时钟及追及问题

合集下载

时钟追及问题全部公式

时钟追及问题全部公式

时钟追及问题全部公式1. 基本公式- 分针速度:分针60分钟转一圈,一圈为360^∘,所以分针每分钟走360÷60 = 6^∘。

- 时针速度:时针12小时转一圈,12×60 = 720分钟转360^∘,所以时针每分钟走360÷720 = 0.5^∘。

- 两针速度差:6 - 0.5=5.5^∘2. 时钟追及问题的通用公式- 追及时间=路程差÷速度差。

在时钟问题中,路程差通常是两针之间的角度差。

3. 题目解析- 例1:3点多少分时,时针与分针重合?- 分析:3点时,时针与分针的角度差为90^∘(因为时针指向3,分针指向12,每一大格为30^∘,3点时分针和时针间隔3大格)。

- 设x分钟后时针与分针重合,根据追及时间=路程差÷速度差,这里路程差为90^∘,速度差为5.5^∘每分钟。

- 则x=(90)/(5.5)=(180)/(11)≈16.36分钟,所以3点(180)/(11)分时针与分针重合。

- 例2:2点多少分时,时针与分针成100^∘角?- 分析:2点时,时针与分针的角度差为60^∘。

有两种情况,一种是分针还没有追上时针且与时针成100^∘角,此时路程差为100 - 60 = 40^∘;另一种是分针超过时针后与时针成100^∘角,此时路程差为60+100 = 160^∘。

- 当路程差为40^∘时,设x分钟后时针与分针成100^∘角(第一种情况),根据追及时间=路程差÷速度差,x=(40)/(5.5)=(80)/(11)≈7.27分钟。

- 当路程差为160^∘时,设y分钟后时针与分针成100^∘角(第二种情况),y=(160)/(5.5)=(320)/(11)≈29.09分钟。

五年级钟表问题之相遇与追及奥数拓展

五年级钟表问题之相遇与追及奥数拓展

钟表问题之相遇与追及奥数拓展知识点1.钟表问题时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。

2.我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。

3.时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。

①对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。

②分针速度:每分钟走1小格,每分钟走6度③时针速度:每分钟走 1/12 小格,每分钟走0.5度4.注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。

简单的分类:①环形时钟的时针和分针的追及和相遇的问题,具体体现的就是路程转换为角度问题。

②时间标准问题和闹钟问题,这类问题是因为问题闹钟的原因导致时钟比标准钟快或者慢,引发的时间问题。

解决这类问题需要的就是十字交叉法。

典型例题例1、三点钟到四点钟之间,分针与时针在什么时候重合?【练习1】有一座时钟现在显示10时整。

那么,经过多少分钟,分针与时针第一次重合;再经过几分钟分针与时针第二次重合?(答案写成假分数的格式)【练习2】钟表的时针与分针在4点几分第一次重合?(答案写成假分数的形式)【练习3】现在是3点,几分钟之后时针与分针第一次重合?(答案写成假分数的形式)例2、七点钟到八点钟之间,分针与时针在什么时候成直线?【练习4】4点钟到5点钟之间,分针与时针在什么时候成直线?A、4点600/11分B、4点600/13分C、4点45分D、4点47分【练习5】1点钟到2点钟之间,分针与时针在什么时候成直线?A、1点420/11分B、1点420/13分C、1点35分D、1点37分【练习6】8点钟到9点钟之间,分针与时针在什么时候成直线?A、8点120/13分B、8点120/11分C、8点13分D、8点10分例3、一点钟到两点钟之间,分针与时针在什么时候成直角?【练习7】2点钟到3点钟之间,分针与时针在2点____分时第一次成直角?(答案写成假分数的形式)【练习8】5点钟到6点钟之间,分针与时针在什么时候成直角?A、5点120/11分B、5点480/11分C、两个都对D、两个都不对【练习9】8点钟到9点钟之间(不包含9点钟),分针与时针在8点______分成直角?(答案写成假分数的形式)例4、一只闹钟每小时慢4分钟,标准钟三点半时,此钟与标准钟对准,现在标准时间是十点半。

必备小升初数学知识点之时钟问题钟面追及

必备小升初数学知识点之时钟问题钟面追及

必备小升初数学知识点之时钟问题-钟面追及数学是一个重要的基础课程,下面为大家分享数学知识点之时钟问题钟面追及,希望能够对大家有帮助!时钟问题-钟面追及基本思路:封闭曲线上的追及问题。

关键问题:①确定分针与时针的初始位置;②确定分针与时针的路程差;基本方法:①分格方法:时钟的钟面圆周被均匀分成60小格,每小格我们称为1分格。

分针每小时走60分格,即一周;而时针只走5分格,故分针每分钟走1分格,时针每分钟走1/12分格。

②度数方法:从角度观点看,钟面圆周一周是360deg;,分针每分钟转360/60度,即6deg;,时针每分钟转360/12*60度,即1/2度。

经典例题:例1、钟面上3时多少分时,分针与时针恰好重合?分析:正3时时,分针在12的位置上,时针在3的位置上,两针相隔90deg;。

当两针第一次重合,就是3时过多少分。

在正3时到两针重合的这段时间内,分针要比时针多行走90deg;。

而可知每分钟分针比时针多行走6-0.5=5.5(度)。

相应的所用的时间就很容易计算出来了。

解:360÷12×3=90(度)90÷(6-0.5)=90÷5.5asymp;16.36(分)答:两针重合时约为3时16.36分。

例2、在钟面上5时多少分时,分针与时针在一条直线上,而指向相反?分析:在正5时时,时针与分针相隔150deg;。

然后随时间的消逝,分针先是追上时针,在此时间内,分针需比时针多行走150deg;,然后超越时针180deg;就成一条直线且指向相反了。

解:360÷12×5=150(度)(150+180)÷(6;—;0.5)=60(分)5时60分即6时正。

答:分针与时针在同一条直线上且指向相反时应是5时60分,即6时正。

例3、钟面上12时30分时,时针在分针后面多少度?分析:要避免粗心的考虑:时针在分针后面180deg;。

正12时时,分针与时针重合,相当于在同一起跑线上。

相遇、追及、时钟问题

相遇、追及、时钟问题

1、 甲乙两车从相距500千米的两地同时出发相向而行,4小时后还相距全程的15 ,已知甲车每小时行55千米,乙车每小时行多少千米?2、 两列火车相向而行,甲车每小时行72千米,乙车每小时行90千米,两车错车时,甲车上一乘客发现:从乙车车头经过他的车窗时开始到乙车车尾,经过他的车窗共用了10秒,求乙车的车长。

3、 甲乙两车同时从A 地开往B地,甲车到达 B 地后立即返回,在离B 地45千米处与乙车相遇,甲乙两车的速度比是3:2,相遇时甲车行了多少千米?4、 一列火车通过440的桥,需要40秒,以同样的速度,穿越310米的隧道需要30秒,这列火车的速度和车身长各是多少?5、 一条船顺水航行每小时行20千米,逆水航行每小时行15千米,已知这条船在该航道的甲、乙两港间往返一次要用21小时,甲乙两港间的距离是多少?6、 一只小船第一次顺水航行42千米,逆水航行8千米,共用去11小时;第二次用同样的时间顺水航行24千米,逆水航行14千米;求小船在静水中的速度和水速。

7、 两地相距460千米,甲列车开出2小时后,乙列车和甲列车相向开出,经过4小时与甲列车相遇。

已知甲列车每小时比乙列车多行10千米,甲列车每小时行多少千米?8、 甲每小时走8千米,乙每小时走10千米。

两人同时从同地同向而行,走了15分钟乙忘带东西返回原地,取了东西再追甲;再过几小时乙可以追上甲?9、一条环形跑道长400米,甲每分钟行550米,乙每分钟行250米。

甲、乙两人同时同地反向出发,多少分钟后他们再相遇?甲、乙两人同时同地同向出发,多少分钟后他们再相遇?若起跑时,乙在甲前面100米处,此时甲、乙两人同时同向出发,多少分钟后他们第二次相遇?10、在一次环城自行车比赛中,速度最快的运动员在出发后35分钟第一次遇见最慢的运动员,已知最快的运动员的速度是最慢运动员速度的1.2倍,环城一周是7千米。

求两个运动员的速度。

11、现在是5时整,在过多少分钟,时针与分针第一次重合?12、4时与5时之间,什么时刻时钟的两针成一条直线?13、在7时和8时之间,时针与分针在什么时刻相互垂直?14、现在是11时整,再过多久,钟面上的时针与分针第一次的夹角是90度?15、钟面上的3时过多少分时,时针和分针离3的距离相等,并且在3的两边?。

小学数学思维方法:时钟问题

小学数学思维方法:时钟问题

时钟问题【知识要点】时钟问题可以看做是一个特殊的圆形轨道上2人追及问题,不过这里的两个“人”分别是时钟的分针和时针。

时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。

1.常见钟表(机械)的构成:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。

分针速度:每分钟走1小格,每分钟走6度时针速度:每分钟走112小格,每分钟走0.5度 2.在计算中采用两种速度:(1)速度用每分钟多少度表示,分针的速度是每分钟走6度,时针的速度是每分钟走0.5度。

(2)速度用每分钟多少小格表示,分针的速度是每分钟走1格,时针的速度是每分钟走112小格。

标准的时钟,每隔56511分钟,时针与分针重合一次.【典型例题】一、时针与分针的追及与相遇问题例1.现在是10点,再过多长时间,时针与分针将第一次在一条直线上?解:时针的速度是 360÷12÷60=0.5(度/分),分针的速度是 360÷60=6(度/分)即 分针与时针的速度差是 6-0.5=5.5(度/分),10点时,分针与时针的夹角是60度,第一次在一条直线时,分针与时针的夹角是180度,即 分针与时针从60度到180度经过的时间为所求。

119215.0-660-180=÷)()(例2.有一座时钟现在显示10时整.那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?解:在lO点时,时针所在位置为刻度10,分针所在位置为刻度12;当两针重合时,分针必须追上50个小刻度,设分针速度为“1”,有时针速度为“112”,于是需要时间:1650(1)541211÷-=.所以,再过65411分钟,时针与分针将第一次重合.第二次重合时显然为12点整,所以再经过65(1210)6054651111-⨯-=分钟,时针与分针第二次重合.例 3.某人下午六时多外出买东西,出门时看手表,发现表的时针和分针的夹角为1100,七时前回家时又看手表,发现时针和分针的夹角仍是1100.那么此人外出多少分钟?解:如下示意图,开始分针在时针左边1100位置,后来追至时针右边1100位置.于是,分针追上了1100+1100=2200,对应2206格.所需时间为2201(1)40612÷-=分钟.所以此人外出40分钟.说明:通过上面的例子,看到有时是将格数除以1(1)12+,有时是将格数除以1(1)12-,这是因为有时格数是时针、分针共同走过的,对应速度和;有时格数是分针追上时针的,对应速度差.对于这个问题,大家还可以将题改为:“在9点多钟出去,9点多钟回来,两次的夹角都是1100”,答案还是40分钟.二、时间标准及闹钟问题例4.某科学家设计了只怪钟,这只怪钟每昼夜10时,每时100分(如右图所示)。

钟表快慢问题经典例题

钟表快慢问题经典例题

钟表快慢问题经典例题模块一、时针与分针的追及与相遇问题【例1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30)÷3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)÷3600X(3600+30)÷3600个小时,则手表每小时比标准时间慢1—【(3600-30)÷3600X(3600+30)÷3600】=1—14399÷14400=1÷14400个小时,也就是1÷14400X3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。

有一天晚上10点整,小强对准了闹钟,他想第二天早晨6∶00起床,他应该将闹钟的铃定在几点几分?【解析】6:24【巩固】小翔家有一个闹钟,每时比标准时间慢3分。

有一天晚上8:30,小翔对准了闹钟,他想第二天早晨6∶30起床,于是他就将闹钟的铃定在了6∶30。

这个闹钟响铃的时间是标准时间的几点几分?【解析】7点【巩固】当时钟表示1点45分时,时针和分针所成的钝角是多少度?【解析】142.5度【例2】有一座时钟现在显示10时整.那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?【解析】分针每小时走一圈12格,时针走1格,分针每小时比时针多走12-1=11格,每分钟多走11/60格。

10时整的时候,时针与分针相距10格,第一次重合,分针要在相同的时间里比时针多走10格,所用时间是:10÷11/60=54又6/11(分钟)第二次重合,分针要比时针多走12格,所用时间是:12÷11/60=65又5/11(分钟)【巩固】钟表的时针与分针在4点多少分第一次重合?【解析】此题属于追及问题,追及路程是20格,速度差是12/60-1/60 ,所以追及时间是:20/(12/60-1/60 )(分)。

五年级数学时钟相遇与追及问题(含答案)

五年级数学时钟相遇与追及问题(含答案)

五年级数学时钟相遇与追及问题(含答案)时钟问题是关于时针和分针的追及或相遇问题,可以看作是一个特殊的圆形轨道问题。

时钟问题包括时钟的快慢、周期和时针与分针所成的角度等。

不同于其他行程问题,时钟问题的速度和总路程的度量方式是指针“每分钟走多少角度”或“每分钟走多少小格”,其中分针速度为每分钟走1小格或6度,时针速度为每分钟走1/12小格或0.5度。

但是对于一些“怪钟”或“坏了的钟”,它们的速度可能与常规时钟不同,需要进行独立分析。

时钟问题可以视为行程问题,其中分针快,时针慢,因此分针与时针的问题就是追及问题。

解决时钟的快慢问题时,可以使用十字交叉法。

例如,在标准时钟中,时针与分针从一次重合到下一次重合所需时间为65.5分。

例1中,当时钟表示1点45分时,时针和分针所成的钝角为142.5度。

例2中,时针、分钟和秒针转动的圈数之和为1466圈,求这段时间有多少秒。

解答中,它们的速度比为1:12:720,因此秒针转了1440圈,即秒。

在一段时间里,时针、分钟、秒针正好走了3665小格,那么这段时间有多少秒?解析:它们的速度比为1:12:720,所以秒针转了3665÷(720+12+1)×720=3600小格,即3600秒。

答案:3600秒。

有一座时钟现在显示10时整。

那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?解析:在10点时,时针所在位置为刻度10,分针所在位置为刻度12;当两针重合时,分针必须追上50个小刻度,设分针速度为“l”,有时针速度为“l/12”,再过54/11分钟,时针与分针将第一次重合。

第二次重合时显然为12点整,所以再经过65分钟,时针与分针第二次重合。

标准的时钟,每隔65分钟,时针与分针重合一次。

答案:54分钟。

钟表的时针与分针在4点多少分第一次重合?解析:此题属于追及问题,追及路程是20格,速度差是1/11.如果设分针的速度为单位“l”,那么时针的速度为“l/12”。

小学奥数模块教程时钟问题(五年级提尖寒假)

小学奥数模块教程时钟问题(五年级提尖寒假)

时钟问题本章知识1、简单的钟面角度问题2、钟表中的相遇与追及问题3、坏钟问题前铺知识1、相遇问题2、追及问题课前加油站1、请默写出直线相遇与追及问题的两个公式。

2、甲、乙两人同时同地同向在400米长的环形跑道上跑步,甲的速度为6米/秒,乙的速度为4米/秒。

(1)开始后多长时间,甲乙第一次处于跑道的某直径的两端?(2)开始后多长时间,甲第一次超过乙?(3)开始后多长时间,甲乙第一次处于起点所在的直径对称的位置?要研究时钟某个时刻时针与分针成什么角度,我们首先要知道时针与分针行走的速度。

它们的速度有两种表达形式:以小格/分钟为单位或以角度/分钟为单位。

格 度 时钟一圈 60格360度时针速度 121格/分钟 21度/分钟 分针速度 1格/分钟6度/分钟时针速度:分针速度=1:12。

牢记它有助于我们记忆时针和分针的速度。

1、已知:钟表上60小格,一圈是360度,则分针1小时转多少度?时针1小时转多少度?分针速度是时针速度的多少倍?【演练】分针1分转多少度?时针1分转多少度?时针速度是分针速度的几分之几?2、3:00时,分针落后时针 度,15分钟内,分针走 度,时针走 度,因此3:15时,时针与分针的夹角是 度。

模块1简单的钟面角度问题【演练】在下表中仿照第二行的例子填入适当的算式。

X :Y (X 点Y 分) X 点时两针的角度 Y 分时时针走的度数 Y 分时分针走的度数 X 点Y 分时两针的度数 4:16 4×30=120 16×6=96 16×0.5=8 120-96+8=32 8:12 3:40 9:10【演练】当时钟表示1点45分时,时针和分针所成的钝角是多少度?【演练】在16点16分这个时刻,钟表盘面上时针和分针的夹角是多少度?3、小明家的时钟正对着衣柜上的镜子,某天早上起床时,小明看到镜子中的时钟两针指向5点20分的位置,那么现在真正的时钟显示的时间是?题型一 重合问题公式:分针到时针相差的格数÷(1-121)=重合分钟数分针到时针相差的度数÷(6-0.5)=重合分钟数1、现在是2点,从现在开始,分针与时针什么时刻第一次重合在一起?第二次呢?模块2钟表中的相遇与追及问题【演练】现在是7点40分,从现在开始过多长时间时针与分针第一次重合?【演练】有一座时钟现在显示10时整。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在一点到二点之间,分针什么时候与时针构成直角?解:当时针分针重合,即分针追上时针时,需要时间30/(11/2)=60/11,此后,当路程差为90度时,构成直角,90/(11/2)=180/11;当路程差为270度时,构成直角,270/(11/2)=540/11.因此,共需要60/11+180/11=240/11分钟,或60/11+540/11=600/11分钟。

2.现在是10点整,请问再过多长时间,时针与分针将第一次在一条直线上?解:分针一分钟走6度,时针一分钟走1/2度,则分针时针的速度差为11/2,10点时分针时针路程差为60度,当分针时针第一次在一条直线上时分针时针的路程差为180度。

即在运动过程中,时针分针的路程差又增加120度,因此,用时120/(11/2)=240/113.在钟面上,如果知道X时Y分,输入一个公式就能得出此时时针与分针夹角的度数。

请问这个公式怎么得来?钟面上分12大格60小格。

每1大格均为360除以12等于30度。

每过一分钟分针走6度,时针走0.5度,能追5.5度。

公式可这样得来:X时时,夹角为30X度。

Y分,也就是分针追了时针5.5Y度。

可用:整点时的度数30X减去追了的度数5.5Y。

如果减得的差是负数,则取绝对值,也就是直接把负号去掉,因为度数为非负数。

因为时针与分针一般有两个夹角,一个小于180度,一个大于180度,(180度时只有一个夹角)因此公式可表示为:|30X-5.5Y|或360-|30X-5.5Y|度。

||为绝对值符号。

如1:40分,可代入得:3 0×1-5.5×40=-190则为190度,另一个小于180度的夹角为:170度。

如:2:10,可代入得:60-55=5度。

大于180度的角为:355度。

如:11:20,330-110=220度,小于180的角:360-220=140度。

4.时钟现在表示的时间是18点整,那么分针旋转1990圈后是()点钟?解;分针走一圈,时针走一小时=分针走24圈,时针走24小时,即此时时间还是18点=1990/24=82余2 2=时间为18点再过22小时,即16点。

若选b的话,则可把16点理解为下午4点。

5.一个快钟每小时比标准时间快1分钟,一个慢钟每小时比标准时间慢3分钟。

如将两个钟同时调到标准时间,结果在24小时内,快钟显示10点整时,慢钟恰好显示9点整。

则此时的标准时间是几点?快钟和慢种之间除了一个是快1分钟/小时,一个是慢3分钟/小时.可以得到这样关系:快钟和慢种差比为1:3其他的条件就是他们都一起走没有别的不同步了,所以到了快种10点,慢钟9点时候,他们已经差了一个小时,其中按1:3来算快种快了15分,慢种慢了45分钟,由上面分析可以得到现在标准时间为:9:45。

解题关键:时钟问题属于行程问题中的追及问题。

钟面上按“时”分为12大格,按“分”分为60小格。

每小时,时针走1大格合5小格,分针走12大格合60小格,时针的转速是分针的,两针速度差是分针的速度的,分针每小时可追及。

1、二点到三点钟之间,分针与时针什么时候重合?分析:两点钟的时候,分针指向12,时针指向2,分针在时针后5×2=10(小格)。

而分针每分钟可追及1-=(小格),要两针重合,分针必须追上10小格,这样所需要时间应为(10÷)分钟。

解:(5×2)÷(1-)=10÷=10(分)答:2点10分时,两针重合。

2、在4点钟至5点钟之间,分针和时针在什么时候在同一条直线上?分析:分针与时针成一条直线时,两针之间相差30小格。

在4点钟的时候,分针指向12,时针指向4,分针在时针后5×4=20(小格)。

因分针比时针速度快,要成直线,分针必须追上时针(20小格)并超过时针(30小格)后,才能成一条直线。

因此,需追及(20+30)小格。

解:(5×4+30)÷(1-)=50÷=54(分)答:在4点54分时,分针和时针在同一条直线上。

3、在一点到二点之间,分针什么时候与时针构成直角?分析:分针与时针成直角,相差15小格(或在前或在后),一点时分针在时针后5×1=5小格,在成直角,分针必须追及并超过时针,才能构成直角。

所以分针需追及(5×1+15)小格或追及(5×1+45)小格。

解:(5×1+15)÷(1-)=20÷=21(分)或(5×1+45)÷(1-)=50÷=54(分)答:在1点21分和1点54分时,两针都成直角。

4、星期天,小明在室内阳光下看书,看书之前,小明看了一眼挂钟,发现时针与分针正好处在一条直线上。

看完书之后,巧得很,时针与分针又恰好在同一条直线上。

看书期间,小明听到挂钟一共敲过三下。

(每整点,是几点敲几下;半点敲一下)请你算一算小明从几点开始看书?看到几点结束的?分析:连半点敲声在内,一共敲了三下,说明小明看书的时间是在中午12点以后。

12点以后时针与分针:第一次成一条直线时刻是:(0+30)÷(1-)=30÷=32(分)即12点32分。

第二次成一条直线时刻是:(5×1+30)÷(1-)=35÷=38(分)即1点38分。

第三次成一条直线的时刻是:(5×2+30)÷(1-)=40÷=43(分)即2点43分。

如果从12点32分开始,到1点38分,只敲2下,到2点43分,就共敲5下(不合题意)如果从1点38分开始到2点43分,共敲3下。

因此,小明应从1点38分开始看书,到2点43分时结束的。

5、一只挂钟,每小时慢5分钟,标准时间中午12点时,把钟与标准时间对准。

现在是标准时间下午5点30分,问,再经过多长时间,该挂钟才能走到5点30分?分析:1、这钟每小时慢5分钟,也就是当标准钟走60分时,这挂钟只能走60-5=55(分),即速度是标准钟速度的=。

2、因每小时慢5分,标准钟从中午12点走到下午5点30分时,此挂钟共慢了5×(17-12)=27(分),也就是此挂钟要差27分才到5点30分。

3、此挂钟走到5点30分,按标准时间还要走27分,因它的速度是标准时钟速度的,实际走完这27分所要时间应是27÷。

解:5×(17-12)=27 (分)27÷=30(分)答:再经过30分钟,该挂钟才能走到5点30分。

两物体在同一直线上运动所涉及的追及、相遇、相撞的问题,通常归为追及问题。

公式追及:追及速度×追及时间=追及路程追及速度=较快速度-较慢速度(即速度差)相遇:相遇速度×相遇时间=相遇路程相遇速度=两人的速度和例题甲、乙同时起跑,绕300米的环行跑,甲每秒6米,乙每秒4米,问第二次追上乙时,甲跑了几圈??基本等量关系:追及时间* 速度差=追及距离本题速度差为:6-4=2甲第一次追上乙后,追及距离是环形报道的周长300米第一次追上后,两人又可以看作是同时同地起跑,因此第二次追及的问题,就转化为类是于求解第一次追及的问题。

甲第一次追上乙的时间是:300/2=150秒甲第一次追上乙跑了:6*150=900米这是乙跑了:4*150=600米这表明甲是在出发点上追上乙的,因此,第二次追上问题可以简化为把第一次追上时所跑的距离乘以二即可,得甲第二次追上乙共跑了:900+900=1800乙共跑了:600+600=1200亦即甲跑了1800/300=6圈乙跑了1200/300=4 圈一、填空题1.甲以每小时4千米的速度步行去学校,乙比甲晚4小时骑自行车从同一地点出发去追甲,乙每小时行12千米,乙2_小时可追上甲.2.小张从家到公园,原打算每分钟走50米,为了提早10分钟到,他把速度加快,每分钟走75米.小张家到公园有150米.3.父亲和儿子都在某厂工作,他们从家里出发步行到工厂,父亲用40分钟,儿子用30分钟.如果父亲比儿子早5分钟离家,问儿子用15分钟可赶上父亲?4.解放军某部小分队,以每小时6千米的速度到某地执行任务,途中休息30分后继续前进,在出发5.5小时后,通讯员骑摩托车以56千米的速度追赶他们._ _0.6_小可以追上他们?5.甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒钟可追上乙.若乙比甲先跑2秒钟,则甲跑4秒钟能追上乙.问甲、乙两人每秒钟各跑6,4米.6.小明以每分钟50米的速度从学校步行回家,12分钟后小强从学校出发骑自行车去追小明,结果在距学校1000米处追上小明,求小明骑自行车的速度是__ 125米/分.7.甲、乙两匹马在相距50米的地方同时出发,出发时甲马在前乙马在后.如果甲马每秒跑10米,乙马每秒跑12米,60秒两马相距70米?8.上午8时8分,小明骑自行车从家里出发.8分后,爸爸骑摩托车去追他,在离家4千米的地方追上了他,然后爸爸立刻回家,到家后又立刻回头去追小明,再追上他的时候,离家恰是8千米,这时是8时32分.9.从时针指向4点开始,再过21_分,时针正好与分钟重合?10.一队自行车运动员以每小时24千米的速度骑车从甲地到乙地,两小时后一辆摩托车以每小时56千米的速度也从甲地到乙地,在甲地到乙地距离的二分之一处追上了自行车运动员.问:甲乙两地相距168千米?二、解答题追及问题的解法解追及问题的常规方法是根据位移相等来列方程,匀变速直线运动位移公式是一个一元二次方程,所以解直线运动问题中常要用到二次三项式(y=a x2+bx+c)的性质和判别式(△=b2-4ac)。

另外,在有两个(或几个)物体运动时,常取其中一个物体为参照物,即让它变为“静止”的,只有另一个(或另几个)物体在运动。

这样,研究过程就简化了,所以追及问题也常变换参照物的方法来解。

这时先要确定其他物体相对参照物的初速度和相对它的加速度,才能确定其他物体的运动情况,对一些定性讨论的问题还常用图象法来进行分析。

11.一只狗追赶一只野兔,狗跳5次的时间兔子能跳6次,狗跳4次的距离与兔子7次的距离相等.兔子跳出550米后狗子才开始追赶.问狗跳了多远才能追上兔子?12.当甲在60米赛跑中冲过终点线时,比乙领先10米、比丙领先20,如果乙和丙按原来的速度继续冲向终点,那么当乙到达终点时将比乙领先多少米?13.一架敌机侵犯我领空,我机立即起飞迎击,在两机相距50千米时,敌机扭转机头以每分15千米的速度逃跑,我机以每分22千米的速度追击,当我机追至敌机1千米时与敌机激战,只用了半分就将敌机击落.敌机从扭头逃跑到被击落共用了多少分? 7分钟14.甲、乙两人环绕周长是400米的跑道跑步,如果两人从同一地点出发背向而行,那么经过2分钟相遇;如果两人从同一地点出发同向而行,那么经过20分钟两人相遇,已知甲的速度比乙快,求甲、乙两人跑步的速度各是多少? 105米/分 95米/分。

相关文档
最新文档