫
→∆(lim
物理意义:矢量的旋度是环流面密度的最大值,
与面元的取向无关。
z
y x n n e z
u e y u e x u e l u u gradu v
v v v ∂∂+∂∂+∂∂=∂∂=∇=3、梯度
标量沿某一方向的方向导数等于标量的梯度在该方向上的投影
保守场:场强沿线积分与路径无关,沿闭合回路的积分为零无旋场:旋度为零的矢量场叫做无旋场。
标量场的梯度场是无旋场,如静电场。
无散场:散度为零的矢量场叫做无散场。
矢量场的旋度场是无散场,如恒定磁场。