第十二章动载荷与疲劳强度概述(B)概论

合集下载

机械设计第十版考点知识点总结

机械设计第十版考点知识点总结

第一章绪论1.机器是用来代替人们体力和部分脑力劳动的工具。

2.机器的基本组成要素是机械零件。

第二章机械设计总论1.原动机部分是驱动整部机器完成预定功能的动力源。

2.执行部分是用来完成机器预定功能的组成部分。

3.传动部分是用来完成运动形式、运动及动力参数转变的。

4.机器的设计阶段是决定机器好坏的关键。

5.设计机器的一般程序:计划阶段、方案设计阶段、技术设计阶段、技术文件编制阶段、计算机在机械设计中的应用。

6.机器的主要要求:使用功能要求、经济性要求、劳动保护和环境保护要求、寿命可靠性的要求。

7.机械零件的主要失效形式:整体断裂、过大的残余变形、零件的表面破坏、破坏正常工作条件引起的失效。

8.设计机械零件时应满足的基本要求:避免在预定寿命期内失效的要求、结构工艺性要求、经济性要求、质量小的要求、可靠性要求。

9.避免在预定寿命期内失效要求:强度、刚度、寿命。

10.机械零件的设计准则:强度准则、刚度准则、寿命准则、振动稳定性准则、可靠性准则。

11.平均工作时间MTTF:对不可修复的零件,其失效前的平均工作时间。

12.平均故障间隔时间MTBF:对可修复的零件,其平均故障间隔时间。

第三章机械零件的强度1.机械中各零件之间力的传递,是通过两个零件的接触来实现的,接触分为外接触和内接触,也可分为点接触和线接触。

2.可以吧一切引起失效的外部作用的参数称为应力,把零件本身抵抗失效的能力称为强度。

第四章摩擦、磨损及润滑概述1.当在正压力作用下相互接触的两个物体受切向外力的影响而发生相对滑动,或有相对滑动的趋势时,在接触表面上就会产生抵抗滑动的阻力,这一自然现象称为摩擦,产生的阻力称为摩擦力。

2.摩擦分为两类:一类是发生在物质内部,阻碍分子间相对运动的内摩擦;另一类是当相互接触的两个物体发生相对滑动或有相对滑动的趋势时,在接触表面上产生的阻碍相对滑动的外摩擦。

3.仅有相对滑动趋势时的摩擦称为静摩擦。

4.相对滑动进行中的摩擦称为动摩擦。

金属材料的力学性能-疲劳强度

金属材料的力学性能-疲劳强度

金属材料的力学性能-疲劳强度疲劳强度:机械零件,如轴、齿轮、轴承、叶片、弹簧等,在工作过程中各点的应力随时间作周期性的变化,这种随时间作周期性变化的应力称为交变应力(也称循环应力)。

在交变应力的作用下,虽然零件所承受的应力低于材料的屈服点,但经过较长时间的工作后产生裂纹或突然发生完全断裂的现象称为金属的疲劳。

疲劳强度是指金属材料在无限多次交变载荷作用下而不破坏的最大应力称为疲劳强度或疲劳极限。

实际上,金属材料并不可能作无限多次交变载荷试验。

一般试验时规定,钢在经受107次、非铁(有色)金属材料经受108次交变载荷作用时不产生断裂时的最大应力称为疲劳强度。

疲劳破坏是机械零件失效的主要原因之一。

据统计,在机械零件失效中大约有80%以上属于疲劳破坏,而且疲劳破坏前没有明显的变形,所以疲劳破坏经常造成重大事故,所以对于轴、齿轮、轴承、叶片、弹簧等承受交变载荷的零件要选择疲劳强度较好的材料来制造。

疲劳载荷及分析理论

疲劳载荷及分析理论

疲劳载荷及分析理论疲劳载荷谱(fatigue load spectrum)是建立疲劳设计方法的基础。

根据研究对象的不同,施加在对象上的疲劳载荷也是不同的,所以在应用时要依据某种统计分析方法和理论进行分析。

1 疲劳载荷谱1.1 疲劳载荷谱及其编谱载荷分为静载荷和动载荷两大类。

动载荷又分为周期载荷、非周期载荷和冲击载荷。

周期载荷和非周期载荷可统称为疲劳载荷。

在很多情况下,作用在结构或机械上的载荷是随时间变化的,这种加载过程称为载荷—时间历程。

由于随机载荷的不确定性,这种谱无法直接使用,必须对其进行统计处理。

处理后的载荷—时间—历程称为载荷谱。

载荷谱是具有统计特性的图形,它能本质地反映零件的载荷变化情况[]。

为了估算结构的使用寿命和进行疲劳可靠性分析,以及为最后设计阶段所必需的全尺寸结构和零部件疲劳试验,都必须有反映真实工作状态的疲劳载荷谱。

实测的应力—时间历程包含了外加载荷和结构的动态响应的影响,它不仅受结构系统的影响,而且也受应力—时间历程的观测部位的影响。

将实测的载荷—时间历程处理成具有代表性的典型载荷谱的过程称为编谱。

编谱的重要一环,是用统计理论来处理所获得的实测子样[]。

1.2 统计分析方法对于随机载荷,统计分析方法主要有两类:计数法和功率谱法[]。

由于产生疲劳损伤的主要原因是循环次数和应力幅值,因此在编谱时首先必须遵循某一等效损伤原则,将随机的应力—时间历程简化为一系列不同幅值的全循环和半循环,这一简化的过程叫做计数法。

功率谱法是借助富氏变换,将连续变化的随机载荷分解为无限多个具有各种频率的简单变化,得出功率谱密度函数。

在抗疲劳设计中广泛使用计数法。

目前,已有的计算法有十余种之多,同一应力—时间历程用不同计数法编制出的载荷谱有时会差异很大。

当然,按照这些载荷谱来进行寿命估算或试验,也会给出不同的结果。

从统计观点上看,计数法大体分为两类:单参数法和双参数法[]。

所谓单参数法是指只考虑应力循环中的一个变量,例如,峰谷值、变程〔相邻的峰值与谷值之差〕,而双参数法则同时考虑两个变量。

机械设计思考题答题要点

机械设计思考题答题要点

第1章 机械及机械零件设计概要思考题:1. 在机械零件设计中,确定许用应力时,极限应力要根据零件的材料性质和应力种类选定,试区分金属材料的几种极限应力:σB (τB )、σS (τS )、σ-1(τ-1)、σ0(τ0)、σr (τr ),它们各适用于什么工作情况?对于脆性材料,在静应力作用下→ 脆性断裂→σlim (τlim )=σB (τB )对于塑性材料,在静应力作用下→ 塑性变形→σlim (τlim )=σS (τS )对于塑性材料,在对称循环变应力作用下→ 疲劳断裂→σlim (τlim )=σ-1(τ-1)对于塑性材料,在脉动循环变应力作用下→ 疲劳断裂→σlim (τlim )=σ0(τ0) 3.稳定变应力有那几种类型?它们的变化规律如何? 稳定循环变应力的种类: -1<r <+1——不对称循环变应力r=0——脉动循环变应力 r=-1——对称循环变应力 r=+1——静应力第2章 机械零件的强度思考题:1. 什么叫疲劳曲线?绘制疲劳曲线的根据是什么?如何划分有限寿命区和无限寿命区?σ—N 疲劳曲线——应力循环特性r 一定时,材料的疲劳极限σrN (τrN )与应力循环次数N 之间关系的曲线。

绘制疲劳曲线的根据是:σrN (τrN )和NN 在104——N D 之间为有限寿命区;N 超过N D 为无限寿命区2. 采用有限寿命设计的目的是什么?如何计算有限寿命下零件材料的疲劳极限?有色金属和高强度合金钢无无限寿命区。

3. 绘制疲劳极限应力线图(σm —σa )的根据是什么?简化的极限应力线图(σm —σa )是由哪些实验数据绘制而成的?以σm 为横坐标、σa 为纵坐标,即可得材料在不同应力循环特性r 下的σm —σa 的关系曲线。

材料的疲劳特性交变应力的描述σm ─平均应力;σa ─应力幅值σmax ─最大应力;σmin ─最小应力r ─应力比(循环特性)2min max m σσσ+=2min max a σσσ-=maxmin σσ=r 描述规律性的交变应力可有5个参数,但其中只有两个参数是独立的。

机械设计基础 第十二章轴

机械设计基础 第十二章轴

3.
球墨铸铁、合金铸铁 (高强度铸铁)
价廉、吸振性好、耐磨性好,对应力集中的敏感性较低,铸造 成形,但性脆,可靠性低,品质难控制。 常用于制造外形复杂的轴,如曲轴、凸轮轴。
轴的常用材料及其主要力学特性见
轴的结构设计
12
设计任务:使轴的各部分具有合理的形状和尺寸。
设计要求: 1.轴应便于制造,轴上零件要易于装拆;(制造安装) 2.轴和轴上零件要有准确的工作位置;(定位) 3.各零件要牢固而可靠地相对固定;(固定) 4.改善应力状况,减小应力集中。
第十二章
轴的设计
1
第一节 第二节 第三节
概述 轴的设计举例 轴的强度、刚度计算
2
本章重点:
① 轴的类型,轴的常用材料; ② 轴的结构; ③ 轴上零件的轴向定位和固定方法; 轴上零件的周向定位和固定方法;
④ 按扭转强度计算轴的直径。
轴的功用:主要用于支承传动零件 (齿轮、带轮等) 并
传递运动和动力。
越程槽和退刀槽
17
(3)为去掉毛刺,利于装配,轴端应制出45°倒角。
45°倒角 45°倒角
( 4)当采用过盈配合联结时,配合轴段的零件装入端,常加工 成半锥角为30°的导向锥面。若还附加键联结,则键槽的长度 应延长到锥面处,便于轮毂上键槽与键对中。
18
(5)如果需从轴的一端装入两个过盈配合的零件,则轴上两配 合轴段的直径不应相等,否则第一个零件压入后,会把第二个零件 配合的表面拉毛,影响配合。
一般情况下,直轴 做成实心轴,需要 减重时做成空心轴
6
轴的功用和类型
分类: 按承受载荷分有: 类 型 按轴的形状分有:
7
转轴---传递扭矩又承受弯矩
传动轴---只传递扭矩 心轴---只承受弯矩 直轴 曲轴 光轴 阶梯轴

教学课件:第十章动载荷与疲劳强度简述详解

教学课件:第十章动载荷与疲劳强度简述详解

06
结论
主要观点总结
动载荷和疲劳强度是机械工程中的重 要概念,对机械部件的寿命和可靠性 有显著影响。
疲劳强度是指材料在循环载荷作用下 抵抗疲劳失效的能力,通常通过实验 测定。
动载荷会导致材料内部产生循环应力, 从而引发疲劳裂纹的形成和扩展,最 终导致部件的疲劳失效。
提高疲劳强度的方法包括改善材料表 面质量、优化结构设计、降低应力集 中等。
对未来研究的建议
深入研究不同材料的疲劳性能和失效机制,为新材料的 开发和现有材料的优化提供理论支持。
针对复杂载荷条件下的疲劳行为进行深入研究,以更准 确地预测机械部件的寿命和可靠性。
探索新型的疲劳强度测试方法和实验技术,提高测试的 准确性和可靠性。
加强跨学科合作,将疲劳研究与计算机科学、人工智能 等相结合,推动疲劳领域的技术创新和应用拓展。
详细描述
机械零件在循环载荷的作用下,经过一段时间后会发生疲劳 断裂。这种失效通常是由于应力集中、材料缺陷或设计不当 等因素引起的。为了防止疲劳失效,可以采用优化设计、改 善制造工艺和使用高强度材料等方法。
案例二:车辆动载荷分析
总结词
车辆动载荷分析对于车辆设计和安全性至关重要,通过案例分析,了解如何进行车辆动载荷分析。
循环应力
动载荷产生的循环应力是导致材 料疲劳的主要原因,循环应力的 变化范围和平均值对疲劳强度有
显著影响。
应力集中
动载荷引起的应力集中可能加速疲 劳裂纹的形成和扩展,降低材料的 疲劳强度。
温度效应
动载荷引起的温度变化可能影响材 料的力学性能和疲劳强度,特别是 在高温环境下。
疲劳强度对动载荷的限制
材料特性
详细描述
动载荷引起的疲劳损伤是机械系统中常见的失效形式。由于动载荷的持续变化,导致材料内部应力不断变化,从 而引发疲劳裂纹的形成和扩展,最终导致断裂失效。此外,动载荷还会影响机械系统的动态响应,使系统产生振 动和噪声,影响系统的稳定性和可靠性。

疲劳强度理论分析

疲劳强度理论分析
也就是许用应力法: 存在问题:
a. 设计的机械零件特别笨重(为了安全,只有加大整个截面尺寸); b. 尽管笨重,但仍有疲劳裂纹产生。 原因: a. 疲劳裂纹发生在构件的危险点的局部区域,通过裂纹不断扩展,
最终导致断裂。 b. 疲劳危险部位往往与静强度危险部位不一致。
2) 动强度设计方法,即疲劳设计: 根据结构受力载荷,确定疲劳危险部位,保证结构危险部位满足疲劳 强度要求。 疲劳设计分为:有限疲劳设计,无限疲劳设计(早期)
——应力集中部位局部最大应力 ——名义应力
F ——外力 A ——净面积 A d——材料常数,中强刚,正火:A=0.44,d=0.1
取曲线方程为抛物线
Goodman
或 (2)Goodman图线
极限图为直线: 或
索德倍尔
(3)索德倍尔
二 疲劳累积损伤理论
疲劳过程既可以看成是损伤趋于一个临界损伤值的累计过程,也 可以看成是材料固有寿命的消耗过程。
1 Miner线性法则 Miner根据功能原理推导出了累积损伤计算公式。 设构件在m级载荷( , ,… )作用。各级载荷循环次数分别
(1)没有考虑载荷的加载顺序
事实上,载荷顺序对于疲劳累积损伤是有影响的,若采用二级
加载实验,若进行低—高应力实验,则
>1。若进行高—低应
力试验,则 <1。
低周:在低应力下材料产生低载“锻炼”效应,使裂纹形成时间 推迟。先进行高应力作用则易形成裂纹,后续低应力能使裂纹扩展。
对于随机载荷下的疲劳试验结果表明,由于“加速”和“迟滞” 效应相互综合。最终结果与加载顺序差异不大。
裂纹区
试样
疲劳强度的最新发展: 1)随机疲劳理论: 由于概率统计理论,计算机和数值计算方法的发展而推动的随机 劳理论的发展。 考虑 a:载荷的随机性,有宽带和窄带随机载荷之分。P11,P27

材料力学-第12章动载荷与疲劳强度概述(A)

材料力学-第12章动载荷与疲劳强度概述(A)


FN FT T st I = v 2 A A
可见,由于飞轮以等角速度转动,其轮缘中的正应力与 轮缘上点的速度平方成正比。 设计时必须使总应力满足强度条件。
第12章 动载荷与疲劳强度概述
旋转构件的受力分析与动应力计算
FN FT T st I v2 A A
第12章 动载荷与疲劳强度概述
旋转构件的受力分析与动应力计算
考察以等角速度旋转的飞轮。飞轮材料密 度为 ,轮缘平均半径为 R,轮缘部分的横 截面积为A。 设计轮缘部分的截面尺寸时,为简单 起见,可以不考虑轮辐的影响,从而将飞 轮简化为平均半径等于R的圆环。 由于飞轮作等角速度转动,其上各点 均只有向心加速度,故惯性力均沿着半径 方向、背向旋转中心,且为沿圆周方向连 续均匀分布的力。
第12章 动载荷与疲劳强度概述
等加速度直线运动构件的动应力分析
W FT FI Fst ma W a W g
单向拉伸时杆件横截面上的总正应力为
FN FT T st I A A
其中
W st , A
W I a Ag
分别称为静应力(statics stress)和动应力(dynamics stress)。
第12章
动载荷与疲劳强度概述(A)
工程结构中还有一些构件或零部件中的应力虽然与加速 度无关,但是,这些应力的大小或方向却随着时间而变化, 这种应力称为交变应力 (alternative stress)。在交变应力作 。 用下发生的失效,称为疲劳失效,简称为疲劳(fatigue)。
本章将首先应用达朗贝尔原理和机械能守恒定律,分析 两类动载荷和动应力,然后将简要介绍疲劳失效的主要特征 与失效原因,以及影响疲劳强度的主要因素。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
疲劳失效 —— 材料与构件在交变应力作用 下的失效,称为疲劳失效(fatigue failure),简称 疲劳(fatigue)。
14
交变应力与疲劳失效
1 交变应力 交变应力 构件内随时间作周期性变化的应力。
例子 齿轮根部 火车轮轴
15
电机偏心转子引起梁的振动
16
第12章B 动载荷与疲劳强度概述(2)
(平面弯曲)
Mx IP
(圆截面杆扭 转)
25
第12章B 动载荷与疲劳强度概述(2)
疲劳强度概述
疲劳失效特征与失效原因分析
26
第12章B 动载荷与疲劳强度概述(2)
疲劳强度概述
疲劳失效特征
破坏时,名义应力值远低于材料的静载强度极限; 交变应力作用下的疲劳破坏需要经过一定数量的 应力循环; 破坏前没有明显的塑性变形,即使韧性很好的材 料,也会呈现脆性断裂; 同一疲劳断口,一般都有明显的光滑区域和颗粒状 区域。
5
第12章B 动载荷与疲劳强度概述(2)
疲劳强度概述
传动轴的疲劳失效
6
第12章B 动载荷与疲劳强度概述(2)
疲劳强度概述
弹簧的疲劳失效
7
第12章B 动载荷与疲劳强度概述(2)
疲劳强度概述
弹簧的疲劳失效
疲劳源
8
第12章B 动载荷与疲劳强度概述(2)
疲劳强度概述
弹簧的疲劳失效
9
第12章B 动载荷与疲劳强度概述(2)
19
第12章B 动载荷与疲劳强度概述(2)
疲劳强度概述
应力比——应力循环中最小应力与最大应力之比。
r
S min
S max
S S
min
max
r Smax S min
S S
maxn
min
20
第12章B 动载荷与疲劳强度概述(2)
疲劳强度概述
对称循环——应力比 r = -1 的应力循环。
21
疲劳强度概述
承受交变应力作用的构件或零部件,大部分 都在规则或不规则变化的应力作用下工作。
t
t
t
17
第12章B 动载荷与疲劳强度概述(2)
疲劳强度概述
有关交变应力的若干名词和术语
最大应力
最小应力
平均应力
应力幅值
18
第12章B 动载荷与疲劳强度概述(2)
疲劳强度概述
应力循环——应力变化的一个周期
应力循环
23
循环特征 (应力比)
r min max
平均应力
m
1 2
(
max
min )
应力幅值 对称循环
a
1 2
(
max
min )
max 与 min 大小相等,符号相反的应力循环。
24
第12章B 动载荷与疲劳强度概述(2)
疲劳强度概述
需要注意的是:应力循环指一点的应力随时间的变化循 环,最大应力与最小应力等都是指一点的应力循环中的数值。 它们既不是指横截面上由于应力分布不均匀所引起的最大和最 小应力,也不是指一点应力状态中的最大和最小应力。
27
第12章B 动载荷与疲劳强度概述(2)
疲劳强度概述
同一疲劳断口, 一般都有明显的光 滑区域和颗粒状区 域。
颗粒状区域
光滑区域
28
第12章B 动载荷与疲劳强度概述(2)
疲劳强度概述
疲劳失效原因分析
晶粒
裂纹扩展路径
29
第12章B 动载荷与疲劳强度概述(2)
疲劳强度概述
晶界
滑移带
初始裂纹
30
第12章B 动载荷与疲劳强度概述(2)
疲劳强度已从经典的无限寿命设计发展到现代的有限寿命 设计和可靠性分析。累积损伤理论为解决疲劳寿命问题提供了 重要基础及工程计算方法。零件、构件以至设备的寿命、可靠 性等已成为国内外市场上产品竞争的重要指标。
这一部分的主要内容包括:疲劳失效的主要特征与失效原 因简述;疲劳极限及其影响因素;线性累积损伤理论以及有限 寿命和无限寿命的疲劳强度设计方法等。
2
第12章B 动载荷与疲劳强度概述(2)
疲劳强度概述 疲劳极限与应力-寿命曲线 影响疲劳寿命的因素 基于无限寿命设计方法的疲劳强度 结论与讨论(2)
返回总目录 3
第12章B 动载荷与疲劳强度概述(2)
疲劳强度概述
返回
4
第12章B 动载荷与疲劳强度概述(2)
疲劳强度概述
交变应力 疲劳失效特征与失效原因分析
上述广义应力记号 S 泛指正应力和剪应力。若为拉、压
交变或反复弯曲交变,则所有符号中的 S 均为正应力;若为 反复扭转交变,则所有S均为剪应力 ,其余关系不变。
上述应力均未计及应力集中的影响,即由理论应力公式算 得。这些应力统称为名义应力(nominal stress)。例如
FNx
A
(拉伸)
Mzy Iz
疲劳强度概述
初始缺陷
滑移
滑移带
疲劳破坏过程
初始裂纹(微裂纹)
脆性断裂
宏观裂纹扩展
宏观裂纹
31
第12章B 动载荷与疲劳强度概述(2)
疲劳强度概述
32
第12章B 动载荷与疲劳强度概述(2)
疲劳极限与应力-寿命曲线
返回
33
第12章B 动载荷与疲劳强度概述(2)
疲劳极限与应力-寿命曲线
疲劳极限
疲劳强度设计的依据——疲劳极限
疲劳极限——经过无穷多次应力循环而不发 生疲劳失效时的最大应力值。又称为持久极限 (endurance limit).
疲劳强度概述
飞机的疲劳失效
10
第12章B 动载荷与疲劳强度概述(2)
疲劳强度概述
飞机的疲劳失效
11
第12章B 动载荷与疲劳强度概述(2)
疲劳强度概述
12
第12章B 动载荷与疲劳强度概述(2)
疲劳强度概述
交变应力
13
第12章B 动载荷与疲劳强度概述(2)
疲劳强度概述
交变应力 —— 一点的应力若随时间而变化, 这种应力称为交变应力(alternative stress)
工程力学(静力学与材料力学)
第二篇 材料力学
第12
第12章B 动载荷与疲劳强度概述(2)
结构的构件或机械、仪表的零部件在交变应力(alternative stress ) 作 用 下 发 生 的 失 效 , 称 为 疲 劳 失 效 , 简 称 为 疲 劳 (fatigue)。对于矿山、冶金、动力、运输机械以及航空航天 等工业部门,疲劳是零件或构件的主要失效形式。统计结果表 明,在各种机械的断裂事故中,大约有 80%以上是由于疲劳 失效引起的。因此,对于承受交变应力的设备,疲劳分析在设 计中占有重要的地位。
第12章B 动载荷与疲劳强度概述(2)
疲劳强度概述
脉冲循环——应力比 r = 0 的应力循环。
22
第12章B 动载荷与疲劳强度概述(2)
疲劳强度概述
静应力(statical stress)——静应力可作为 交变应力的特例。在静应力作用下,有
r 1, Smax Smin Sm , Sa 0
相关文档
最新文档