向量法求空间点到平面的距离课件
用空间向量求点到面的距离 PPT

2、求向量—求点到平面内任一点对应的向量AP
3、求法向量—求出平面的一个uuu法r 向r 量
4、代入公式—通过公式 d
|
A
P r
n
|
代入求解.
n
练考题、验能力、轻巧夺冠
[题后感悟] 用向量法求点面距的方法与步骤,n
O
为法向量。
练习.已知平面α的一个法向量n=(-2,-2,1), 点A(-1,3,0)在α内,则P(-2,1,4)到α的距离为________. 解析: d=|P→|An·|n|=|1×-2-+222×+--22+2+-124×1| =130.
答案:
10 3
变式练习:已知正方形ABCD的边长为1,PD⊥平面ABCD, 且PD=1,E,F分别为AB,BC的中点.求点D到平面PEF的距 离;
解析:建立以D为坐标原点,DA,DC,DP分别为x轴, y轴,z轴的空间直角坐标系,如图所示.
则P(0,0,1),A(1,0,0),C(0,1,0), E1,12,0,F12,1,0, E→F=-12,12,0,P→E=1,12,-1, 设平面PEF的法向量n=(x,y,z), 则n·E→F=0,且n·P→E=0, 所以-12x+12y=0, x+12y-z=0.
[例1] 正方体ABCD-A1B1C1D1的棱长为2,E,F,G分别 是C1C,D1A1,AB的中点,求点A到平面EFG的距离.
解: 建系 如图,建立空间直角坐标系,
求向量 求法向量
则 A(2,0,0),E(0,2,1),F(1,0,2),G(2,1,0),
uuur
uuur
∴ EF =(1,-2,1), EG =(2,-1,-1),
uur GA=(0,-1,0).设 n=(x,y,z)是平面 EFG 的法向量,
1.4.2 用空间向量研究距离、夹角问题(课件)

二面角的大小为
.
π4或34π 解析: cos〈m,n〉=|mm|·|nn|= 22,∴〈m,n〉=π4. ∴两平面所成二面角的大小为π4或34π.
经典例题
角度1:点线距
题型一 利用空间向量求距离
用向量法求点到直线的距离时需注意以下几点: (1)不必找点在直线上的垂足以及垂线段. (2)在直线上可以任意选点,但一般选较易求得坐标的特殊点. (3)直线的方向向量可以任取,但必须保证计算正确.
则 在法向量 n 上的投影向量的长度即为异面直线 a,b 的距离,所以距离为
.
自主学习
二.空间角的向量求法 空间角包括线线角、线面角、二面角,这三种角的定义确定了它
们相应的取值范围,结合它们的取值范围可以用向量法进行求解.
自主学习
角的分类
向量求法
范围
两异面直线 l1 与 l2 所成的角为 θ
设 l1 与 l2 的方向向量分别为 u,v,
经典例题
题型一 利用空间向量求距离
例 2 在三棱锥 S-ABC 中,△ABC 是边长为 4 的正三角形,平面 SAC⊥平面 ABC,
SA=SC=2 3,M,N 分别为 AB,SB 的中点,如图所示.求点 B 到平面 CMN 的 距离.
取 AC 的中点 O,连接 OS,OB. ∵SA=SC,AB=BC,∴AC⊥SO,AC⊥BO. ∵平面 SAC⊥平面 ABC,平面 SAC∩平面 ABC=AC, ∴SO⊥平面 ABC. 又 BO⊂平面 ABC,∴SO⊥BO. 又∵△ABC 为正三角形,O 为 AC 的中点,∴AO⊥BO. 如图所示,分别以 OA,OB,OS 所在直线为 x 轴,y 轴,z 轴, 建立空v>|
则 cosθ=
|u·v| = |u||v|
空间向量点到平面距离求法

空间向量点到平面距离求法在三维空间中,我们经常需要计算一个给定点到一个给定平面的距离。
这个问题可以被称为”空间向量点到平面的距离求法”。
本文将详细介绍该求解方法。
1. 定义首先,我们需要明确一些基本的几何概念。
一个平面可以由一个点和一个法向量来唯一确定。
记平面上的一点为P,平面的法向量为n。
对于空间中的任意一点Q,我们定义点Q到平面的距离为点Q到平面的垂直距离,记作d(Q,Pn)。
2. 求解方法为了求解点Q到平面的距离,我们需要以下步骤:2.1 平面的方程首先,我们需要确定平面的方程。
一个平面P可以表示为Ax + By + Cz + D = 0的形式,其中A、B、C为平面的法向量的分量,D为平面的常数项。
2.2 平面法向量的求解平面的法向量可以通过两个非平行的向量的叉乘来求解。
假设平面上的两个向量为v1和v2,则平面的法向量n可以通过n = v1 × v2来计算。
2.3 点到平面的距离公式根据点到平面的距离定义,点Q到平面P的距离可以表示为:d(Q,Pn) = |Ax + By + Cz + D| / √(A^2 + B^2 + C^2)其中|x|表示x的绝对值。
2.4 距离求解算法根据上述公式,我们可以编写一个求解点到平面距离的函数,输入为点Q的坐标,平面的法向量和常数项,输出为点Q到平面的距离。
function distance_to_plane(Q, n, D) {let [x, y, z] = Q;let [A, B, C] = n;let distance = Math.abs(A * x + B * y + C * z + D) / Math.sqrt(A**2 + B**2+ C**2);return distance;}3. 示例下面我们通过一个示例来演示如何使用上述方法计算点到平面的距离。
假设有一个平面P,其方程为2x + 3y - z + 4 = 0。
点Q的坐标为(1, -2, 3)。
第1课时 用空间向量研究距离问题 高中数学人教A版选择性必修第一册课件

所以=
1
,0,1
2
1
2
1
,0,1
2
1
0,-1,
2
,M
,=
,
, =(1,1,0).
设 n=(x,y,z),且 n⊥,n⊥,
1
2
+ = 0,
· = 0,
所以
即
1
· = 0,
- + = 0,
2
= -2,
1
即
取 z=2,则 x=-4,y=1,
情境:在平面内任取一点 O,作=a,=b,过点 A 作直线
OB 的垂线,垂足为 A1,则1 就是 a 在 b 上的投影向量.
【思考】
已知两个非零向量 a,b,a 和 b 的夹角为 θ,那么 a 在 b 上
的投影是什么?a 在 b 上的投影向量是什么?
提示:a 在 b 上的投影为|a|cos θ,a 在 b 上的投影向量
5 5
ABC 的一个法向量.
由题意,知 =(-7,-7,7),
所以点 D 到平面 ABC
84
5
|·|
42 2
的距离为
= =
.
||
2
5
4.同类练如图,已知正方体 ABCDA1B1C1D1 的棱长为 1,则点 A 到平面 BDC1 的
3 .
距离为
3
解析:以 D 为坐标原点,DA,DC,DD1 所在直线分别为 x 轴、
.
【思考】
(1)若“单位方向向量 u”变为“方向向量 s”,投影向量
,PQ 分别如何表示?
||
· ·
·
高中数学 第3章 空间向量与立体几何 3.7 点到平面的距离课件 湘教版选修2-1

d=|AP1|=___||_A_P_|_c_o_s_∠_P_A__N_|__=___|_A_|Pn_·|_n_| __.
1.已知直线 l 过点 A(1,-1,2),和 l 垂直的一个向量为 n=
(-3,0,4),则 P(3,5,0)到 l 的距离为( )
A.5
B.14
C.154
D.45
答案:C
2.已知直线 l 与平面 α 相交于点 O,A∈l,B 为线段 OA 的中
d=
|B→C|2-B→|CA→·′AC→′|C2=
16 4-14
=2
35 7.
用向量法求点到直线的距离的一般步骤 (1)建立空间直角坐标系; (2)求直线的方向向量; (3)计算所求点与直线上某一点所构成的向量在直线的方向向 量上的射影长; (4)利用勾股定理求解.另外,要注意平行直线间的距离与点到 直线的距离之间的转化.
则 A(4,0,0),B(0,3,0),P0,0,95, 所以A→B=(-4,3,0),A→P=-4,0,95, 所以A→P在 AB 上的投影长为|A→P|A·→BA→| B|=156, 所以点 P 到 AB 的距离为 d= |A→P|2-1562= 16+8215-22556=3. 答案:3
点到直线的距离 如图,在空间直角坐标系中有长方体 ABCD-A′B′C′D′, AB=1,BC=2,AA′=3,求点 B 到直线 A′C 的距离.
又 AC∥平面 PEF,
所以
AC
到平面
PEF
的距离为
17 17 .
用向量法求点面距的步骤 (1)建系:建立恰当的空间直角坐标系; (2)求点坐标:写出(求出)相关点的坐标; (3)求向量:求出相关向量的坐标; (4)利用公式即可求得点到平面的距离.
3.4.3第3课时用向量方法研究立体几何中的度量关系课件-高二上学期数学北师大版选择性

学习目标
新课讲授
课堂总结
能用向量方法解决点到平面、平行于平面的直线到平面、相 互平行的平面间的距离问题.
学习目标
新课讲授
课堂总结
问题引入
空间中常见的距离有:两点间的距离、点到直线的距离、点 到平面的距离、相互平行的直线之间的距离、相互平行的平 面之间的距离等.计算距离是空间度量最基本的问题,如何用 向量方法求解这些距离呢?
1,
1 2
,
1 2
.
设n=(x,y,z)是平面ACD'的一个法向量,则
n
AC
x
y
0
.
n AD x z 0
取x=1,得y=z=1,故n=(1,1,1).
CM n 1 1 1 0, 22
又C'M 平面ACD',
∴ CM ∥平面ACD'. ∴C'M∥平面ACD'.
∴直线C'M上任意一点到平面ACD'的距离都相等,都等于直线
又A'B,A'D 平面A'BD,A'B∩A'D=A', ∴ AC⊥平面A'BD,即 AC是平面A'BD的一个法向量.
2 BC 0,1,1,
∴点C'到平面A'BD的距离为
BC AC 2 2 3 . AC 3 3
学习目标
新课讲授
课堂总结
归纳总结 用向量方法求解点到平面的距离问题的一般步骤
1.确定一个法向量; 2.选择参考向量; 3.确定参考向量在法向量方向上的投影向量; 4.求投影向量的长度.
过点P作PP′⊥平面α,垂足为P′, 则线段PP′的长度就是点P到平面α的距离, 而 PP n0, ∴向量PA 在法向量n0方向上的投影向量的长度 PA n0 就等 于线段PP′的长度.
向量法求点到面的距离

向量法求点到面的距离介绍在三维空间中,向量法是一种常用的方法来求解点到面的距离。
点到面的距离是指从一个点到一个平面的最短距离。
该方法通过定义向量来计算点到面的距离,通过求解向量的垂直分量实现。
基本原理点到面的距离的基本原理是利用一个向量,从点出发到达平面上的任意一点,然后通过计算该向量在平面法向量上的投影来求解距离。
步骤Step 1: 确定平面的法向量首先,我们需要明确平面的法向量,法向量对于描述平面的方向非常重要。
如果平面已经被定义,法向量通常是已知的;否则,我们需要根据平面上的三个非共线点来计算出法向量。
Step 2: 确定点到平面上的一点我们需要选择一个点,该点将成为我们到平面上距离的参考点。
可以选择平面上的任意一点作为参考点,这取决于具体情况。
Step 3: 计算点到平面的向量通过使用参考点和平面上的一点,我们可以计算出从点到平面的向量。
这个向量的起点是点,终点是平面上的任意一点。
Step 4: 计算向量在法向量上的投影通过计算点到平面向量在法向量上的投影,我们可以得到点到平面的距离。
投影的计算方法是将向量与法向量进行点乘。
Step 5: 求解距离最后,通过计算得到的投影长度,我们可以得到点到平面的最短距离。
这就是点到面的距离。
示例示例平面方程我们假设有一个平面,方程为:x + y + z = 1。
示例点坐标我们选择一个点的坐标为:(2, -1, 3)。
示例步骤1.确定法向量:根据平面方程,法向量为 (1, 1, 1)。
2.确定参考点:我们选择 (0, 0, 1) 作为参考点,但可以选择其他任意点。
3.计算点到平面的向量:从点 (2, -1, 3) 到参考点 (0, 0, 1) 的向量为 (-2, 1, 2)。
4.计算向量在法向量上的投影:将向量 (-2, 1, 2) 与法向量 (1, 1, 1) 进行点乘得到投影长度 1。
5.求解距离:由于投影长度为 1,点 (2, -1, 3) 到平面的距离为 1。
用向量法求空间距离课件

在某些情况下,向量法求空间距离可 能会遇到奇异点,即某些点的坐标值 可能为无穷大或不确定。对于这些点 ,应采取适当的处理方式,如排除或 进行特殊处理。
实际应用中的考虑因素
坐标系选择
在实际应用中,应根据问题的具体情 况选择合适的坐标系,如笛卡尔坐标 系、极坐标系等。不同的坐标系可能 会影响向量法求空间距离的结果。
03
向量法求空间距离的实例解析
点到直线的距离实例
总结词
利用向量法求点到直线的最短距离
详细描述
首先,我们需要确定直线和点在三维空间中的坐标。然后,通过向量的点积和向量的模长,我们可以计算出点到 直线的向量。最后,利用向量法公式,我们可以求出点到直线的最短距离。
点到平面的距离实例
总结词
利用向量法求点到平面的最短距离
未来研究的方向与展望
1 2
深入研究向量法的理论基础
进一步探讨向量法的数学基础和原理,提高其理 论水平。
拓展向量法的应用领域
发掘向量法在其他领域的应用价值,如机器学习 、数据分析和人工智能等。
3
开发向量法的算法优化
针对向量法的计算过程进行优化,提高其计算效 率和精度。
THANKS
感谢观看
用向量法求空间距离课件
目 录
• 向量法求空间距离的基本概念 • 向量法求空间距离的公式推导 • 向量法求空间距离的实例解析 • 向量法求空间距离的注意事项 • 总结与展望
01
向量法求空间距离的基本概念
向量的概念
向量
既有大小又有方向的量。
向量的表示
用有方向的线段表示向量,线段的长度表示向量 的大小,箭头表示向量的方向。
向量法求空间距离的优势与局限性
• 适用范围广:向量法不仅可以用于求解空间距离,还可以 用于解决其他几何问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a•b abcos(为a与b的夹角)
学习交流PPT
2
二、新课
向量法求点到平面的距离
B
n
A
O
1 、剖析 B O : 平 , 如 面垂 图 O ,则 足 , B 到 点 为 平 的面 距离就是
线 B段 的 O 长度。
学习交流PPT
3
例 2、如图,已知正方形 ABCD 的边长为 4,E、F
AB ( 2,1, 0), CB ( 2, 0, 0), CP (0, 1,1) ,
设平面 PBC 的法向量为 n ( x, y, z) ,
则
n
CB
0
z
n CP 0
(x, y, z)( 2,0,0) 0
(
x,
y,
z)
(0,
1,1)
0
∴
x y
0 z
x
令 y 1, n (0, 1, 1) ,d= 2
向量法求空间点到平面的距离
B
n
A
O
学习交流PPT
1
新课导入: 我们在路上行走时遇到障碍一般会绕过它,在生活中我们知道转弯,那 么在学习上也一样,要想求空间一点到平面距离,就必须找到或间接找 到它,而这样做恰恰是一个比较困难的问题,今天我们就让思维转个弯, 用向量法解决这个难题。
一、复习引入: 1、空间中如何求点到距面离? 方法1、直接做或找距离; 方法2、等体积法; 方法3、空间向量。
2
学习交流PPT
y
7
BE(2,0,0)
设平面 EFG 的一个法向量A
为 n (x, y, z)
E
B
y
学习交流PPT
4
练习1
学习交流PPT
5
学习交流PPT
6
练 2、如图,PA⊥平面 ABC,AC⊥BC,PA=AC=1, BC= 2 ,求点 P 到面 PBC 的距离.
解:建立坐标系如图, 则 A(0,0,0),B( 2 ,1,0),C(0,1,0),P(0,0,1),
分别是 求点 B
AB、AD 的中点,GC⊥平面 到平面 EFG 的距离.
ABCD,且
GC=2z,
G
解:如图,建立空间直角坐标系 C-xyz.
由题设 C(0,0,0),A(4,4,0),B(0,4,0),
D(4,0,0),E(2,4,0),
F(4,2,0),G(0,0,2).
xD
C
EF(2,2,0),EG(2,4,2), F