非线性滤波算法

合集下载

非线性贝叶斯滤波算法综述_曲从善

非线性贝叶斯滤波算法综述_曲从善

得了很多有价值的研究成果。本文从递归贝叶斯估 计的框架出发, 给出非线性滤波的统一描述, 并分门 别类地对各种非线性滤波的原理、 方法及特点做出 分析和评述, 最后介绍了非线性滤波研究的新动态 , 并对其发展作了简单展望。
由上面的计算过程可以看出, 递归贝叶斯估计 有两个步骤, 即式 ( 6) ( Chapman- Kolmogoro equation, CK 方程) 所示的贝叶斯预测 步骤 ( 时间更新 ) 和式 ( 8) 所示的修正步骤 ( 量测更新 ) , 其 过程如图 1 所 [ 17] 示 。
| xk ) p ( x k | Yk- 1 ) d xk ( 7)
滤波和 Markov Chain Monte
等非线性滤波技术的研究 , 并取
3) 在 k 时刻 , 已经获得新的量测数据 y k , 可利 用贝叶斯公式计算得到后验概率密度函数 p ( xk | Yk ) = p ( y k | xk ) p ( x k | Yk - 1 ) p ( y k | Yk - 1 ) ( 8)
x p( x Q
k ^ T
k
| Yk ) d xk
( 3)
Q
( x k - xk ) ( xk - x k ) p ( x k | Yk ) d xk ( 4)
^
式( 3) 可以推广到状态函数的估计而不是状态本身 的估计 , 因此, 后验概率密度函数 p ( xk | Yk ) 在滤波 理论中起着非常重要的作用。 p ( xk | Yk ) 封 装了状 态向量 x k 的所有信息 , 因为它同时蕴含了量测 Yk 和先验分布 x k - 1 的信息。在给定先验密度 p ( x k - 1 | Yk - 1 ) 以及最近的观测 y k 时 , 通过式 ( 5) 所示的贝叶 斯定理来计算后验概率密度

非线性系统的几种滤波算法研究

非线性系统的几种滤波算法研究

Dissertation Submitted to Hangzhou Dianzi Universityfor the Degree of MasterResearch on Several Filtering Algorithms with Non-linear SystemCandidate: Xu DaxingSupervisor: Prof. Wen ChenglinNovember, 2013杭州电子科技大学学位论文原创性声明和使用授权说明原创性声明本人郑重声明:所呈交的学位论文,是本人在导师的指导下,独立进行研究工作所取得的成果。

除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品或成果。

对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。

申请学位论文与资料若有不实之处,本人承担一切相关责任。

论文作者签名:日期:年月日学位论文使用授权说明本人完全了解杭州电子科技大学关于保留和使用学位论文的规定,即:研究生在校攻读学位期间论文工作的知识产权单位属杭州电子科技大学。

本人保证毕业离校后,发表论文或使用论文工作成果时署名单位仍然为杭州电子科技大学。

学校有权保留送交论文的复印件,允许查阅和借阅论文;学校可以公布论文的全部或部分内容,可以允许采用影印、缩印或其它复制手段保存论文。

(保密论文在解密后遵守此规定)论文作者签名:日期:年月日指导教师签名:日期:年月日摘要随着现代科学技术的快速发展,尤其是通信技术、信息技术和计算机技术等在众多民用和国防领域的广泛应用,使得现代控制系统的信号常表现出非线性、噪声相关和非高斯等复杂特性,从而导致非线性系统的滤波算法设计不仅面临诸多新的问题和挑战,而且又具有重要的理论意义和应用价值。

由于系统噪声的相关性和非高斯特性,使得现有众多非线性滤波算法不能满足该类复杂系统的应用需求,因此如何有效地设计出噪声相关和非高斯情况下的非线性滤波已成为提高非线性滤波方法应用能力的有效途径之一。

EKFUKFPF算法的比较程序

EKFUKFPF算法的比较程序

EKFUKFPF算法的比较程序在估计理论中,EKF(Extended Kalman Filter),UKF(Unscented Kalman Filter)和PF(Particle Filter)是三种常用的非线性滤波算法。

它们在不同的环境和应用中具有不同的优点和缺点。

下面将对这三种算法进行比较。

首先,EKF是最常用的非线性滤波算法之一、它通过线性化状态转移方程和测量方程来近似非线性问题。

EKF在处理高斯噪声的情况下表现良好,但在处理非高斯噪声时会有较大的误差。

由于线性化过程的存在,EKF对于高度非线性和非高斯问题可能表现不佳。

此外,EKF对系统模型的准确性要求较高,较大的模型误差可能导致滤波结果的不准确性。

其次,UKF通过构造一组代表系统状态的Sigma点,通过非线性映射来近似非线性函数。

相较于EKF,UKF无需线性化系统模型,因此适用于更广泛的非线性系统。

UKF的优点是相对较好地处理了非线性系统和非高斯噪声,但在处理维数较高的问题时,计算开销较大。

最后,PF是一种基于粒子的滤波方法,通过使用一组代表系统状态的粒子来近似概率密度函数。

PF的优点是它可以处理非线性系统和非高斯噪声,并且在系统模型不准确或缺乏确定性时,具有较好的鲁棒性。

由于粒子的数量可以灵活调整,PF可以提供较高的估计精度。

然而,PF的计算开销较大,尤其在高维度的情况下。

综上所述,EKF、UKF和PF是三种常用的非线性滤波算法。

EKF适用于高斯噪声条件下的非线性问题,但对系统模型准确性要求高。

UKF适用于一般的非线性问题,但计算开销较大。

PF适用于非线性和非高斯噪声条件下的问题,并具有较好的鲁棒性,但在计算开销方面具有一定的挑战。

在实际应用中,我们应根据具体问题的性质和要求选择合适的算法。

比如,在低维情况下,EKF是一个可行的选择;在高维或非高斯噪声情况下,可以考虑使用UKF或PF算法。

图像降噪的原理及应用实例

图像降噪的原理及应用实例

图像降噪的原理及应用实例1. 引言图像降噪是图像处理中重要的一项任务,该技术可以有效减少图像中的噪声,并提高图像的质量。

本文将介绍图像降噪的原理以及一些应用实例。

2. 图像降噪的原理图像降噪的原理是通过滤波算法对图像进行处理,抑制图像中的噪声成分。

常见的图像降噪算法包括线性滤波算法和非线性滤波算法。

2.1 线性滤波算法线性滤波算法是最常用的图像降噪算法之一,其原理是通过卷积操作将图像与特定的卷积核进行滤波。

常见的线性滤波算法有平均滤波、中值滤波和高斯滤波。

•平均滤波:将图像中的每个像素点与其周围像素点的平均值进行替换,可以有效降低图像中的高频噪声。

•中值滤波:将图像中的每个像素点的值替换为其周围像素点的中值,适用于降噪和去除图像中的椒盐噪声。

•高斯滤波:采用高斯函数作为卷积核对图像进行滤波,可以有效减少图像中的高频噪声。

2.2 非线性滤波算法非线性滤波算法是根据图像中像素点的灰度值进行一系列的运算,对图像进行降噪处理。

其中常见的非线性滤波算法有双边滤波和小波变换。

•双边滤波:通过结合空间域和灰度域的统计信息,对图像进行滤波处理,并保持图像边缘的清晰度。

适用于同时降噪和保持图像细节的需求。

•小波变换:通过将图像进行小波变换,分解为不同频率的子带,然后对子带进行降噪处理。

小波变换可以同时处理图像的时域和频域信息,具有较好的降噪效果。

3. 应用实例3.1 图像降噪在医学影像中的应用图像降噪在医学影像处理中具有广泛的应用。

医学影像通常由于诊断需求,对图像质量要求较高。

图像降噪可以提高医学影像的质量,减少图像中的噪声干扰,有助于医生正确判断患者病情。

例如,针对核磁共振图像中的噪声进行降噪处理,可以使图像更加清晰,便于医生发现和诊断病变。

3.2 图像降噪在安防监控中的应用图像降噪在安防监控领域也有着重要的应用。

安防摄像头拍摄到的图像通常受到环境光线、天气等因素的影响,容易产生噪声。

通过图像降噪处理,可以提高安防摄像头图像的清晰度,减少误报和漏报的情况,提高监控系统的效果。

几种非线性滤波算法的比较研究

几种非线性滤波算法的比较研究

龙源期刊网
几种非线性滤波算法的比较研究
作者:王庆欣史连艳
来源:《现代电子技术》2011年第06期
摘要:针对组合导航等非线性系统,扩展卡尔曼滤波算法(EKF)在初值不准确时存在滤波发散的现象,故提出U-卡尔曼滤波(UKF);粒子滤波算法(PF)适合于强非线性、非高斯噪声系统,但同时存在退化现象,故提出2种改进算法。

前人的工作多集中在单一算法的研究,而在此是将上述各种算法应用到同一典型非线性系统,通过应用Matlab进行仿真实验得出具体滤波效果数据,综合对比分析了各算法的优缺点。

得出一些有用的结论,为组合导航系统中非线性滤波算法的选择提供了参考。

关键词:卡尔曼滤波;粒子滤波;非线性滤波算法;导航系统。

pf算法举例及其matlab实现-概述说明以及解释

pf算法举例及其matlab实现-概述说明以及解释

pf算法举例及其matlab实现-概述说明以及解释1.引言1.1 概述PF算法(Particle Filter Algorithm),又称为粒子滤波算法,是一种基于蒙特卡洛方法的非线性滤波算法。

与传统的滤波算法相比,PF算法具有更大的灵活性和鲁棒性,在估计复杂非线性系统状态的过程中表现出良好的性能。

PF算法基于一种随机采样的思想,通过对系统状态进行一系列粒子的采样,再通过对这些粒子的权重进行重要性重采样,最终获得对状态估计的准确性更高的结果。

在PF算法中,粒子的数量决定了滤波算法的精度,粒子越多,估计结果越准确,但也会增加计算复杂度。

因此,在实际应用中需要根据实际情况灵活选择粒子数量。

作为一种高效的滤波算法,PF算法在众多领域都有广泛的应用。

例如,粒子滤波算法在目标跟踪、传感器网络定位、机器人定位与导航等领域都有着重要的作用。

其在目标跟踪领域的应用尤为突出,由于PF算法可以处理非线性和非高斯分布的情况,使得目标跟踪更加准确和稳定。

在Matlab中,PF算法也得到了广泛的应用和实现。

Matlab提供了丰富的函数和工具箱,可以便捷地实现PF算法。

借助Matlab的强大数据处理和可视化功能,我们可以更加便捷地进行粒子滤波算法的实现和结果分析。

本文将从PF算法的基本概念出发,介绍其应用举例和在Matlab中的具体实现。

通过对PF算法的研究和实践,我们可以更好地理解和应用这一强大的滤波算法,为实际问题的解决提供有效的手段。

通过对Matlab 的使用,我们还可以更加高效地实现和验证粒子滤波算法的性能,为进一步的研究和应用奠定基础。

在接下来的章节中,我们将详细介绍PF算法的原理及其在现实应用中的具体案例。

随后,我们将展示如何使用Matlab实现PF算法,并通过实验结果对其性能进行评估和分析。

最后,我们将总结PF算法和Matlab 实现的主要特点,并对未来的发展进行展望。

文章结构的设定在撰写一篇长文时非常重要,它能够为读者提供一个整体的概览,帮助他们更好地理解文章的内容安排。

非线性滤波算法在雷达信号处理中的应用

非线性滤波算法在雷达信号处理中的应用

非线性滤波算法在雷达信号处理中的应用雷达技术是一种基于电磁波的无线通信技术,广泛应用于民用和军用领域,例如飞机控制、车辆导航和卫星通信等多个领域。

在雷达系统中,信号处理是一个重要的环节,它可以消除噪声、增加信噪比和提高雷达系统的灵敏度。

现代雷达系统中,非线性滤波算法是一种有效的信号处理技术,得到了广泛的应用。

非线性滤波算法与线性滤波算法不同之处在于,非线性滤波算法可以处理非平稳信号、非线性信号和非高斯噪声等不符合线性统计学假设的信号模型。

以常见的经典卡尔曼滤波算法为例,其假设系统和观测噪声均为高斯分布。

此时,若系统和观测噪声不满足高斯分布假设,则卡尔曼滤波算法将无法正确估计状态量。

而非线性滤波算法克服了这一问题,可以适用于更广泛的信号模型。

在雷达信号处理中,非线性滤波算法主要应用于雷达目标探测和跟踪。

常见的非线性滤波算法包括粒子滤波、扩展卡尔曼滤波、无迹卡尔曼滤波和波束滤波等。

下面将分别介绍这些算法的原理和应用。

粒子滤波是一种随机采样技术,通过估计目标状态的概率密度函数来估计其状态。

该算法通过随机采样来生成一组粒子,每个粒子表示一种可能的目标状态,然后利用重要性采样来更新粒子权重。

最后使用加权平均方法通过所有粒子得到目标状态的估计值。

粒子滤波算法适用于非线性非高斯信号和噪声情况下的目标跟踪,并且该算法可以处理非线性非高斯状态转移模型。

扩展卡尔曼滤波是一种基于卡尔曼滤波的非线性滤波算法,它通过泰勒级数将非线性函数近似为一阶导数矩阵。

其主要思想是在非线性函数中使用线性逼近来代替非线性函数,以使得状态转移矩阵保持线性。

然而,扩展卡尔曼滤波仍具有高斯分布假设的缺陷,这使得算法在处理非高斯噪声等情况下效果较差。

无迹卡尔曼滤波是一种基于无迹变换的非线性滤波算法,其主要优点在于可以自适应地选择变换点,避免了扩展卡尔曼滤波中需要对先验和后验信噪比进行人工调整的缺点。

该算法通过变换非线性转移函数,将非线性模型转换为线性模型,并通过卡尔曼滤波来进行状态估计。

平方根容积卡尔曼滤波

平方根容积卡尔曼滤波

平方根容积卡尔曼滤波平方根容积卡尔曼滤波(Square Root Cubature Kalman Filter,SRCKF)是一种经典的非线性滤波算法。

本文将以生动有趣的方式,全面介绍SRCKF的概念、原理、应用以及其在实际工程中的指导意义。

首先,让我们来了解一下什么是卡尔曼滤波(Kalman Filter)。

卡尔曼滤波是一种常用的线性时变系统状态估计算法,其基本思想是通过最小化估计值与真实值之间的误差来获得对系统状态的最优估计。

然而,在很多实际应用中,系统常常呈现非线性特征。

为了处理这些非线性问题,研究者们提出了各种改进的非线性滤波算法,而SRCKF便是其中一种。

SRCKF是基于卡尔曼滤波的算法改进,它主要是针对非线性系统进行状态估计。

与传统的扩展卡尔曼滤波(Extended Kalman Filter,EKF)相比,SRCKF具有较好的收敛性和鲁棒性。

SRCKF的核心思想是将系统状态用均值和协方差矩阵表示,通过采用均方根信息滤波的方法来等效地更新状态。

与EKF不同的是,SRCKF采用了容积取样技术,通过选取合适的样本点,可以更好地描述系统的非线性特征。

SRCKF的工作原理可以简要地概括为以下几个步骤:首先,通过容积取样方法构造一组样本点,这些样本点将充分覆盖整个状态空间。

然后,在每个样本点上,利用非线性系统模型进行状态预测,并计算相应的权重。

接下来,通过对各个样本点进行权重加权平均,估计出系统的状态均值和协方差矩阵。

最后,根据测量值与估计值之间的差异,更新状态的估计。

SRCKF在实际工程中有广泛的应用。

例如,在无人驾驶汽车的导航系统中,SRCKF可以用于车辆位置和姿态的估计,提高导航的精度和稳定性。

另外,SRCKF还可以应用于航天器的姿态控制、机器人定位与导航、生物医学工程中的生理信号分析等领域。

总结一下,平方根容积卡尔曼滤波是一种非线性滤波算法,通过容积取样和均方根信息滤波等技术,能够较好地处理非线性系统状态估计问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SINS/CNS组合导航技术
众所周知,SINS和CNS具有很强的互补性。

将CNS与SINS组合,构成SINS/CNS自主组合导航系统,既能有效弥补SINS误差随时间积累的缺陷,又能弥补CNS平台结构设计难度大、结构复杂、成本高的缺陷。

显然,SINS/CNS 自主组合系统兼备了SINS、CNS两者的优点,相互取长补短,不但抗干扰能力强、而且自主性能好,定位精度高,非常适合飞机对导航系统性能的要求。

SINS/CNS组合导航的技术难点
1. 需要设计一套具有实时性和可行性的SINS/CNS自主组合导航系统方案,具体化各子传感器技术指标,使得各子传感器指标可考核;各传感器信息既互相兼容、互补和辅助,又能有效地进行信息交换。

2. 在某些特定情况下,系统的线性化数学模型的确能够反映出实际系统或过程的实际性能和特点。

但是,任何实际系统总是存在不同程度的非线性,其中有些系统可以近似看成线性系统,而大多系统则不能仅用线性数学模型来描述,存在于这些系统中的非线性因素不能忽略。

3.SINS/CNS组合导航系统利用CNS输出的位置信息对SINS进行修正,能够克服SINS导航误差随时间积累的缺点,提高导航系统的定位精度。

然而,由于CNS导航系统星图匹配及定位时需要耗用的不等的匹配计算时间,导航数据输出存在时延现象,导致其输出的位置及航向信息具有滞后效应,这将严重影响组合导航的解算精度。

本项目为了贴近实际工程系统,建立的自主组合导航系统模型为非线性数学模型。

显然,卡尔曼滤波不能满足项目需求,必须建立与之相适应的非线性滤波系统。

扩展卡尔曼滤波(Extended KalmanFilter,EKF)在组合导航系统非线性滤波中得到了广泛应用,但它仍然具有理论局限性,具体表现在:(1)当系统非线性度较严重时,忽略Taylor展开式的高阶项将引起线性化误差增大,导致EKF的滤波误差增大甚至发散;(2)雅可比矩阵的求取复杂、计算量大,在实际应用中很难实施,有时甚至很难得到非线性函数的雅可比矩阵;(3)EKF将状态方程中的模型误差作为过程噪声来处理,且假设为高斯白噪声,这与组合导航系统的实际噪声情况并不相符;同时,EKF是以KF为基础推导得到的,其对系统初始状态的统计特性要求严格。

因此EKF关于系统模型不确定性的鲁棒性很差。

模型预测滤波器(Models Predictive Filter,MPF)是基于最小模型误差(Minimum Model Error,MME)准则对系统状态进行估计,模型误差在估计过程中被确定并用于修正系统的动态模型。

这种滤波器能够有效地解决存在显著动态模型误差情况下的非线性系统状态估计问题。

EKF将模型误差作为过程白噪声
来处理,因此当真实的模型误差不是白噪声时,EKF就无能为力了,而MPF对系统模型误差没有任何限制,因此可以采用MPF方法来实时估计系统实际的模型误差;同时,EKF主要是利用测量值得到新息序列来滤波的,其滤波误差受到测量误差的影响很大。

相比之下,MPF的滤波效果要好,这是因为MPF主要通过估计模型误差来实时调整系统模型,受测量误差影响较小。

粒子滤波(Particle Filter,PF)算法是一种基于贝叶斯采样估计的顺序重要采样(Sequential Importance Sampling,SIS)滤波方法。

PF算法的基本思想是:通过寻找一组在状态空间中传播的随机样本对概率密度函数进行近似,以样本均值代替积分运算,从而获得状态最小方差估计的过程,这些样本即称为“粒子”。

PF 适用于非线性非高斯系统的状态估计,尤其对强非线性系统的滤波问题有独特的优势,摆脱了解决非线性滤波问题时随机量必须满足高斯分布的制约条件。

然而,即使采用SIS算法来实现粒子滤波,PF的计算量依然很大,实时性差,且其易出现粒子匮乏问题。

但PF在处理非线性非高斯时变系统的参数估计和状态滤波问题等方面具有独特的优势,不要求系统状态必须满足高斯分布,因此随着计算机技术的进步,其必将获得广泛应用。

Unscented卡尔曼滤波是一种基于Unscented变换的卡尔曼滤波(Unscented Kalman Filter,UKF)。

Unscented变换(Unscented Transformation,UT)的核心思想是:近似非线性函数的概率分布比近似非线性函数要容易。

因此,UT变换不需要对非线性系统进行线性化近似,而是通过特定的采样策略选取一定数量的Sigma采样点,这些采样点具有同系统状态分布相同的均值和协方差,这些Sigma 采样点经过非线性变换后,可以至少以二阶精度(泰勒展开式)逼近系统状态后验均值和协方差。

将UT变换应用于卡尔曼滤波算法,就形成了UKF。

UKF适用于非线性高斯系统的滤波状态估计问题,尤其对于强非线性系统其滤波精度及稳定性较EKF明显提高。

UKF是对非线性系统的概率密度函数进行近似,而不是对系统非线性函数进行近似,因此不需求导计算雅可比矩阵,计算量仅与EKF 相当;且由于UKF采用确定性采样,仅需要很少的Sigma点来完成UT变换,而非PF的随机采样,需要大量的粒子点来近似非线性函数的概率分布,因此UKF 计算量明显小于PF,且避免了粒子匮乏衰退的问题。

在滤波算法实现上,EKF 和UKF都是针对非线性系统的线性卡尔曼滤波方法的变形和改进形式,因此受到线性卡尔曼滤波算法的条件制约,即系统状态应满足高斯分布。

对于非高斯分布的系统状态模型,若仍简单地采用均值和方差表征状态概率分布,将导致滤波性能变差。

故EKF和UKF一般不适用于状态非高斯分布的系统模型。

而PF不需要对状态变量的概率密度作过多的约束,其不受模型非线性及高斯假设的限制,适用于任何非线性非高斯的随机系统,因此,相比于EKF和UKF,PF是非高斯
非线性系统状态估计的“最优”滤波器。

本项目采用以上非线性滤波理论,结合两种或数种滤波方法的优点,设计适合自主组合导航系统的非线性滤波方法。

相关文档
最新文档