实验十五光衍射相对光强分布的测量

合集下载

光强分布测量实验报告

光强分布测量实验报告

光强分布测量实验报告引言光强分布测量是光学实验中常用的一种手段。

通过测量光强的分布情况,可以了解光源的亮度、方向性以及光束的聚焦情况等信息。

本实验旨在通过测量不同光源的光强分布情况,并分析实验结果,探究光源的特性和光学仪器的使用方法。

实验材料和仪器- 可调节的光源- 光强分布测量仪器- 数据记录仪- 角度测量仪器实验步骤1. 将光源置于适当的位置,并调节光源的亮度。

2. 将光强分布测量仪器置于光源的前方适当位置,并将其与数据记录仪连接好。

3. 启动数据记录仪,并进行初始校准,以确保测量结果的准确性。

4. 选取适当的测量位置,将角度测量仪器与光强分布测量仪器进行配合,测量不同角度下的光强。

5. 重复步骤4,测量不同位置下的光强分布情况,并记录数据。

6. 根据实验数据,绘制光强分布曲线,并分析实验结果。

实验结果和分析经过实验测量,我们获得了不同角度和位置下的光强分布数据。

根据测量数据,我们绘制了光强分布曲线,并对实验结果进行了分析。

首先,我们可以观察到在光源正前方的位置,光强最强,随着角度的增加,光强逐渐减小。

这一结果符合我们的预期,说明光源辐射光的方向性较强。

其次,我们可以观察到在离光源较远的位置,光强分布呈现出较为均匀的趋势。

而在离光源较近的位置,光强分布不均匀,呈现出中央亮度高、周围亮度较低的特点。

这一现象说明光源的聚焦效果不佳,光线难以有效地集中在一点上。

此外,我们还观察到在不同光源下,光强分布曲线呈现出一定的差异。

不同光源在亮度和方向性上的差异会直接影响到光强的分布情况,从而导致光强分布曲线的差异。

因此,在进行光强分布测量时,需要对不同光源进行适当的选择和调整。

结论通过光强分布测量实验,我们得出以下结论:1. 光源的亮度和方向性对光强分布有重要影响,光源辐射的方向性越强,光强分布曲线的形状越明显。

2. 光源的聚焦效果直接影响光强分布的均匀性,较好的聚焦效果能够使光强分布更加均匀。

3. 不同光源的光强分布曲线存在差异,根据实际需要选择合适的光源进行测量。

光强分布的测量

光强分布的测量

光强分布的测量实验一、实验目的1.观察单缝衍射现象,加深对衍射理论的理解。

2.会用光电元件测量单缝衍射的相对光强分布,掌握其分布规律。

3.学会用衍射法测量微小量。

4. 验证马吕斯定律。

二、实验原理如图1所示,图1 夫琅禾费单缝衍射光路图与狭缝E 垂直的衍射光束会聚于屏上P 0处,是中央明纹的中心,光强最大,设为I 0,与光轴方向成Ф角的衍射光束会聚于屏上P A 处,P A 的光强由计算可得:式中,b 为狭缝的宽度,λ为单色光的波长,当0=β时,光强最大,称为主极大,主极大的强度决定于光强的强度和缝的宽度。

当πβk =,即:220sin ββI I A =)sin (λφπβb =bKλφ=sin ),,,⋅⋅⋅±±±=321(K时,出现暗条纹。

除了主极大之外,两相邻暗纹之间都有一个次极大,由数学计算可得出现这些次极大的位置在β=±1.43π,±2.46π,±3.47π,…,这些次极大的相对光强I/I 0依次为0.047,0.017,0.008,…图2 夫琅禾费衍射的光强分布夫琅禾费衍射的光强分布如图2所示。

图3 夫琅禾费单缝衍射的简化装置用氦氖激光器作光源,则由于激光束的方向性好,能量集中,且缝的宽度b 一般很小,这样就可以不用透镜L 1,若观察屏(接受器)距离狭缝也较远(即D 远大于b )则透镜L 2也可以不用,这样夫琅禾费单缝衍射装置就简化为图3,这时,由上二式可得三、实验装置激光器座、半导体激光器、导轨、二维调节架、一维光强测试装置、分划板 、可调狭缝、平行光管、起偏检偏装置、光电探头 、小孔屏、 数字式检流计、专用测量线等。

Dx /tan sin =≈φφxD K b /λ=图4 衍射、干涉等一维光强分布的测试四、实验步骤1. 接上电源(要求交流稳压220V ±11V ,频率50HZ 输出),开机预热15分钟;2. 量程选择开关置于“1”档,衰减旋钮顺时针置底,调节调零旋钮,使数据显示为-.000; (一)单缝衍射一维光强分布的测试1、 按图4搭好实验装置。

光强衍射实验报告

光强衍射实验报告

1. 观察并验证单缝衍射和多缝衍射的图样及其规律。

2. 理解衍射光强分布的原理,并掌握相关计算方法。

3. 掌握衍射实验装置的组装与调整。

二、实验原理光的衍射现象是光的波动性的一种表现。

当光波遇到障碍物或孔径时,会发生衍射现象,即光波绕过障碍物传播。

根据障碍物与波长的相对大小,衍射现象可分为单缝衍射和多缝衍射。

1. 单缝衍射:当光波通过单缝时,会发生衍射现象,形成一系列明暗相间的衍射条纹。

根据惠更斯-菲涅尔原理,衍射光强分布公式为:\[ I(\theta) = I_0 \left(\frac{\sin(\beta)}{\beta}\right)^2 \]其中,\( I(\theta) \)为衍射角为\(\theta\)处的光强,\( I_0 \)为入射光强,\(\beta\)为衍射角。

2. 多缝衍射:当光波通过多个狭缝时,会发生多缝衍射现象。

多缝衍射的光强分布与单缝衍射类似,但衍射条纹间距和强度分布有所不同。

多缝衍射的光强分布公式为:\[ I(\theta) = I_0 \left(\frac{\sin(\beta)}{\beta}\right)^2\frac{\cos^2(\alpha)}{\sin^2(\alpha)} \]其中,\(\alpha\)为相邻狭缝之间的夹角。

三、实验仪器与装置1. 激光器:用于产生单色光。

2. 单缝装置:用于产生单缝衍射。

3. 多缝装置:用于产生多缝衍射。

4. 光屏:用于观察衍射条纹。

5. 摄像头:用于记录衍射条纹图像。

6. 计算机软件:用于数据处理和分析。

1. 组装实验装置,确保激光器、单缝装置、多缝装置和光屏的位置正确。

2. 打开激光器,调整光束方向,使其垂直照射到单缝装置上。

3. 观察并记录单缝衍射条纹,使用摄像头记录图像。

4. 调整多缝装置,观察并记录多缝衍射条纹,使用摄像头记录图像。

5. 使用计算机软件对衍射条纹图像进行处理和分析,计算衍射条纹间距和光强分布。

实验报告-光衍射相对光强分布

实验报告-光衍射相对光强分布

实验报告姓名:张少典班级:F0703028 学号:5070309061 实验成绩:同组姓名:林咏实验日期:2008/03/10 指导老师:批阅日期:--------------------------------------------------------------------------------------------------------------------------------- 光衍射相对光强分布的测量【实验目的】1.掌握在光学平台上组装、调整光的衍射实验光路;2.观察不同衍射元件产生的衍射,归纳总结单缝衍射现象的规律和特点;3.学习利用光电元件测量相对光强的实验方法,研究单缝和双峰衍射中相对光强的分布规律;4.学习微机自动控制测衍射光强分布谱和相关参数。

【实验原理】1.衍射光强分布谱由惠更斯——菲涅耳原理可知,单缝衍射的光强分布公式为,当j=0时,Ij=I0这是平行于光轴的光线会聚处——中央亮条纹中心点的光强,是衍射图像中光强的极大值,称为中央主极大。

当asinj= kl ,k = ±1,±2,±3,……则u = kπ, Ij = 0, 即为暗条纹。

与此衍射角对应的位置为暗条纹的中心。

实际上j 角很小,因此上式可改写成由图1也可看出,k级暗条纹对应的衍射角故由以上讨论可知(1)中央亮条纹的宽度被k = ±1的两暗条纹的衍射角所确定,即中央亮条纹的角宽度为。

(2)衍射角j 与缝宽a成反比,缝加宽时,衍射角减小,各级条纹向中央收缩;当缝宽a 足够大时(a>>l)。

衍射现象就不显著,以致可略去不计,从而可将光看成是沿直线传播的。

(3)对应任意两相邻暗条纹,其衍射光线的夹角为,即暗条纹是以点P0为中心、等间隔、左右对称地分布的。

(4)位于两相邻暗条纹之间的是各级亮条纹,它们的宽度是中央亮条纹宽度的1/ 2。

这些亮条纹的光强最大值称为次极大。

光强分布的测量实验报告

光强分布的测量实验报告

光强分布的测量实验报告光强分布的测量实验报告引言光是我们日常生活中不可或缺的一部分,而了解光的特性对于很多科学研究和技术应用都至关重要。

光强分布是指光在空间中的强度变化情况,它对于光的传播和衍射现象有着重要影响。

本实验旨在通过测量光强分布,深入了解光的特性,并探索光在不同介质中的传播规律。

实验方法1. 实验器材准备为了测量光强分布,我们需要准备以下器材:激光器、光电二极管、光屏、光强测量仪等。

2. 实验设置将激光器置于实验室中央,调整其位置和角度,使得激光束尽可能垂直地照射到光屏上。

在激光束出射方向上放置光电二极管,并将其连接到光强测量仪上。

3. 实验步骤a. 打开激光器,并调整其功率,使得激光束的强度适中。

b. 将光屏放置在激光束的传播路径上,确保激光束能够均匀地照射到光屏上。

c. 将光电二极管放置在离光屏一定距离的位置上,并将其与光强测量仪连接好。

d. 打开光强测量仪,并进行校准。

e. 将光电二极管沿着光屏上的一条直线移动,同时记录下每个位置对应的光强数值。

f. 重复以上步骤,改变光屏和光电二极管的相对位置,测量不同条件下的光强分布。

实验结果与讨论通过实验测量,我们得到了不同位置处的光强数值,并绘制出了光强分布曲线。

在理想情况下,我们预期光强应该呈现出中心亮度高、向周围逐渐减弱的分布形态。

然而,在实际测量中,我们发现光强分布曲线并不完全符合这一预期。

首先,我们观察到在光束中心位置,光强确实较高,符合我们的预期。

然而,随着距离光束中心的远离,光强并没有像预期的那样逐渐减弱。

相反,我们观察到在一定距离后,光强开始出现周期性的变化。

这种现象可以解释为光的衍射现象,即光波在通过障碍物或边缘时发生弯曲和扩散。

此外,我们还发现光强分布曲线的形状与光屏和光电二极管的相对位置有关。

当光电二极管与光屏的距离较近时,我们观察到光强分布曲线更加集中,而距离较远时,曲线更加扩散。

这说明光在不同介质中的传播会受到介质的影响,光的传播路径会发生变化。

光强的分布实验报告

光强的分布实验报告

光强的分布实验报告实验报告:光强的分布实验引言:在光学研究中,了解光的强度分布对于了解光的行为、优化光学系统的设计具有重要意义。

本实验旨在通过测量光源强度随距离的变化,以探究光强在空间中的分布规律。

实验步骤:1.实验器材准备:双缝衍射装置、光源、刻度尺、测光仪、读数卡等。

2.在实验室安全规范下,设置实验装置并保证光源正常发光。

3.将测光仪与光源间距离设置为一定值,测光仪初始读数归零。

4.以一定的间隔将测光仪沿与光源间距离平行方向移动,并记录每个位置的光强读数值。

5.重复上述步骤多次,取平均值,以增加实验数据的准确性。

6.将实验数据整理成表格,并绘制出光强随距离变化的图像。

7.通过图像分析,得出实验结果,并进行数据处理和讨论。

实验结果与分析:根据实验数据,制作出光强随距离变化的图像,图像中横坐标表示距离,纵坐标表示光强的读数值。

图像显示出光强随距离增加而逐渐减小的趋势,但光强分布并不均匀。

在图像中,我们可以观察到光强的最大值和最小值,并且这些值随距离变化呈现出其中一种规律。

通过对图像的观察和分析,我们发现光强的分布呈现出衍射图案,即具有明显的干涉效应。

在实验中,衍射是由双缝装置引起的,而衍射效应导致了光强的分布不均匀。

根据衍射理论,当光通过一个尺寸较小的孔或缝时,光波会在孔或缝周围扩散,形成衍射图案。

在实验中,双缝装置提供了两个互相平行的缝,使得光通过这两个缝时发生衍射。

衍射的结果是在屏幕上形成一系列的亮暗条纹,显示了在空间中的光强的分布。

实验中观察到的光强图案与理论预测相符。

根据理论分析,光强的分布遵循夫琅禾费衍射公式。

根据夫琅禾费衍射公式可知,衍射的图案与光的波长、缝宽和观察位置有关。

实验中的结果也表明光的传播遵循光的干涉和衍射现象,这意味着光是一种波动现象,并且具有粒子性和波动性的二重性质。

实验结果的合理解释需要结合波动光学理论来理解。

结论:通过本实验,我们探究了光强在空间中的分布规律。

实验结果表明光强分布非均匀,呈现出明显的衍射图案。

光强分布的测量

光强分布的测量

光强分布的‎测量实验一、实验目的1.观察单缝衍‎射现象,加深对衍射‎理论的理解‎。

2.会用光电元‎件测量单缝‎衍射的相对‎光强分布,掌握其分布‎规律。

3.学会用衍射‎法测量微小‎量。

4.验证马吕斯‎定律。

二、实验原理如图1所示‎,图1 夫琅禾费单‎缝衍射光路‎图与狭缝E 垂‎直的衍射光‎束会聚于屏‎上P 0处,是中央明纹‎的中心,光强最大,设为I 0,与光轴方向‎成Ф角的衍‎射光束会聚‎于屏上PA ‎处,PA 的光强‎由计算可得‎:式中,b 为狭缝的‎宽度,λ为单色光的‎波长,当0=β时,光强最大,称为主极大‎,主极大的强‎度决定于光‎强的强度和‎缝的宽度。

当πβk =,即:220sin ββI I A =)sin (λφπβb =bKλφ=sin ),,,⋅⋅⋅±±±=321(K时,出现暗条纹‎。

除了主极大‎之外,两相邻暗纹‎之间都有一‎个次极大,由数学计算‎可得出现这‎些次极大的‎位置在β=±1.43π,±2.46π,±3.47π,…,这些次极大‎的相对光强‎I/I0依次为‎0.047,0.017,0.008,…图2 夫琅禾费衍‎射的光强分‎布夫琅禾费衍‎射的光强分‎布如图2所‎示。

图3 夫琅禾费单‎缝衍射的简‎化装置用氦氖激光‎器作光源,则由于激光‎束的方向性‎好,能量集中,且缝的宽度‎b 一般很小‎,这样就可以‎不用透镜L ‎1,若观察屏(接受器)距离狭缝也‎较远(即D 远大于‎b )则透镜L2‎也可以不用‎,这样夫琅禾‎费单缝衍射‎装置就简化‎为图3,这时,由上二式可‎得三、实验装置激光器座、半导体激光‎器、导轨、二维调节架‎、一维光强测‎试装置、分划板、可调狭缝、平行光管、起偏检偏装‎置、光电探头、小孔屏、数字式检流‎计、专用测量线‎等。

Dx /ta n s i n =≈φφxD K b /λ=图4 衍射、干涉等一维‎光强分布的‎测试四、实验步骤1. 接上电源(要求交流稳‎压220V ‎±11V ,频率50H ‎Z 输出),开机预热1‎5分钟;2. 量程选择开‎关置于“1”档,衰减旋钮顺‎时针置底,调节调零旋‎钮,使数据显示‎为-.000; (一)单缝衍射一‎维光强分布‎的测试1、 按图4搭好‎实验装置。

光强分布的测量

光强分布的测量

图1 单缝衍射相对光强分布曲线图9087848178757269666360575451484542由图1可知:1,当x=69时I=I0 ,出现主极大。

此时,衍射图样光强最强,表现为中央亮纹。

2,夫琅禾费光强呈对称分布,主极大两侧次极大是等间距对称分布。

3,光强分布只有一个主极大,而在其两侧分布有多个次极大,且两极间必有一极小,在衍射图样中表现为暗纹。

4,在主极大两侧的次极大相对光强比主极大小得多,中央明纹最宽最亮。

3.计算单缝宽度:D=82.0cm第一级暗条纹:X=(76-62)/2=7cmb1=kλD/X=1×650×10∧﹣9×0.82/(7×10∧﹣3)=0.076mm第二级暗条纹:X=(82-55)/2=13.5 cmb2=kλD/X=2×650×10∧﹣9×0.82/(13.5×10∧﹣3)=0.079mm 第三级暗条纹:X=(90-48)/2=21cmb3=kλD/X=3×650×10∧﹣9×0.82/(21×10∧﹣3)=0.076mmk=(b1+b1+b1)/3=(0.76+0.79+0.76)/3=0.077mm分析误差:实验误差有可能来自于环境附加光强的影响以及转动螺旋侧位装置的过程中由于转动一周又向回转的原因以及其他操作所引起的误差等。

2.双缝衍射数据的处理:图2双缝衍射相对光强分布曲线图4.衍射现象的规律和特征:以上图样依次为GS1,GS2,SK1/2/3,JK ,双缝衍射示意图。

由图可知:GS1衍射呈矩形分布,亮纹为点型,且以中央处最亮,向外亮度依次递减。

GS2衍射呈线型分布,亮纹为点型,且以中央处最亮,向两侧亮度依次递减。

SK1/2/3衍射呈同心圆分布,以中央处为最亮,向外侧亮度依次递减。

JK衍射呈十字型分布,亮纹为点型,且以中央处为最亮,向外侧亮度依次递减。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

射光强分布谱横坐标的长度数值,即构成一把测定位移的光栅尺.光栅尺可精确测定位移
量,正是利用这个特点在精密仪器和自动控制机床等计量领域,光栅位移传感器有广泛的
应用.本实验中用的光栅尺中,200 mm 长度的光栅为主光栅,它相当于标准器,固定不动.可
动小型光栅为指示光栅,它与光栅探测器联为一体.也就是光栅移动,光探测器同步移动,
衍射导致了光强在空间的重新分布,利用光电传感元件测量和探测光强的相对变化, 是近代技术中常用的光强测量方法之一.
【实验目的】
1.掌握在光学平台上组装、调整光的衍射实验光路; 2.观察不同条件下产生的衍射,归纳总结单缝衍射现象的规律和特点; 3.学习利用光电元件测量相对光强的实验方法,研究单缝衍射中相对光强的分布规律; 4.学习微机自动控制测衍射光强分布谱和相关参数.
为 时,观察点的光强 I值与光波波长和单缝宽度 a 相关.[sin (u) / u]2 常称为单缝衍射 因子,表征衍射光场内任一点相对光强(I I0)的大小.若以 sin为横坐标,(I I0)为 纵坐标,可得到单缝衍射光强的分布谱(如图 2 所示).
当= 时,
I = I 0
sin k a
(4)
同理,由图 1 也可看出,k 级暗条纹对应的衍射角
tgk
k

xk L

k xk aL
(6)
(5)
由以上讨论可知
(1)中央亮条纹的宽度被 k = ±1 的两
暗条纹的衍射角所确定,即中央亮条纹的角宽
度为 2 . a
(2)衍射角与缝宽 a 成反比,缝加宽
莫尔条纹也移动,位移量为正值;如果指示光栅改变移动方向,光探测器也反方向移动,
莫尔条纹随着改变运动方向,位移量是负值.因而光栅尺能准确地测定指示光栅运动的位
移量,确定衍射光强分布谱横坐标的数值.
本实验采用微机自动控制和测量手段,实现数据的光电变换,A / D 转换和数字化处理
以及显示、打印和网络传输等众多功能.可观察,定量测量和研究各种衍射元件,诸如单
可得
m d 2sin / 2
(9)
从(9)式可知,较小时,m 有很大
的数值.若一块光栅相对另一块光栅
移动 d 的大小,莫尔条纹 M 将移动 m
的距离.即莫尔条纹有位移放大作用,
其放大倍数 k = m / d .用光探测器测
定两块光栅相对位移时产生莫尔条纹 的强度变化,经光电变换后,成为衍
图 5 光栅常数相等的两块光栅产生莫尔条纹的示意图
与它们相应的相对光强度分别为
I 0.04718,0.01694,0.00834, I0
(8)
2.光强测定原理 上述衍射光强分布谱测定要借助光探测仪器,此设备中关键的光探测元件称为光电传 感元件.光电传感器是一种将光强的变化转换为电量变化的传感器.本实验使用的硅光电 二极管是基于光生伏特效应的光电器件.当光照射到 pn 结时,如光子能量大于 pn 结禁带 宽度 Eg,就可使价带中的电子跃迁到导带,从而产生电子-空穴对,电子与空穴分别向相反 方向移动,形成光电动势.光电二极管的理想等效电路如图 3 所示.从理想等效电路来看, 光电二极管可看做是由一个恒流 IL 并联一个普通二极管所组成的电源,此电源的电流 IL 与 外照光源的光强成正比.无光照时,其电流-电压特性无异于普通二极管,而有光照时,其
实验十五 光衍射相对光强分布的测量
光的衍射现象是光的波动性的一种表现,它说明了光的直线传播规律只是衍射现象不 显著时的近似结果.衍射现象的存在,深刻地反映了光子(或电子等其他微观粒子)的运 动是受测不准关系制约的.因此研究光的衍射,不仅有助于加深对光的本性的理解,也是 近代光学技术(如光谱分析、晶体分析、全息分析、光学信息处理等)的实验基础.
(4)位于两相邻暗条纹之间的是各级亮条纹,它们的宽度是中央亮条纹宽度的 1/ 2.这
些亮条纹的光强极大值称为次极大.由方程 d (sin u )2 0 可得,tgu = u,再用图解法解 du u
此超越方程,可求得
sin



1.430
a

2.459
a

3.470
a

(7)
(2)
这是平行于光轴的光线会聚处——中央亮条纹中心点的光强,是衍射图像中光强的极 大值,称为中央主极大.当
asin= k, k = ±1,±2,±3,……
(3)
则 u = kπ, I = 0, 即为暗条纹.与此衍射角对应的位置为暗条纹的中心.实际上角
很小,取正弦函数泰勒展开式的一级近似
99
Rf IL
+A
U0 Ub
IL = U0 / Rf
图 3 光电二极管等效电路图
图 4 光电二极管与前置放大电路连接图
电流-电压特性符合 pn 结光生伏特效应.对于二极管的正向伏安特性,只有负载电阻接近 于零时,光电流才与光照成正比.按图 4 接线,由运算放大器构成的电流电压转换电路能 使输入电阻接近于零,所以是光电二极管的理想负载.
射图像与不充介质时有何差别?
2.光强分布公式
I

I0
sin 2 u2
u
中,I0 及
u
的物理意义是什么?试描述单缝衍射现象中
检测到的图像的主要特性.
【思考题】
1.硅光电池前的接收狭缝的宽度,对实验结果有何影响?实验时,你是如何确定他的 宽度的?
2.激光输出的光强如有变动,对单缝衍射图像和光强分布曲线有无影响?具体地说有 什么影响?
2.多缝衍射光强分布谱的观测(选作内容) (1)将多缝衍射元件代替单缝,调整光路,重复上述实验操作步骤. (2)观察主极大、次级大和缺级等相关参数和特性. (3)将二、三、四、五缝衍射光强分布谱叠加在一幅图上进行比较. (4)保存一幅你满意的衍射光强分布谱及数据,根据数据利用 Orign 作图. (5)用微机内设置的衍射光强分布谱理论值与实验值进行比较.
射光经透镜 L2 会聚在其后焦平面处的屏 P 上,屏上将呈现出亮暗相间按一定规律分布的衍 射图样.
由惠更斯——菲涅耳原理可知,单缝衍射的光强分布公式为
I

I
0
(
sin u
u
)
2

u a sin
(1)
L1 单缝 L2 S
a
P
0
xk
L
图 1 单缝夫琅和费衍射光路
95
式中:a 为单缝的宽度,I0 为入射光光强,为衍射光与光轴的夹角——衍射角.在衍射角
97
4.光栅线位移传感器原理
上述光强测定原理解决了衍射光强分布纵坐标数据测定,而分布谱的横坐标可采用一
种光栅尺(即光栅位移传感器)来测定,其基本原理是利用莫尔条纹的“位移放大”作用,
将两块光栅常数都是 d 的透明光栅,以一个微小角度重叠,光照它们可得到一组明暗相
间等距的干涉条纹,这就是莫尔条纹.莫尔条纹的间隔 m 很大(如图 5),从几何学角度
【实验仪器】
GSZF-I 型衍射光强自动记录仪,QJHP-26 型 He-Ne 激光器(nm),可调
单缝,全反镜.
【注意事项】
1.实验操作前,请仔细阅读实验室提供的微机使用方法参考资料,严格按照规范要求, 依次逐步进行操作.
【预习题】
1.若在单缝到观察屏之间的空间区域充满某种透明介质(折射率为 n),此时单缝衍
【实验原理】
1.衍射光强分布谱 衍射现象分两大类:夫琅和费衍射(远场)和菲涅耳衍射(近场).本实验仅研究夫琅 和费衍射. 夫琅和费衍射要求光源和接受衍射图像的屏幕远离衍射物(如单缝等),即入射光和衍 射光都是平行光.夫琅和费衍射光路见图 1,其中,S 是波长为 的单色光源,置于透镜
L1 的焦平面上时,单色光经 L1 后形成平行光束投射到缝宽为 a 的单缝上,通过狭缝后的衍
时,衍射角减小,各级条纹向中央收缩;当缝
宽 a 足够大时(a>>).衍射现象就不显著,
以致可略去不计,从而可将光看成是沿直线传
96
a a
a
a
a0
a
a
a
a
sin
a
图 2 单缝衍射相对光强分布曲线
播的.
(3)对应任意两相邻暗条纹,其衍射光线的夹角为

ቤተ መጻሕፍቲ ባይዱ

a
,即暗条纹是以点
P0 为中
心、等间隔、左右对称地分布的(其中 P0 为中央亮条纹的中心位置).
缝、多缝、圆孔和方孔等衍射光强分布谱和相关参数,并与理论值比较.
【实验内容】
1.单缝衍射光强分布谱的观测 (1)图 7 是实验装置布置简图.应按夫琅和费衍射和观测条件,安排实验仪器及检测 元件的相对位置.
激光器
单缝
L
探测元件
光强 放大
A /D 转换
微机
图 7 实验装置布置简图 98
(2)详细阅读实验室提供的微机使用方法参考资料.严格依次进行规范操作. (3)调整相关变量,观察衍射现象,归纳总结单缝衍射现象的规律和特点.最终显示 你满意的衍射光强分布谱.记录此时主极大、次级大位置和对应的相对光强值. (4)测量单缝到接收器之间距 L 值. (5)用显微镜测量单缝宽度 3 次,取平均值. (6)计算中央主极大的角宽度、暗条纹位置、次极大位置和相对光强值,并与测量值 比较. (7)保存一幅你满意的衍射光强分布谱及数据,根据数据利用 Orign 作图.
相关文档
最新文档