大学物理-旋转矢量

合集下载

旋转矢量法在简谐振动中的应用探讨

旋转矢量法在简谐振动中的应用探讨

旋转矢量法在简谐振动中的应用探讨摘要:结合旋转矢量法的理论依据探究旋转矢量法在简谐振动中的应用,探究结果发现:旋转矢量法的理论依据是两个振幅相等,频率相同的简谐振动,相位差等于π/2,沿垂直方向的合成就是圆周运动;而旋转矢量法可计算简谐振动的矢端速度与加速度、相位与初相位、运动时间间隔及合振动。

关键词:旋转矢量法;简谐振动;应用0.旋转矢量法旋转矢量法[1],也叫匀速圆周运动法,参考圆法,用其方法来解决简谐振动中的问题,相对来说比较简单。

如图1,做一个圆周,以O为原点,向右为正方向建立坐标轴,根据题目条件确定半径位置,要观察的是半径的端点在x轴上的投影的位置,如果速度为正,半径端点一定处于x轴下方,反之在x轴上方,比如,t=0时,质点正经过平衡位置向正方向运动,那么这个半径端点就是在原点正下方,即端点的投影刚好在原点[2]。

而以O为原点的旋转向量A的端点与在x 轴上的投影点的运动为简谐振动。

图1 旋转矢量图2 相位差为π/2互相垂直简谐振动的合成1.简谐振动矢量法的理论依据互相垂直相同频率简谐振动的合成[3],现将分振动的运动学方程表示为,,质点既沿Ox轴又沿Oy轴运动,实际上是在Oxy平面上运动。

从上面方程消去t,得合振动的轨迹方程:=。

当相位差为时,,表明合振动的轨迹为以x和y为轴的椭圆,如图2所示这里又可分为两种情况,时,x方向的振动比y方向的振动超前,即,当某一瞬时,则x=0,y=A2,即质点在图2(a)中的P点,经过很短时间后略大于零,y将略小于A2,为正,而略大于,x将为负,故质点运动到第二象限,即质点沿椭圆逆时针运动。

反之,时,y方向的振动比x方向的振动超前,质点沿椭圆顺时针方向运动,如图2(b)。

以上两分运动中,若=且相位差为,则其合运动轨迹方程褪化为圆。

两个振幅相等,频率相同的简谐振动,相位差等于沿互相垂直方向合成的为圆周运动;反推理可得,圆周运动亦能分解为两互相垂直的同振幅同频率的简谐振动。

大学物理-11第十一讲简谐振动、振动能量、旋转矢量法

大学物理-11第十一讲简谐振动、振动能量、旋转矢量法
振动方程 x0.15cos5tmxAcost
14
例:边长l的立方体木块浮于静水中,浸入水中部分 的高度为b。今用手将木块压下去,放手让其开始运 动。忽略水的阻力,证明木块作谐振动。 解:以水面为原点建立坐标OX。
任意时刻 F浮水(bx)l2g mgF浮ma
水 b l2g水 l2(bx)gm a
力使 减小.

mgsinmldd2t2
很小,sin mg
ml
d2
dt2
l m
f mg
d 2
dt 2

g
l

0
角谐振动
解为 0cos(t)
g T 2 l
l
g
12
例:如图所示装置,轻弹簧k =50N/m,滑轮 M =1kg,
半径 R =0.2m,物体 m =1.5kg。若将物体由平衡位置
X
P
xAcos(t)
◆可用该旋转矢量末端的投影点 P 的运动来表示简 谐振动。
16
旋转矢量法的应用
1.确定初位相 ●由初始位置 x0 确定旋转矢量两个可能的位置。 (特殊情况下只有一个位置) ●根据初始速度方向,由旋转矢量两个可能的位 置中确定初始位置,从而找出初相.。
A

Ox
17
例:确定下列情况的初位相 (a) 已知 t = 0 时,x = -A。 (b) 已知 t = 0时,x = 0,且向 x 轴正方向运动。 (c) 已知 t = 0,x = -A/2,且向 x 轴负方向运动。 (d) 已知 t = 0,x = -A/2,且向 x 轴正方向运动。
13
d2x dt2
k x0 m(1/2)m
d2x dt 2

大学物理B(Ⅱ)旋转矢量

大学物理B(Ⅱ)旋转矢量
2
t 0.667s
x
A
00 7.5 A 2
A v
t0
例 一简谐运动的运动
曲线如图所示,求振动周
期.
t(s) t 0

A A2 0 A x
t 7.5
2π T T
t 7.5s
T 18s
例 已知谐振动的 A 、T ,求 1)如图简谐运动方
A'
44
因为 v0 0 ,由旋转矢量图可知 ' π 4
x Acos(t ) 0.0707cos(6.0t π)
4
例2 一质量为 0.01kg 的物体作简谐运动,其振
幅为 0.08m,周期为 4s ,起始时刻物体在 x 0.04m
处,向 Ox轴负方向运动(如图).试求
(1)t 1.0s 时,物体所处的位置和所受的力;
A/2 t ta
A 0 A x
t0
π ( π) 2π
3 33
tb
T

T 3
的最短时间.
v
x/m
0.08 0.04 o 0.04 0.08
法一 设由起始位置运动到 x 0.04m 处所
需要的最短时间为 t
0.04 0.08cos(π t π) 23
t 0.667s
解法二
t 时刻
t
π3 π3
0.08 0.04 o 0.04
起始时刻
x/m
0.08
t π
3
π s1
x 0.08cos(π t π ) 23
m 0.01kg
v
x/m
0.08 0.04 o 0.04 0.08
x 0.08cos(π t π ) 23
t 1.0s 代入上式得 x 0.069m

旋转矢量表示法B版

旋转矢量表示法B版

1 2
⎞ ⎟ ⎠

π⎤
3
⎥ ⎦
=
2 π
⎡ 2π ⎢⎣ 3

π⎤ 3 ⎥⎦
=
2 3
=
0.667(s)
四、相图(phase diagram)
利用相图描述非线性动力学的方 法是19世纪末法国数学家亨利·庞加 莱(H.Poincare)发明的.
现以坐标和速度为坐标轴定义一 个平面, 称为相平面. 系统的一个运 动状态对应于相平面上的一个点, 称 为相点. 当系统的运动状态发生变化 时, 相点在相平面内运动, 相点的轨 迹则称为相图.
A 端投影:
x = A cos(ωt + ϕ )
与简谐运动方程完全相同, 所以投影点的运动为简谐运动.
二、初相位
ϕ = π平衡位置 2
旋转矢量表示法
π <ϕ <π 2
ϕ
ϕ=π
负向最大
π 0<ϕ<
2
x ϕ=0
正向最大
π < ϕ < 3π 2
3π < ϕ < 2π 2
ϕ = 3π 平衡位置 2
初相位讨论
大学物理
振动学基础
第3讲 旋转矢量表示法
旋转矢量表示法
旋转矢量表示法
一、旋转矢量表示法(参考圆法)
是研究简谐运动规律时所采用的直观的几何描述方法.
自 Ox 轴原点作矢量 A , 其模等 于振幅. A 绕 O点逆时针旋转, 角 速度为ω (其数值即为简谐运动的 角频率) , 则 A 称为旋转振幅矢量. 设初始时刻 t = 0 时 A 与 x 轴夹角 等于初相位 ϕ , 经过时间 t , A 与 x 轴夹角等于相位ω t +ϕ .

1-1 简谐运动方程及旋转矢量

1-1 简谐运动方程及旋转矢量

热力学基础 f ( P,V , T ) C
气体动理论 k N 0
量子物理

E = h
xPx h
1 2 1 mv f(v)dv kT 2 2 h E , p h
第九章
振动
Chapter 9 Vibration
String theory: Theory of everything
2. 简谐运动的运动学分析 运动方程 x A cos(t )
(1)描述简谐运动的基本物理量 A——振幅
ω——角频率
T——周期 ν——频率 ωt +φ——相位
A A
x
T
o
t
初相:表示物体在初 始时刻的振动状态。
v A sin( t )
a A cos(t )
l
FT m

g l
o
Acos(t )
问题:
P
Simple Harmonic Motion (SHM)
5. 简谐运动的两个实例——单摆和复摆 (2)复摆 5
o

d 2 转动正向 2 sin 0 dt
2
lc
*
C
P
( C点为质心)
mglc J
3. 旋转矢量法
简谐运动 平衡位置 振幅 角频率 初相 相位 位移 旋转矢量 圆心

A
t
o
x
半径 角速度
初始角度 t时刻的夹角
半径在x轴上的投影
例1 已知某简谐运动的振动曲线如图所示, 位移的单位为cm,时间单位为s,则此简谐振 动的
振幅 A= 角频率
2 cm
4 rad s 1 3

大学物理旋转矢量

大学物理旋转矢量

极坐标表示法
极坐标与平面角
旋转矢量在极坐标系中由一个起点、一个长度和一个平面角唯一确定。平面角表示矢量旋转的方向和角度。
旋转矢量的运算
在极坐标系中,可以通过加减、数乘等运算得到新的旋转矢量。
直角坐标表示法
直角坐标与平面矢量
旋转矢量在直角坐标系中由三个分量唯一确定,这三个分量表示矢量在x、y、z轴上的投影。
结论总结
总结实验结果,得出结论,并指出实验的局限性和未来改进的方向 。
THANKS
感谢观看
旋转矢量的积分
当一个旋转矢量在某区间内进行积分时,其 结果为该区间内所有点处的切线方向与该区 间内所有点处的速度方向一致的点所组成的
线段。
04
旋转矢量在物理中的应用
角动量守恒定律
角动量定义
物体的转动惯量和转动半径的乘积称为角动量。
角动量守恒定律
在没有外力矩作用的情况下,物体的角动量保持不变。
旋转矢量表示
旋转矢量的应用领域
物理学
旋转矢量在物理学中广泛应用于描述物体的 旋转运动,如刚体的转动、电磁场的旋涡等 。
工程学
在机械工程、航空航天等领域,旋转矢量可以用于 分析物体的动态平衡、稳定性等问题。
电子技术
在电子技术中,旋转矢量可以用于描述信号 的相位、频率等参数,以及进行数字信号处 理。
02
旋转矢量的表示方法
03
旋转矢量的运算规则
加法运算规则
平行四边形法则
当两个旋转矢量相加时,以两个矢量的末端 为起点,分别画出平行四边形的两个相邻边 ,连接对角线,得到的结果是两个旋转矢量 相加后的矢量。
三角形法则
当两个旋转矢量相加时,以一个矢量的起点 为起点,画另一个矢量的平行线,得到的结 果是两个旋转矢量相加后的矢量。

北京化工大学 普通物理学 1-3旋转矢量

北京化工大学 普通物理学 1-3旋转矢量

2 ϕ =π − = π 3 3
π
∆ϕ = ω∆t
1 – 3
旋转矢量
第1章 机械振动 章
例3:已知两个简谐振动曲线如图所示,其中 为振 :已知两个简谐振动曲线如图所示,其中A为振 幅,x1 的相位比 x2 的相位超前 。
x
x1
A
A − 2
x2
t
1 – 3
旋转矢量
第1章 机械振动 章
x2
∆ϕ
0
x
3 ∆ϕ = π − = π 4 4
由旋转矢量图可知
1 – 3
旋转矢量
第1章 机械振动 章
A (2)求物体从初位置运动到第一次经过 处时的 2 速度; 速度;

x = A cos(ωt + ϕ ) = A cos( ω t )
A
x 1 cos( ω t ) = = A 2 π 5π ωt = 或 3 3 π 由旋转矢量图可知 ω t = 3
∆t = t 2 − t1 =
∆ϕ
x a A
A2
ω
b
v
π ∆ϕ = 3
tb
o
t
−A
−A
0
∆ϕ A ta A
2
x
π 3 1 ∆t = T = T 2π 6
1 – 3旋转矢量第1章 机械振动 章2)对于两个同频率的简谐运动,相位差表示它 对于两个同频率的简谐运动, 的简谐运动 们时间步调上的差异。(解决振动合成问题 步调上的差异。(解决振动合成问题) 们时间步调上的差异。(解决振动合成问题)
x1 = A1 cos(ωt + ϕ1 ) x2 = A2 cos(ωt + ϕ 2 )
∆ϕ = (ωt + ϕ 2 ) − (ωt + ϕ1 )

大学物理12机械振动2

大学物理12机械振动2
x = A cos(ωt + ϕ )
A
x x−t 图
T
ω v = − A ω sin( ω t + ϕ )
π = Aω cos(ωt +ϕ + ) 2 2 a = − A ω cos( ω t + ϕ )
= Aω cos(ωt +ϕ + π)
2
T=

取ϕ = 0
− Aω
v v −t图 Aω o T
l = l0 1− (v / c)2
在飞船B上测得飞船 相对于飞船 的速度: 在飞船 上测得飞船A相对于飞船 的速度: 上测得飞船 相对于飞船B的速度
v = l / ∆t = (l0 / ∆t) 1−(v / c)
解得:v = l0 / ∆t 1 + (l0 / c∆t )
2
2
= 2.68 ×10
8
∆φ > π 3π 称振动( )落后于振动( ) φ2 −φ1 > 0 例:φ2 −φ1= 2 称振动(2)落后于振动(1) 2π − ∆φ
分别作出四种情况的矢量图! 分别作出四种情况的矢量图!
2 4
∆ϕ21 = (ω t + ϕ2 ) - (ω t + ϕ1) = ϕ2 - ϕ1
φ2 −φ1 < 0 例:φ2 −φ1= − 3π称振动(2)超前振动(1) 2π + ∆φ 称振动( )超前振动( )
90
v am
ω
0
ω t+ϕ
·
x
1、用旋转矢量方法确定初相位ϕ: 、 要求条件: 的关系, 要求条件:已知 x0 与A的关系,初速度的方向。 的关系 初速度的方向。 例1: 已知一物体做简谐振动。1)x0=(1/2)A且向位移的 : 已知一物体做简谐振动。 ) 且向位移的 且向位移的正方向运动。 负方向运动; ) 且向位移的正方向运动 负方向运动; 2)x 0= 0且向位移的正方向运动。试求 两种情况下的初相。 两种情况下的初相。 ϕ = π/3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
cos 1
x oA
y
x
A
A 0
o
x
o
l
t
2.初始条件
x
t 0
o
l
x0 0
v0 0
y
x
0 A cos
cos 0
A
o
A
2
x
o
t
/ 2 , 3 / 2
v0 A sin 0, sin 0 取 / 2
3.初始条件
t 0
x
l
x0 A v0 0
o A
y
x
A A cos
A 处时的
速度;
2
(3)如果物体在 x 0.05m 处时速度不等于零,
而是具有向右的初速度 v0 0.30m s,1 求其运动方程.
x/m
o 0.05
解 (1) x Acos(t )
k 0.72N m1 6.0s1
m
0.02kg
A 0.05m
由旋转矢量图可知 0
x Acos(t )
(3)如果物体在 x 0.05m 处时速度不等于零,
而是具有向右的初速度 v0 0.30m s,1 求其运动方程.
解 x Acos(t )
6.0s1
A
x02
v02
2
0.0707m
o π 4 x A'
由旋转矢量图可知 π 4
x Acos(t ) 0.0707cos(6.0t π)
轴上的投
影点的运
动为简谐
运动.
x Acos(t )
y vm t π
2
t
0
an A
a v x
vm A an A 2
x Acos(t )
v A cos(t π )
2
a A2 cos(t )
用旋转矢量表示简谐运动初相
1.初始条件 t 0 x0 A v0 0
A A cos
4
例2 一质量为 0.01kg 的物体作简谐运动,其振
幅为 0.08m,周期为 4s ,起始时刻物体在 x 0.04m
处,向Ox 轴负方向运动(如图).试求
(1)t 1.0s 时,物体所处的位置和所受的力;
v
x/m
0.08 0.04 o 0.04 0.08
解 A 0.08m
2π π s1
A
cos 1
A
o
xo
t
A
4.初始条件
x
t 0
l
o
x0 0
v0 0
y
x
0 A cos
3 A
cos 0
o
2
x
o
A
t
/ 2 , 3 / 2
v0 A sin 0, sin 0 取 3 / 2
讨论 ➢ 相位差:表示两个相位之差 .
1)对同一简谐运动,相位差可以给出两运动状
0.04 0.08cos(π t π) 23
t 0.667s
解法二
t 时刻
t
π3 π3
0.08 0.04 o 0.04
起始时刻
x/m
0.08
t π
3
π s1
2
t 0.667s
旋转矢量法

T
当t 0时
A
o
x0 x
x0 Acos
以 o为 原点 旋转矢 量A的端点
x 在 轴上的
投影点的运
动为简谐运
动.

T
t t 时
A
t
o
x x0 x
x Acos(t )
以 o为 原点 旋转矢 量A的端点
x 在 轴上的
投影点的运
动为简谐运
动.
旋 转 矢量 A的
x 端点在
态间变化所需的时间. (t2 ) (t1 )
x Acos(t1 )
x Acos(t2 )
xa Ab
t
t2
t1
Ab
A2
o
A
v
π
t
A
t π 3 T 1 T
0
A 2
Aa
A
x
3
2π 6
2)对于两个同频率的简谐运动,相位差表示它 们间步调上的差异.(解决振动合成问题)
x1 A1 cos(t 1) x2 A2 cos(t 2 )
(t 2 ) (t 1) 2 1
0同步 x
π 反相
x
超前
为其它
落后
x
o
o
o
t
t
t
例1 如图所示,一轻弹簧的右端连着一物体,弹
簧的劲度系数 k 0.72N m1,物体的质量 m 20g.
(1)把物体从平衡位置向右拉到 x 0.05m 处停
下后再释放,求简谐运动方程; (2)求物体从初位置运动到第一次经过
T2
A 0.08m
2π π s1
T2
t 0, x 0.04m 代入 x Acos(t )
0.04 0.08cos
π
3
v0 0
π
3
A
π3
x/m
0.08 0.04 o 0.04 0.08
x 0.08cos(π t π ) 23
m 0.01kg
v
x/m
0.08 0.04 o 0.04 0.08
x 0.08cos(π t π ) 23
t 1.0s 代入上式得 x 0.069m
F kx m 2x 1.70103 N
(2)由起始位置运动到 x 0.04m 处所需要
的最短时间.
v
x/m
0.08 0.04 o 0.04 0.08
法一 设由起始位置运动到 x 0.04m 处所
需要的最短时间为 t
0.05cos6.0t m
oAx
(2)求物体从初位置运动到第一次经过 A 处时) Acos(t)
cos(t) x 1
A2
t π 或 5π
33
由旋转矢量图可知 t π
3
v A sint
A
o A Ax
2
0.26m s1 (负号表示速度沿 Ox轴负方向)
相关文档
最新文档