有理数的题型总结

合集下载

有理数各种常见题型

有理数各种常见题型

有理数各种题型题型一 绝对值(非负数),平方(非负数)的综合应用 1、已知│x │=3,│y │=7,而xy<0,则x+y 的值是_________ 2、已知,,且>0,则= 3、│3-a │+│4-b │=0,求a+b 的值4、已知,则=_________。

5、已知0563=-+++-c b a ,求a+b+c 的值。

6、若|m -n |=n -m ,且|m |=4,|n |=3,则(m +n )2=______. 7、若==-+-x y x ,则0)32(22 ,=y 。

8、已知与互为相反数,求的值.+-y 1999-+y 互为相反数,求yx y x -+2的值10.若|x-y+3|+()22013y x -+=0,则yx x2-= .11、若0432=-+-+-c b a ,求c b a ++2的值.12已知2a -+(b+1)4=0,求(a +b )(a 2-ab +b 2)的值.题型二 相反数倒数整数的综合应用1、已知a 、b 互为相反数,c 、d 互为负倒数(即1cd =-),x 是最小的正整数。

试求220082008()()()x a b cd x a b cd -+++++-的值2..若a 、b 互为相反数,c 、d 互为倒数, m 在数轴上的对应点到原点的距离为1,则m cd cb a ba +++++ 的值是 .||3a =||2b =ab a b -()02|4|2=-++b a a b a 2+|1|a +|4|b -b a3.若a 、b 互为倒数,c 、d 互为相反数,2=m ,=-+⨯+23)(m ab bad c 4.已知a 与b 互为倒数,c 与d 互为相反数,且3=x ,求x d c ab 23+--的值.5.已知n m ,互为相反数,b a ,互为负倒数,x 的绝对值等于3, 求()()()20032001231ab x n m x ab n m x -++++++-的值6. 已知a ,b 互为相反数,c ,d 互为倒数,且x 的绝对值是5,试求x -(a+b -cd )+│(a+b )-4│+│3-cd│的值. 题型三有理数与裂项结合反思说明:一般地,多个分数相加减,如果分子相同,分母是两个整数的积,且每个分母中因数差相同,可以用裂项相消法求值。

有理数经典题型汇编

有理数经典题型汇编

有理数经典题型汇编一、填空题1、 数的相反数大于它本身; 的倒数等于它本身.2、a 为有理数,且|a|=-a,则a 是 .3、绝对值等于它本身的数是 ;绝对值小于5且大于2的整456789。

=+++2m cd m ba __________。

15、若1=a a,则a _______0,若1-=a a,则a _______0。

(填:“ ”或“ ”) 16、已知每辆汽车要装4个轮胎,则51只轮胎至多能装配 辆汽车。

17. 规定运算:a ☆b=(a +b)(a -b),那么(-2)☆(-3)=_________18、某粮店出售的三种品牌的面粉袋上分别标有“质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg”的字样,从中任意拿出两袋,它们的质量最多能相差 kg;19、17.已知|x| = 3 ,|y| = 4 ,则|x-y| 的值是_________20、在数轴上,与表示数-1的点的距离是2的点表示的数是_________二、选择题1、下列个组数中,数值相等的是………………………………………………()A、2333322222(A3. 在)(A4A5A.2-6A7、把Aa=0,则一定有()8、若bA、a=0,b≠0B、b=0,a≠0C、a=0或b=0D、a=b=09.已知a,b是有理数,|ab|=-ab(ab≠0),|a+b|=|a|-b用数轴上的点来表示a,b下列正确的是( )10、已知|ab |=-ab ≠0 且|a |=|b |,则下列式子中运算结果不正确...的是( ).A 、a+b=0B 、011=+ba C 、022=+b a D 、033=+b a11、已知不为零的a,b 两数互为相反数,则下列各数不是互为相反数的是( )(A )5 a 与5 b. (B)a 3与b 3. (C)a 1与b 1. (D)a 2与b 2.1213( A 14.A .15.有和,A 1、( (4)(7)—34 , (8)()34-= , (9)()34--= 。

有理数知识点及经典题型

有理数知识点及经典题型

有理数知识点及经典题型规定了原点,正方向,单位长度的直线叫做数轴。

注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

2.数轴上的点与有理数的关系⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。

(如,数轴上的点π不是有理数)3.利用数轴表示两数大小⑴在数轴上数的大小比较,右边的数总比左边的数大;⑵正数都大于0,负数都小于0,正数大于负数;⑶两个负数比较,距离原点远的数比距离原点近的数小。

4.数轴上特殊的最大(小)数⑴最小的自然数是0,无最大的自然数;⑵最小的正整数是1,无最大的正整数;⑶最大的负整数是-1,无最小的负整数5.a可以表示什么数⑴a>0表示a是正数;反之,a是正数,则a>0;⑵a<0表示a是负数;反之,a是负数,则a<0⑶a=0表示a是0;反之,a是0,,则a=06.数轴上点的移动规律根据点的移动,向左移动几个单位长度则减去几,向右移动几个单位长度则加上几,从而得到所需的点的位置。

相反数⒈相反数只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。

注意:⑴相反数是成对出现的;⑵相反数只有符号不同,若一个为正,则另一个为负;⑶0的相反数是它本身;相反数为本身的数是0。

2.相反数的性质与判定⑴任何数都有相反数,且只有一个;⑵0的相反数是0;⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=03.相反数的几何意义在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。

专题2 有理数的计算(9大知识点 11大题型 3大易错)-七年级数学上学期期中考点(浙教版2024)

专题2 有理数的计算(9大知识点 11大题型 3大易错)-七年级数学上学期期中考点(浙教版2024)

D.1 万(精确到万位)
【变式 10-1】一个整数精确到万位是 30 万,这个数精确前可能是( B )
A.294999
B.295786
C.305997
D.309111
【变式 10-2】2023 年杭州亚运会的志愿者,被亲切地称为“小青荷”,总人数约为 37600 人.如
果将这个人数转换为以“万”为单位的数,并保留一位小数,那么志愿者人数大约是 3.8
加即a×﹙b+c﹚=a×b+a×c。
考点透视
考点五:除法法则
(1)除以一个(不等于0)的数,等于乘这个数的倒数。 (2)两个数相除,同号得正,异号得负,并把绝对值相除。 (3)0除以任何一个不等于0的数,都得0。
考点透视
考点六:乘方的定义与运算
定义:求相同因数的积的运算叫作乘方,乘方的结果叫作幂。在an中,a叫作底数, n叫作指数 运算规则 (1)正数的任何次幂都是正数 (2)负数的奇次幂是负数,负数的偶次幂是正数 (3)0的任何正整数次幂都是0
题型剖析
题型一:有理数加减法运算
【例 1】计算:
(1) −3.5 + +2.8
(2)
−2
7
+
−2 1
3
(3)
−5 3
4
+7 2
5
(4)
−3 5
6
+
+3 5
6
((11))-02..747 ((22))--32161231 (3(3))-1212130.9 (4)0
题型剖析
题型二:有理数加法运算率
【例 2】利用加法运算律简便运算.
考点透视
考点七:有理数的混合运算规则
(1)先乘方,再乘除,最后加减。 (2)同级运算,从左到右的顺序进行。 (3)如有括号,先算括号内的运算,按小括号,中括号,大括号依次进行。在进行 有理数的运算时,要分两步走:先确定符号,再求值。

有理数的题型总结

有理数的题型总结

有理数的题型总结七年级数学有理数题型总结一、知识性专题专题一、正数和负数的意义正数和负数的起源是为了表示两种相反意义的量。

在许多方面,正数和负数被广泛应用,比如表示温度、收支等。

若正数表示某种意义的量,则负数就表示与其相反意义的量。

常见的表示相反意义的量有:零上和零下、前进和后退、海平面以上和海平面以下、收入和支出、向南和向北、盈利和亏损、上升和下降。

例题1:如果60m表示“向北走60m”,那么“向南走40m”可以表示为()。

A。

-20m。

B。

-40m。

C。

20m。

D。

40m例题2:下列说法中,正确的是()。

A。

如果“水位上升3米”记作+3米,那么表示其相反意义的量一定为-3米B。

亏损-30元表示亏损30元C。

41.2.1.5.0都是正数D。

-2.-5.-7.0都不是正数例题3:某食品包装袋上标有“净含量386克±4克”,则这包食品的合格净含量范围是()。

专题二、有理数的有关概念1、数a,b,c在数轴上的位置如图所示,化简abc++。

2、数轴上的一个点表示一个数,当这个点表示的是整数时,我们称它是整数点。

如果有一条数轴的单位长度是1厘米,有一条长2米的线段放在该数轴上,求它可以盖住的整数点的个数。

1)若2米长的线段的两端点恰好与两个整数点重合,则它可以覆盖的整数点有()个。

2)若2米长的线段的两端点不与两个整数点重合,则它可以盖住的整数点有()个。

4、如图所示,a,b为有理数,则下列结论正确的是()A。

-a>b。

B。

a>-b。

C。

-b>-a。

D。

-b>-a专题三、有理数的有关运算1、下列说法中,正确的有①减去一个数等于加上这个数②减去一个数仍得这个数③有理数减法中,被减数不一定比减数或差大④两个相反数相减得零⑤减去一个正数,差不一定小于被减数⑥减去一个负数,差一定大于被减数A。

2个。

B。

3个。

C。

4个。

D。

5个2、有理数a,b,c在数轴上的位置如图所示,则下列式子正确的有()①b+c。

有理数的除法题型归纳总结(含答案)

有理数的除法题型归纳总结(含答案)

有理数的除法-重难点题型【题型1 有理数除法法则的辨析】【例1】(2020秋•许昌期末)如果a +b <0,ab >0,那么下列各式中一定正确的是( ) A .a ﹣b >0B .ab >0C .b ﹣a >0D .ab<0【解题思路】直接利用有理数的乘除运算法则以及加减运算法则判断得出答案. 【解答过程】解:∵a +b <0,ab >0, ∴a ,b 同为负数, ∴ab >0,故选:B .【变式1-1】(2020秋•鼓楼区校级月考)在下列各题中,结论正确的是( ) A .若a >0,b <0,则ba >0B .若a >b ,则a ﹣b >0C .若a <0,b <0,则ab <0D .若a >b ,a <0,则ba <0【解题思路】根据有理数的乘法法则和除法法则进行判断.【解答过程】解:A .两数相除,异号得负,该选项错误,不符合题意; B .∵a >b ,∴a ﹣b >0,该选项正确,符合题意;C .两数相乘,同号得正,该选项错误,不符合题意;D .∵a >b ,a <0,∴1<ba ,∴ba >1,该选项错误,不符合题意.故选:B .【变式1-2】(2020秋•锦江区校级期中)若a +b >0,a ﹣b <0,ab <0,则下列结论正确的是( )A .a >b ,b >0B .a <0,b <0C .a <0,b >0且|a |<|b |D .a >0,b <0且|a |>|b |【解题思路】直接利用有理数的除法运算、加法、减法运算法则以及绝对值的性质分别分析得出答案. 【解答过程】解:∵a ﹣b <0, ∴a <b , ∵ab <0,∴a <0<b , ∵a +b >0, ∴|a |<|b |. 故选:C .【变式1-3】(2020秋•秀峰区校级月考)已知a ,b 为有理数,则下列说法正确的个数为( ) ①若a +b >0,a b >0,则a >0,b >0.②若a +b >0,a b <0,则a >0,b <0且|a |>|b |. ③若a +b <0,a b >0,则a <0,b <0.④若a +b <0,ab <0,则a >0,b <0且|b |>|a |. A .1B .2C .3D .4【解题思路】根据有理数的加法法则以及有理数的除法法则分别分析得出即可. 【解答过程】解:①若a +b >0,ab >0,则a >0,b >0,故①结论正确;②若a +b >0,a b <0,则a >0,b <0且|a |>|b |或a <0,b >0且|a |<|b |,故②结论错误;③若a +b <0,ab>0,则a <0,b <0,故③结论正确;④a +b <0,ab <0,则a >0,b <0且|b |>|a |或a <0,b >0且|b |<|a |,故斯结论错误.故正确的有2个. 故选:B .【题型2 有理数乘除法的混合运算】【例2】(2021春•青浦区期中)计算:−1.75÷(−312)×47. 【解题思路】原式从左到右依次计算即可求出值. 【解答过程】解:原式=−74÷(−72)×47 =−74×(−27)×47 =27.【变式2-1】(2021春•杨浦区期中)158÷(﹣10)×(−103)÷(−154) 【解题思路】根据有理数的运算法则即可求出答案. 【解答过程】解:原式=158×−110×10−3×−415=−16【变式2-2】(2020秋•广信区月考)计算: (1)−0.75×0.4×(−123); (2)916÷(−112)×1924.【解题思路】(1)先把小数化成分数,把带分数化成假分数,再根据有理数的乘法法则求出即可; (2)先把除法变成乘法,再根据有理数的乘法法则求出即可. 【解答过程】解:(1)原式=34×25×53 =12;(2)原式=916×(−23)×1924=−1964. 【变式2-3】(2020秋•官渡区校级月考)(﹣81)÷94×49÷(﹣16) 【解题思路】根据有理数的混合计算解答即可. 【解答过程】解:(﹣81)÷94×49÷(﹣16) =81×49×49×116 =1【题型3 有理数除法的应用(含绝对值)】【例3】(2020秋•南沙区校级期中)若|abc |=﹣abc ,且abc ≠0,则|a|a+|b|b+|c|c=( )A .1或﹣3B .﹣1或﹣3C .±1或±3D .无法判断【解题思路】利用绝对值的代数意义判断得到a ,b ,c 中负数有一个或三个,即可得到原式的值. 【解答过程】解:∵|abc |=﹣abc ,且abc ≠0, ∴abc 中负数有一个或三个, 则原式=1或﹣3, 故选:A .【变式3-1】(2020秋•句容市期中)已知a 、b 为有理数,且ab >0,则a |a|+b |b|+ab |ab|的值是( )A .3B .﹣1C .﹣3D .3或﹣1【解题思路】根据同号得正分a 、b 都是正数和负数两种情况,利用绝对值的性质去掉绝对值号,然后进行计算即可得解.【解答过程】解:∵ab >0, ∴a >0,b >0时,a |a|+b |b|+ab |ab|=a a+b b +ab ab =1+1+1=3, a <0,b <0时,a |a|+b|b|+ab |ab|=a−a +b−b+ab ab=−1﹣1+1=﹣1,综上所述,a|a|+b |b|+ab|ab|的值是3或﹣1.故选:D .【变式3-2】(2020秋•讷河市期末)若三个非零有理数a ,b ,c 满足|a|a+|b|b+|c|c=1,则|abc|abc= .【解题思路】由|a|a+|b|b+|c|c=1知,a 、b 、c 中有一个为负数,故能求|abc|abc的值.【解答过程】解:∵|a|a+|b|b+|c|c=1∴a 、b 、c 中有一个为负数,另外两个为正数, ∴|abc|abc=−1故答案为﹣1.【变式3-3】(2020秋•旅顺口区期中)若abc <0,a +b +c =0,则|b+c|a+|a+c|b+|a+b|c= .【解题思路】根据有理数的乘法判断出负数的个数,再用两个字母表示出第三个字母,然后求解即可. 【解答过程】解:∵abc <0, ∴a 、b 、c 有1个负数或3个负数, ∵a +b +c =0,∴a 、b 、c 只有1个负数,∴b +c =﹣a ,a +c =﹣b ,a +b =﹣c , ∴|b+c|a+|a+c|b+|a+b|c=−1+1+1=1,故答案为:1.【题型4 有理数除法的应用(新定义)】【例4】(2020秋•平阴县期中)概念学习:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,类比有理数的乘方,我们把2÷2÷2记作23,读作“2的3次商”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)4,读作“﹣3的4次商”.一般地,我们把n 个a (a ≠0)相除记作a n ,读作“a 的n 次商”.根据所学概念,求(﹣4)3的值是( ) A .﹣12B .−43C .14D .−14【解题思路】利用题中的新定义计算即可求出值.【解答过程】解:根据题意得,(﹣4)3=(﹣4)÷(﹣4)÷(﹣4)=1÷(﹣4)=−14. 故选:D .【变式4-1】(2020秋•如皋市期中)有两个正数a ,b ,且a <b ,把大于等于a 且小于等于b 的所有数记作[a ,b ].例如,大于等于1且小于等于4的所有数记作[1,4].若整数m 在[5,15]内,整数n 在[﹣30,﹣20]内,那么nm 的一切值中属于整数的个数为( )A .5个B .4个C .3个D .2个【解题思路】根据已知条件得出5≤m ≤15,﹣30≤n ≤﹣20,再得出nm的范围,即可得出整数的个数.【解答过程】解:∵m 在[5,15]内,n 在[﹣30,﹣20]内, ∴5≤m ≤15,﹣30≤n ≤﹣20, ∴−305≤n m≤−2015,即﹣6≤n m ≤−43,∴n m的一切值中属于整数的有﹣2,﹣3,﹣4,﹣5,﹣6,共5个; 故选:A .【变式4-2】(2020•白云区一模)为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知有一种键盘密码,每个字母与所在按键的数字序号对应(如图),如字母Q 与数字序号0对应,当明文中的字母对应的序号为a 时,将a +7除以26后所得的余数作为密文中的字母对应的序号,例如明文“X ”对应密文“W ”. 按上述规定,将密文“TKGDFY ”解密成明文后是( )A .DAISHUB .TUXINGC .BAIYUND .SHUXUE【解题思路】根据“明文”与“密文”的转化规则,由“明文”得出“密文”,反之亦然. 【解答过程】解:由“明文”与“密文”的转换规则可得:故选:C .【变式4-3】(2020秋•铜梁区校级期中)我们知道,正整数按照能否被2整除可以分成两大类:正奇数和正偶数,小明受到启发,按照一个正整数被3整除的余数把正整数分成了3类:如果一个正整数被3整除余数为1,则这个正整数属于A 类,例如1,4,7等;如果一个正整数被3整除余数为2,则这个正整数属于B类,例如2,5,8等;如果一个正整数被3整除,则这个正整数属于C类,例如3,6,9等.(1)2020属于类.(选填A或B或C)(2)①从A类数中任意取两个数,它们的和属于类.(选填A或B或C)②从A类数中任意取8个数,从B类数中任意取9个数,从C类数中任意取10个数,把它们都加起来,则最后的结果属于类(选填A或B或C);(3)从A类数中任意取出m个数,从B中任意取出n个数,把它们都加起来,若最后的结果属于C类,则关于下列关于m、n的叙述中正确的是.(填序号)①m+2n属于C类;②|m﹣n|属于B类;③m属于A类,n属于B类;④m、n属于同一类.【解题思路】(1)计算2020÷3,根据计算结果即可求解;(2)①从A类数中任取两个数进行计算,即可求解;②从A类数中任意取出8数,从B类数中任意取出9个,从C类数中任意取出10数,把它们的余数相加,再除以3,根据余数判断即可求解;(3)根据m,n的余数之和,举例,观察即可判断.【解答过程】解:(1)2020÷3=673…1,所以2020被3除余数为1,属于A类;故答案为:A;(2)①从A类数中任取两个数,如:(1+4)÷3=1…2,(4+7)÷3=3…2,被3除余数为2,则它们的和属于B类;②从A类数中任意取出8数,从B类数中任意取出9数,从C类数中任意取出10数,把它们的余数相加,得(8×1+9×2+10×0)=26÷3=8…2,∴余数为2,属于B类;故答案为:①B;②B;(3)从A类数中任意取出m个数,从B类数中任意取出n个数,余数之和为:m×1+n×2=m+2n,∵最后的结果属于C类,∴m+2n能被3整除,即m+2n属于C类,①正确;②若m=1,n=1,则|m﹣n|=0,不属于B类,②错误;③若m=1,n=1,③错误;④观察可发现若m+2n属于C类,m,n必须是同一类,④正确;综上,①④正确.故答案为:①④.【题型5 有理数除法的实际应用题】【例5】(2020秋•吉安期中)气象统计资料表明,高度每增加1000米,气温就降低大约5℃,我省著名风景区庐山的最高峰高于地面约为1200米,若现在地面温度约为3℃,则山顶气温大约是多少?【解题思路】根据题意列出算式,计算即可求出值.【解答过程】解:根据题意得:3﹣1200÷1000×5=3﹣6=﹣3(℃),则山顶气温大约是﹣3℃.【变式5-1】(2021春•南岗区校级月考)温度的变化与高度有关:高度每增加1km,气温大约下降5.8℃.(1)已知地表温度是12℃,则此时高度为3km的山顶温度是多少?(2)如果山顶温度是﹣6.1℃,此时地表温度是20℃,那么这座山的高度是多少?【解题思路】(1)根据题意,列出算式进行计算;(2)先求温度差,利用温度差除以5.8,得高度.【解答过程】解:(1)依题意,得12﹣3×5.8=12﹣17.4=﹣5.4(℃).答:山顶温度为﹣5.4℃.(2)[20﹣(﹣6.1)]÷5.8=26.1÷5.8=4.5 (千米)答:这座山的高度为4.5千米.【变式5-2】(2020秋•肇源县期末)在湖北省抗击新冠病毒期间,国家实行“一省帮一市对口”支援,春雨矿泉水厂向武汉市的某地区运送矿泉水,该地区人口约12万,每人每天需2瓶水,24瓶水装成一箱,则该厂每天需要装运多少箱矿泉水?【解题思路】先计算每天需要矿泉水的瓶数,再用总瓶数除以每箱矿泉水的瓶数即可得出答案.【解答过程】解:120000×2÷24=10000(箱),答:则该厂每天需要装运10000箱矿泉水.【变式5-3】(2020秋•杨浦区校级期中)某中学举行“新冠肺炎”防控知识竞赛,全校一共有100位学生参赛,比赛设一、二、三等奖三个奖项,其中,获得一等奖、二等奖和三等奖的人数情况如下表所示,根据表格回答:奖项 一等奖 二等奖 三等奖 人数101625(1)一等奖人数是三等奖人数的几分之几?(2)一、二等奖人数之和占全校参赛学生人数的几分之几? (3)三等奖人数比二等奖人数多了几分之几? 【解题思路】(1)10除以25即可得答案,(2)一、二等奖人数和除以全校参赛学生人数即得答案,(3)三等奖人数减去二等奖人数的差,再除以二等奖人数即是答案. 【解答过程】解:(1)10÷25=25, 答:一等奖人数是三等奖人数的25;(2)(10+16)÷100=26÷100=1350, 答:一、二等奖人数之和占全校参赛学生人数的1350;(3)(25﹣16)÷16=9÷16=916, 答:三等奖人数比二等奖人数多了916.【题型6 有理数除法的运算步骤问题】【例6】(2020秋•启东市校级月考)阅读后回答问题: 计算(−52)÷(﹣15)×(−115) 解:原式=−52÷[(﹣15)×(−115)]① =−52÷1 ② =−52③(1)上述的解法是否正确?答: 若有错误,在哪一步?答: (填代号)错误的原因是:(2)这个计算题的正确答案应该是: .【解题思路】(1)直接利用有理数的乘除运算法则分析即可; (2)直接利用有理数的乘除运算法则计算即可. 【解答过程】解:(1)答:不正确 若有错误,在哪一步?答:①(填代号)错误的原因是:运算顺序不对,或者是同级运算中,没有按照从左到右的顺序进行; (2)原式=−52÷(﹣15)×(−115) =−52×115×115=−190, 这个计算题的正确答案应该是:−190. 故答案为:−190. 【变式6-1】(2021秋•大安市期末)阅读下面的解题过程: 计算(﹣15)÷(13−12)×6解:原式=(﹣15)÷(−16)×6(第一步) =(﹣15)÷(﹣1)(第二步) =﹣15(第三步)回答:(1)上面解题过程中有两处错误,第一处是第 步,错误的原因是 ,第二处是第 步,错误的原因是 .(2)把正确的解题过程写出来.【解题思路】(1)从第一步到第二步,先计算除法,再计算乘法,所以第1处是第二步,错误原因是运算顺序错误;然后根据有理数除法的运算方法,可得第2处是第三步,错误原因是得数错误. (2)根据有理数除法、乘法的运算方法,从左向右,求出算式的值是多少即可.【解答过程】解:(1)上面解题过程中有两处错误,第一处是第二步,错误的原因是运算顺序错误,第二处是第三步,错误的原因是得数错误. (2)(﹣15)÷(13−12)×6=(﹣15)÷(−16)×6=(﹣15)×(﹣6)×6 =90×6 =540.故答案为:二、运算顺序错误;三、得数错误.【变式6-2】(2020秋•上蔡县期中)阅读下列材料:计算50÷(13−14+112).解法一:原式=50÷13−50÷14+50÷112=50×3﹣50×4+50×12=550. 解法二:原式=50÷(412−312+112)=50÷212=50×6=300.解法三:原式的倒数为(13−14+112)÷50=(13−14+112)×150=13×150−14×150+112×150=1300.故原式=300.上述得出的结果不同,肯定有错误的解法,你认为解法 是错误的.请你选择合适的解法解答下列问题: 计算:(−142)÷(16−314+23−27) 【解题思路】根据有理数的除法,可转化成有理数的乘法,可得答案; 根据有理数的运算顺序,先算括号里面的,再算有理数的除法,可得答案. 【解答过程】解:没有除法分配律,故解法一错误; 故答案为:一. 原式=(−142)÷(56−36) =(−142)×3 =−114.【变式6-3】(2020秋•鄂托克旗期末)小华在课外书中看到这样一道题: 计算:136÷(14+112−718−136)+(14+112−718−136)÷136. 她发现,这个算式反映的是前后两部分的和,而这两部分之间存在着某种关系,利用这种关系,她顺利地解答了这道题(1)前后两部分之间存在着什么关系?(2)先计算哪部分比较简便?并请计算比较简便的那部分.(3)利用(1)中的关系,直接写出另一部分的结果. (4)根据以上分析,求出原式的结果. 【解题思路】(1)根据倒数的定义可知:136÷(14+112−718−136)与(14+112−718−136)÷136互为倒数;(2)利用乘法的分配律可求得(14+112−718−136)÷136的值;(3)根据倒数的定义求解即可; (4)最后利用加法法则求解即可.【解答过程】解:(1)前后两部分互为倒数; (2)先计算后一部分比较方便. (14+112−718−136)÷136=(14+112−718−136)×36=9+3﹣14﹣1=﹣3; (3)因为前后两部分互为倒数,所以136÷(14+112−718−136)=−13;(4)根据以上分析,可知原式=−13+(−3)=−313.。

有理数(归纳与讲解)(解析版)

专题01 有理数【专题目录】技巧1绝对值的八种常见应用技巧2 有理数中的六种易错类型【题型】一、有理数概念理解【题型】二、用数轴上的点表示有理数【题型】三、求一个数的相反数【题型】四、求一个数的绝对值【题型】五、有理数的加减乘除混合运算【题型】六、科学记数法【考纲要求】1、了解有理数的概念,知道有理数与数轴上的点一一对应.2、借助数轴理解相反数和绝对值的意义,会求一个数的相反数、倒数与绝对值.【考点总结】一、有理数【注意】数轴1、数轴的三要素:原点、正方向、单位长度(重点)2、任何有理数都可以用数轴上的点表示,有理数与数轴上的点是一一对应的。

3、数轴上的点表示的数从左到右依次增大;原点左边的数是负数,原点右边的数是正数.【考点总结】二、有理数四则运算【注意】1、有理数的加减混合运算规则:运用减法法则将加减混合运算统一为加法进行运算步骤:(1)减法化加法;(2)省略括号和加号;(3)运用加法运算律使计算简便; (4)运用有理数加法法则进行计算。

注:运用加法运算律时,可按如下几点进行: (1)同号的先结合;(2)同分母的分数或者比较容易通分的分数相结合; (3)互为相反数的两数相结合; (4)能凑成整数的两数相结合;(5)带分数一般化为假分数或者分为整数和分数两部分,再分别相加。

2、多个有理数相乘的法则及规律:(1) 几个不是0的数相乘,负因数的个数是奇数时,积是负数;负因数的个数是偶数时,积是正数。

确定符号后,把各个因数的绝对值相乘。

(2)几个数相乘,有一个因数为0,积为0;反之,如果积为0,那么至少有一个因数是0. 注:带分数与分数相乘时,通常把带分数化成假分数,再与分数相乘。

【技巧归纳】技巧1:绝对值的六种常见应用【类型】一、已知一个数求这个数的绝对值 1.化简:(1)|-(+7)|; (2)-|-8|;【类型】二、已知一个数的绝对值求这个数 2.若|a|=2,则a =________.3.若|x|=|y|,且x =-3,则y =________. 【类型】三、 绝对值在求字母的取值范围中的应用 4.若|x|=-x ,则x 的取值范围是________. 5.若|x -2|=2-x ,则x 的取值范围是________. 【类型】四、绝对值在比较大小中的应用6.把-(-1),-23,-⎪⎪⎪⎪-45,0,用“>”连接正确的是( ) A .0>-(-1)>-⎪⎪⎪⎪-45>-23 B .0>-(-1)>-23>-⎪⎪⎪⎪-45 C .-(-1)>0>-23>-⎪⎪⎪⎪-45 D .-(-1)>0>-⎪⎪⎪⎪-45>-23【类型】五、绝对值的非负性在求字母值中的运用 7.若⎪⎪⎪⎪a -12+⎪⎪⎪⎪b -13+⎪⎪⎪⎪c -14=0,求a +b -c 的值. 【类型】六、绝对值的非负性在求最值中的应用 8.根据|a|≥0这条性质,解答下列问题:(1)当a =________时,|a -4|有最小值,此时最小值为________; 参考答案1.解:(1)原式=7. (2)原式=-8. 2.±2 3.±3 4.x≤0 5.x≤2 6.C7.解:由题意知a =12,b =13,c =14,所以a +b -c =12+13-14=712.8.解:(1)4;0(2)因为a ,b 互为相反数,所以b =-a.又因为a <0,b >0. 所以|a -b|+2a +|b|=|2a|+2a +|b|=-2a +2a +b =b. 技巧2: 有理数中的六种易错类型【类型】一、对有理数有关概念理解不清造成错误 1.下列说法正确的是( ) A .最小的正整数是0 B .-a 是负数C .符号不同的两个数互为相反数D .-a 的相反数是a【类型】二、 误认为|a|=a ,忽略对字母a 分情况讨论 2.如果一个数的绝对值等于它本身,那么这个数一定是( ) A .负数 B .负数或零 C .正数或零D .正数【类型】三、对括号使用不当导致错误 3.计算:2-⎝⎛⎭⎫-15+14-12. 【类型】四、忽略或不清楚运算顺序4.计算:-5-(-5)×110÷110×(-5).【类型】五、乘法运算中确定符号与加法运算中的符号规律相混淆5.计算:-36×⎝⎛⎭⎫712-56-1. 【类型】六、除法没有分配律6.计算:24÷⎝⎛⎭⎫13-18-16. 参考答案 1.D 2.C3.解:原式=2+15-14+12=2920.4.解:原式=-5-(-5)×110×10×(-5)=-30.5.解:原式=-36×712-(-36)×56-(-36)×1=-21+30+36 =45.6.解:原式=24÷⎝⎛⎭⎫824-324-424 =24÷124=576.方法指导:解本题时往往会出现将乘法分配律运用到除法运算中的错误,从而出现“原式=24÷13-24÷18-24÷16=72-192-144=-264”这样的错误.【题型讲解】【题型】一、有理数概念理解例1、在下列实数:2π227、﹣0.0010001中,有理数有( )A .1个B .2个C .3个D .4个【答案】D【提示】由题意根据有理数的定义:整数与分数统称有理数,进行提示即可判断. 【详解】解:34,227,﹣0.0010001是有理数,其它的是无理数.有理数有4个. 故选:D .【题型】二、用数轴上的点表示有理数例2、如图,数轴上两点,M N 所对应的实数分别为,m n ,则m n -的结果可能是( )A .1-B .1C .2D .3【答案】C【提示】根据数轴确定m 和n 的范围,再根据有理数的加减法即可做出选择. 【详解】解:根据数轴可得0<m <1,2-<n <1-,则1<m n -<3。

有理数总复习超级经典必考题型

有理数总复习五个概念:负数、有理数、相反数、绝对值、非负数一个工具:数轴三个符号:负号、绝对值号、乘方符号五种运算:有理数的加、减、乘、除、乘方五条运算律:加法交换律、结合律;乘法交换律,结合律、分配律类型一:考查正负数、相反数、数轴(多以小题形式出现,要搞清楚正负数的意义,相反数的表示方法,以及数轴的一些基本概念,注意多解性。

大题会结合表格来考)例1:我们把零上16°记作+16℃,则零下2℃可记作_______。

例2:若“神舟十号”发射点火前15秒记为-15秒,那么发射点火后10秒应记为________。

例3:如果“盈利10%”记为+10%,那么“亏损6%”记为_______。

例4:下列说法中正确的是()A、没有最大的正数,但有最大的负数B、没有最小的负数,但有最小的正数C、没有最小的有理数,也没有最大的有理数D、有最小的自然数,也有最小的整数例5:下列说法正确的有()(1)整数就是正整数和负整数;(2)零是整数,但不是自然数;(3)分数包括正分数、负分数;(4)正数和负数统称为有理数;(5)一个有理数,它不是整数就是分数A 1个B 2个C 3个D 4个例6:数轴上到原点的距离等于4的点所表示的数为________。

例7:已知a,b两数在数轴上的对应点如图所示,则下列结论正确的是()A A.a-2>b-2B B.b-a>0C C.ab<0 D.2a<2b例8:若m-4的相反数是-11,求3m+1的值.练1:如果+10%表示“增加10%”,那么“减少8%”可以记作_____。

练2:汽车向东行驶5千米记作5千米,那么汽车向西行驶5千米记作_____。

练3:如果上升10米记作+10米,那么下降5米记作_____米.练4:在下列选项中,具有相反意义的量是()A.胜二局与负三局B.盈利3万元与支出3万元C.气温升高3℃与气温为-3℃D.向东行20米和向南行20米练5:数轴上与原点的距离为5的数是_______。

有理数的大小比较(4种题型)(解析版)(浙教版)

有理数的大小比较(4种题型)【知识梳理】1.数轴法:在数轴上表示出两个有理数,左边的数总比右边的数小. 如:a 与b 在数轴上的位置如图所示,则a <b .2.法则比较法:两个数比较大小,按数的性质符号分类,情况如下:要点:利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2)比较绝对值的大小;(3)判定两数的大小.3. 作差法:设a 、b a-b >0,则a >b ;若a-b =0,则a =b ;若a-b<0,a <b ;反之成立. 4. 求商法:设a 、b 为任意正数,若,则;若,则;若,则;反之也成立.若a 、b 为任意负数,则与上述结论相反.5. 倒数比较法:如果两个数都大于零,那么倒数大的反而小.【考点剖析】 题型一:借助数轴直接比较数的大小例1.画出数轴,在数轴上表示下列各数,并用“<”连接:+5,-3.5,12,-112,4,0.解析:画出数轴,在数轴上标出表示各数的点,然后根据右边的数总比左边的数大进行比较. 解:如图所示:1a b >a b >1a b =a b =1ab<a b <因为在数轴上右边的数大于左边的数,所以-3.5<-112<0<12<4<+5.方法总结:此类问题是考查有理数的意义以及数轴的有关知识,正确地画出数轴是解决本题的关键. 【变式1】在数轴上把下列各数表示出来,并用“<”连接各数. 5,1-22,|﹣4|,﹣(﹣1),﹣(+3)【答案】数轴见详解,1(3)2(1)452−+<−<−−<−<.【分析】将各数表示在数轴上,再用“<”连接即可. 【详解】解:如图所示:∴用“<”连接各数为:1(3)2(1)452−+<−<−−<−<;【点睛】此题考查了有理数大小比较,以及数轴,将各数正确表示在数轴上是解本题的关键.【变式2】如图,数轴上依次有四个点M ,P ,N ,Q ,若点M ,N 表示的数互为相反数,则在这四个点中表示的数绝对值最大的点是( )A .MB .PC .ND .Q【答案】D【分析】先利用相反数的定义确定原点为线段MN 的中点,则可判定点Q 到原点的距离最大,然后根据绝对值的定义可判定点Q 表示的数的绝对值最大. 【详解】解:∵点M ,N 表示的数互为相反数, ∴原点为线段MN 的中点, ∴点Q 到原点的距离最大, ∴点Q 表示的数的绝对值最大. 故选:D .【点睛】本题考查了绝对值:数轴上某个数与原点的距离叫做这个数的绝对值.也考查了相反数. 【变式3】(1)在数轴把下列各数表示出来,并比较它们的相反数的大小:-3,0,-13,52,0.25(2)比较下列各组数的大小①35-与34− ②| 5.8|−−与( 5.8)−−【答案】(1)数轴见详解;10.2503523−<−<<<;(2)①3354−>−;② 5.8(5.8)−−<−− 【分析】(1)由数轴的定义画出数轴并标出各数,然后写出它们的相反数并比较大小; (2)由比较大小的法则进行比较,即可得到答案. 【详解】解:(1)数轴如图所示:由题意,3−的相反数是3;0的相反数是0;13−的相反数是13;52的相反数是52−;0.25的相反数是0.25−;∴10.2503523−<−<<<;(2)①∵3354<, ∴3354−>−; ②| 5.8| 5.8−−=−,( 5.8) 5.8−−=, ∴5.8(5.8)−−<−−;【点睛】本题考查了数轴的定义,比较有理数的大小,解题的关键是熟练掌握所学的知识,正确的进行解题.题型二:借助数轴间接比较数的大小例2.已知有理数a 、b 在数轴上的位置如图所示.比较a 、b 、-a 、-b 的大小,正确的是( )A .a <b <-a <-bB .b <-a <-b <aC .-a <a <b <-bD .-b <a <-a <b解析:由图可得a <0<b ,且|a|<|b|,则有:-b <a <-a <b.故选D.方法总结:解答本题的关键是结合数轴和绝对值的相关知识,从数轴上获取信息,判断数的大小. 【变式1】下列四个数表示在数轴上,它们对应的点中,离原点最近的是( ) A .2− B .1.3C .0.4−D .0.6【答案】C【分析】离原点最近,即求这四个点对应的实数绝对值的最小值即可.【详解】解:22,1.3 1.3,0.40.4,0.60.6−==−==又2 1.30.60.4>>>∴离原点最近的是0.4−,故选:C .【点睛】本题考查有理数的大小比较、有理数与数轴的对应关系、绝对值等知识,是重要考点,难度较易,掌握相关知识是解题关键.【变式2】已知0a <,0ab <,且a b >,那么将a ,b ,a −,b −按照由大到小的顺序排列正确的是( ) A .a b b a −>−>> B .b a a b >>−>− C .b a a b >−>>− D .a b b a −>>−>【答案】D【分析】根据条件设出符合条件的具体数值,根据负数小于一切正数,两个负数比较大小,两个负数绝对值大的反而小即可解答. 【详解】解:∵a <0,ab <0, ∴b >0, 又∵|a|>|b|,∴设a=-2,b=1,则-a=2,-b=-1 则-2<-1<1<2. 故-a >b >-b >a . 故选:D .【点睛】此题主要考查了实数的大小的比较,比较简单,解答此题的关键是根据条件设出符合条件的数值,再比较大小.题型三:运用法则直接比较大小 例3.比较下列各对数的大小:①-1与-0.01; ②2−−与0; ③-0.3与31−; ④⎪⎪⎭⎫⎝⎛−−91与101−−。

绝对值贯穿有理数经典题型(八大题型)(原卷版)

专题1.1 绝对值贯穿有理数经典题型(八大题型)【题型1 利用绝对值的性质化简或求值】 【题型2 根据绝对值的非负性求值】 【题型3 根据参数的取值范围化简绝对值】 【题型4 根据绝对值的定义判断正误】 【题型5 根据绝对值的意义求取值范围】 【题型6 绝对值中分类讨论aa问题】 【题型7 绝对值中的分类讨论之多绝对值问题】 【题型8 绝对值中最值问题】【题型1 利用绝对值的性质化简或求值】【典例1】有理数a ,b ,c 在数轴上对应点的位置如图所示.(1)在数轴上表示﹣c ,|b |.(2)试把﹣c ,b ,0,a ,|b |这五个数从小到大用“<”连接起来; (3)化简|a +b |﹣|a ﹣c |﹣2|b +c |.【变式1-1】有理数a ,b ,c 在数轴上对应的点如图所示,化简|b +a |+|a +c |+|c ﹣b |的结果是( )A .2b ﹣2cB .2c ﹣2bC .2bD .﹣2c【变式1-2】a 、b 、c 三个数在数轴上位置如图所示,且|a |=|b |(1)求出a、b、c各数的绝对值;(2)比较a,﹣a、﹣c的大小;(3)化简|a+b|+|a﹣b|+|a+c|+|b﹣c|.【题型2 根据绝对值的非负性求值】【典例2】已知|a−|+|b+|+|c+|=0,求a﹣|b|+(﹣c)的值.【变式2-1】已知实数a,b满足|a|=b,|ab|+ab=0,化简|a|+|﹣2b|+3a.【变式2-3】若|x﹣2|+2|y+3|+3|z﹣5|=0.计算:(1)x,y,z的值.(2)求|x|+|y|﹣|z|的值.【变式2-4】已知m,n满足|m﹣2|+|n﹣3|=0,求2m+n的值.【变式2-5】已知|a﹣3|与|2b﹣4|互为相反数.(1)求a与b的值;(2)若|x|=2a+4b,求x的相反数.【变式2-6】若|a+2|+|b﹣5|=0,求的值.【变式2-7】若a、b都是有理数,且|ab﹣2|+|a﹣1|=0,求++ +……+的值.【题型3 根据参数的取值范围化简绝对值】【典例3】已知1<a<4,则|4﹣a|+|1﹣a|的化简结果为()A.5﹣2a B.﹣3C.2a﹣5D.3【变式3-1】已知1<x<2,则|x﹣3|+|1﹣x|等于()A.﹣2x B.2C.2x D.﹣2【变式3-2】若1<x<2,则化简|x+1|﹣|x﹣2|的结果为()A.3B.﹣3C.2x﹣1D.1﹣2x【变式3-3】已知有理数a,b在数轴上的位置如图所示,则化简|b+1|﹣|b﹣a|的结果为()A.a﹣2b﹣1B.a+1C.﹣a﹣1D.﹣a+2b+1【变式3-4】若a<0,则化简|3﹣a|+|2a﹣1|的结果为.【题型4 根据绝对值的定义判断正误】、【典例4】在实数a,b,c中,若a+b=0,b﹣c>c﹣a>0,则下列结论:①|a|>|b |,②a >0,③b <0,④c <0,正确的个数有( ) A .1个B .2个C .3个D .4个【变式4-1】将符号语言“|a |=a (a ≥0)”转化为文字表达,正确的是( ) A .一个数的绝对值等于它本身 B .负数的绝对值等于它的相反数C .非负数的绝对值等于它本身D .0的绝对值等于0【变式4-2】已知a 、b 、c 的大致位置如图所示:化简|a +c |﹣|a +b |的结果是( )A .2a +b +cB .b ﹣cC .c ﹣bD .2a ﹣b ﹣c【变式4-3】下列说法中正确的是( ) A .两个负数中,绝对值大的数就大 B .两个数中,绝对值较小的数就小 C .0没有绝对值D .绝对值相等的两个数不一定相等【题型5 根据绝对值的意义求取值范围】【典例5】若|5﹣x |=x ﹣5,则x 的取值范围为( ) A .x >5B .x ≥5C .x <5D .x ≤5【变式5-1】已知|a |=﹣a ,则化简|a ﹣1|﹣|a ﹣2|所得的结果是( ) A .﹣1B .1C .2a ﹣3D .3﹣2a【变式5-2】若|1﹣a |=a ﹣1,则a 的取值范围是( ) A .a >1B .a ≥1C .a <1D .a ≤1【变式5-3】若不等式|x ﹣2|+|x +3|+|x ﹣1|+|x +1|≥a 对一切数x 都成立,则a 的取值范围是 .【题型6 绝对值中分类讨论aa问题】 【典例6】计算:(abc ≠0)= .【变式6-1】若n=,abc>0,则n的值为.【变式6-2】已知abc>0,则式子:=()A.3B.﹣3或1C.﹣1或3D.1【变式6-3】已知a,b为有理数,ab≠0,且.当a,b取不同的值时,M的值等于()A.±5B.0或±1C.0或±5D.±1或±5【变式6-4】已知:,且abc>0,a+b+c=0.则m 共有x个不同的值,若在这些不同的m值中,最大的值为y,则x+y=()A.4B.3C.2D.1【变式6-5】已知a、b、c均为不等于0的有理数,则的值为.【变式6-7】已知a,b,c都不等于零,且++﹣的最大值是m,最小值为n,求的值.【变式6-8】在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答题目后提出的“探究”【提出问题】三个有理数a、b、c满足abc>0,求++的值.【解决问题】解:由题意得:a,b,c三个有理数都为正数或其中一个为正数,另两个为负数.①当a,b,c都是正数,即a>0,b>0,c>0时,则:++=++=1+1+1=3;②当a,b,c有一个为正数,另两个为负数时,设a>0,b<0,c<0,则:++=++=1﹣1﹣1=﹣1所以:++的值为3或﹣1.【探究】请根据上面的解题思路解答下面的问题:(1)三个有理数a,b,c满足abc<0,求++的值;(2)已知|a|=3,|b|=1,且a<b,求a+b的值.【变式6-9】阅读下列材料完成相关问题:已知a,b、c是有理数(1)当ab>0,a+b<0时,求的值;(2)当abc≠0时,求的值;(3)当a+b+c=0,abc<0,的值.【题型7 绝对值中的分类讨论之多绝对值问题】【典例7】(2022•河北模拟)(1)数轴上两点表示的有理数是a、b,求这两点之间的距离;(2)是否存在有理数x,使|x+1|+|x﹣3|=x?(3)是否存在整数x,使|x﹣4|+|x﹣3|+|x+3|+|x+4|=14?如果存在,求出所有的整数x;如果不存在,说明理由.【变式7-1】(2022春•宝山区校级月考)已知|a﹣1|+|a﹣4|=3,则a的取值范围为.【变式7-2】(2022秋•玉门市期末)在数轴上有四个互不相等的有理数a、b、c、d,若|a﹣b|+|b﹣c|=c﹣a,设d在a、c之间,则|a﹣d|+|d﹣c|+|c﹣b|﹣|a﹣c|=()A.d﹣b B.c﹣b C.d﹣c D.d﹣a【题型8绝对值中最值问题】【典例8】结合数轴与绝对值的知识回答下列问题:(1)数轴上表示3和2的两点之间的距离是;表示﹣2和1两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(2)如果|x+1|=2,那么x=;(3)若|a﹣3|=4,|b+2|=3,且数a、b在数轴上表示的数分别是点A、点B,则A、B两点间的最大距离是,最小距离是.(4)若数轴上表示数a的点位于﹣3与5之间,则|a+3|+|a﹣5|=.(5)当a=1时,|a﹣1|+|a+5|+|a﹣4|的值最小,最小值是.【变式8-1】结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.如果表示数a和﹣1的两点之间的距离是3,那么a=.(2)若数轴上表示数a的点位于﹣4与2之间,则|a+4|+|a﹣2|的值为;(3)利用数轴找出所有符合条件的整数点x,使得|x+2|+|x﹣5|=7,这些点表示的数的和是.(4)当a=时,|a+3|+|a﹣1|+|a﹣4|的值最小,最小值是.【变式8-2】结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(2)如果|x+1|=3,那么x=;(3)若|a﹣3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B两点间的最大距离是,最小距离是.(4)若数轴上表示数a的点位于﹣4与2之间,则|a+4|+|a﹣2|=.【变式8-3】阅读下面材料并解决有关问题:我们知道:|x|=.现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x﹣2|时,可令x+1=0和x﹣2=0,分别求得x =﹣1,x=2(称﹣1,2分别为|x+1|与|x﹣2|的零点值).在实数范围内,零点值x=﹣1和,x=2可将全体实数分成不重复且不遗漏的如下3种情况:①x<﹣1;②﹣1≤x<2;③x≥2.从而化简代数式|x+1|+|x﹣2|可分以下3种情况:①当x<﹣1时,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;②当﹣1≤x<2时,原式=x+1﹣(x﹣2)=3;③当x≥2时,原式=x+1+x﹣2=2x﹣1.综上讨论,原式=.通过以上阅读,请你解决以下问题:(1)化简代数式|x+2|+|x﹣4|.(2)求|x﹣1|﹣4|x+1|的最大值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学有理数题型总结
一、知识性专题
专题一、 正数和负数的意义
(1)具有相反意义的量
把0以后的数分为正数和负数,起源于表示两种相反意义的量,后来正数和负数在许多方面被广泛地应用.比如:零下8C ︒可以表示为8C ︒-,零上8C ︒则可以表示为8C ︒+;收入200元可以表示为+200元,支出200元则可以表示为-200元等.若正数表示某种意义的量,则负数就表示与其相反意义的量.
常见的表示相反意义的量有:零上和零下、前进和后退、海平面以上和海平面以下、收入和支出、向南和向北、盈利和亏损、上升和下降.
例题1:(2011年南通中考)如果60m 表示“向北走60m ”,那么“向南走40m ”可以表示为( ).
A -20m
B -40m
C 20m
D 40m
例题2:下列说法中,正确的是( ).
A 如果“水位上升3米”记作+3米,那么表示其相反意义的量一定为-3米
B 亏损-30元表示亏损30元
C 41,2,1.5,0,33
都是正数 D 2,5,7,0---都不是正数
例题3:某食品包装袋上标有“净含量386克±4克”,则这包食品的合格净含量范围是( ).
专题二、有理数的有关概念
1、 数,,a b c 在数轴上的位置如图所示,化简a b c a b c
++.
2、 数轴上的一个点表示一个数,当这个点表示的是整数时,我们称它是整数点,如果有一条数轴的单位长度是1厘米,有一条长2米的线段放在该数轴上,求它可以盖住的整数点的个数. (1)若2米长的线段的两端点恰好与两个整数点重合,则它可以覆盖的整数点有( )个.
(2)若2米长的线段的两端点不与两个整数点重合,则它可以盖住的整数点有( )个.
4、如图所示,,a b 为有理数,则下列结论正确的是( )
A a b ->
B a b >-
C b a ->-
D b a ->-
专题三、有理数的有关运算
1、下列说法中,正确的有
① 减去一个数等于加上这个数
② 0减去一个数仍得这个数
③ 有理数减法中,被减数不一定比减数或差大
④ 两个相反数相减得零
⑤ 减去一个正数,差不一定小于被减数
⑥ 减去一个负数,差一定大于被减数
A 2个
B 3个
C 4个
D 5个
2、有理数,,a b c 在数轴上的位置如图所示,则下列式子正确的有( )
① 0b c +> ② a b a c +>+ ③ 0a c +< ④ 0a b +>
A 1个
B 2个
C 3个
D 4个
3、已知2x +与3y +互为相反数,求x y +的值.
4、若m 是有理数,则m m +的值( )
A 不可能是正数
B 一定是正数
C 不可能是负数
D 可能是正数,也可能是负数
5、计算12345699100-+-+-+--+.
6、计算(78)(77)(76)(75)(100)-+-+-+-+++
7、若x y x y +-中的,x y 都扩大到原来的5倍,则x y x y
+-的值( ) A 缩小到原来的110
B 不变
C 扩大到原来的五倍
D 缩小到原来的
15 8、若,m n 互为相反数,则1m n -+= .
9、若0,0,ab b <->且a b >,则a b + 0(填“>”“<”或“=”)
10、计算(1)2
1
21(1)()(8)9(1)452-⨯+⨯--÷ (2)211(10.5)2(3)3
⎡⎤⎡⎤--⨯⨯--⎣⎦⎢⎥⎣⎦
专题4、非负数的性质
1、已知2(1)20m n -++=,则m n +的值为( )
A 1-
B 3-
C 3
D 不确定
2、若3x +与5y +互为相反数,求x y +的值.
3、已知230m n ++-=,求32m n +的值.
专题5、有理数运算的实际应用
1、某商场在“十一”期间举办优惠促销活动,采取“满一百元送20元,并且连环赠送”的酬宾方式,即顾客每消费100元(这里的100元可以是现金,也可以是奖励券,还可以是两者合计的钱数)就送20元奖励券,满200元就送40元奖励券,以此类推.某一天,一位顾客一次性购物花了20000元,那么他可以多买多少元钱的商品?
2、一货车为一家摩托车配件批发部送货,先向南走了8千米,到达“华能”修理部,又向北走了3.5千米,到达“捷达”修理部,继续向北走了7.5千米,到达“志远”修理部,最后又回到批发部.
专题6、运用绝对值的性质化简求值
1、若()m n m n +=-+,则( )
A 0m n +=
B 0m n +>
C 0m n +<
D 0m n +≤
2、34ππ-+-的计算结果是 .
3、已知14,2
x y ==,且0xy <,则x y 的值等于 . 4、已知一个整数与5的差的绝对值大于1999,而小于2001,则这个整数为 .
二、规律方法专题
专题7、有理数的简便运算
1、 计算
11112234950
+++⨯⨯⨯
2、 计算35719211261290110-+-+-+ 类比题:计算15791113151726122030425672-+-+-+-+
3、若“!”是一种运算符号,并且1!=1, 2!=1×2,,3!=1×2×3,…,则2009!2008!

A 2008
B 2007
C 2009
D 2008 2009
专题8、探索数字规律
1、某种细菌在繁殖过程中,每半小时分裂一次(由一个分裂成两个),经过3小时,这种细菌由一个可分裂为()
2、课题研究小组对附着在物体表面的三个微生物(课题小组成员把它们分别标号为1,2,3)的生成情况进行观察记录,这三个微生物第一天各自一分为二,产生新的微生物(标号为4,5,6,7,8,9).接下去每天都安这样的规律变化,即每个微生物一分为二,形成新的微生物(课题组成员用下图所示的图形进行形象的记录).那么标号为100的微生物会出现在()
A 第三天
B 第四天
C 第五天
D 第六天
3、观察图1—31寻找规律,在“?”处应填上的数字是()
A 128
B 136
C 162
D 188
4、如图1—32所示的图案是由长度相同的小木棒按一定的规律拼搭而成,拼搭第一个图案需4根小木棒,拼搭第2个图案需10根小木棒,,按此规律,拼搭第8个图案需小木棒根.
5、下列给出的一列数:2,5,10,17,26, ,50,仔细观察后回答,缺少的数是.
三、思想方法专题
专题9、数形结合的思想
1、已知有理数,a b在数轴上对应点的位置如图1—33所示,则a a b b a
-+--化简
A 2b a +
B 2b a -
C a
D b
2、比较下列各数的大小
256165,,,0,,,367276
-----
专题10、分类讨论的思想
1、 比较2a 与2a -的大小
专题11、转化的思想
1、计算1773(5
)(1)48124--÷-
课后总结:。

相关文档
最新文档