三角函数基础公式
三角函数运算公式大全

以下是三角函数公式的个人归纳,请查收~诱导公式(1)sinx=sin(x+2kπ)cosx=cos(x+2kπ)tanx=tan(x+2kπ)k∈Z原理:终边相同的角同一三角函数值相同(或可用三角函数图像的周期性验证)(2)sin(-x)=-sinxcos(-x)=cosx tan(-x)=-tanx(3)sin(π+x)=-sinx cos(π+x)=-cosx tan(π+x)=tanx(4)sin(π-x)=sinx cos(π-x)=-cosxtan(π-x)=-tanx原理:三角函数值中,正弦一二象限为正,余弦一四象限为正,正切一三象限为正(终边)(5)sin(π/2+x)=cosxcos(π/2+x)=-sinxtan(π/2+x)=-cotx(6)sin(π/2-x)=cosxcos(π/2-x)=sinxtan(π/2-x)=cotx(7)展开公式sin(3π/2+x)=sin(π+π/2+x)=-sin(π/2+x)=-cosx cos(3π/2+x)=cos(π+π/2+x)=-cos(π/2+x)=sinx tan(3π/2+x)=-cotxsin(3π/2-x)=sin(π+π/2-x)=-sin(π/2-x)=-cosx cos(3π/2-x)=cos(π+π/2-x)=-cos(π/2-x)=-sinx tan(3π/2-x)=cotx两角公式(1)两角和差公式sin(x+y)=sinxcosy+sinycosxsin(x-y)=sinxcosy-sinycosxcos(x+y)=cosxcosy-sinxsinycos(x-y)=cosxcosy+sinxsinytan(x+y)=sin(x+y)/cos(x+y)=sinxcosy+sinycosx/cosxcosy-sinxsiny=tanx+tany/1-tanxtanytan(x-y)=sin(x-y)/cos(x-y)=sinxcosy-sinycosx/cosxcosy+sinxsiny=tanx-tany/1+tanxtany证明:单位圆作图(2)二倍角公式sin2x=2sinxcosx推导:sin2x=sin(x+x)=sinxcosx+cosxsinx=2sinxcosxcos2x=(cosx)²-(sinx)²=2cos²x-1=1-2sin²x (sin²x+cos²x=1)推导:cos2x=cos(x+x)=cosxcosx-sinxsinx=cos²x-sin²xtan2x=sin2x/cos2x=2sinxcosx/cos²x-sin²x=2tanx/1-tan²x*三倍角公式sin3x=sin(2x+x)=sin2xcosx+cos2xsinx=2sinx(1-sin²x)+(1-2sin²x)sinx=3sinx-4sin³xcos3x=cos(2x+x)=cos2xcosx-sinxsin2x=(2cos²x-1)cosx-2cosx(1-cos²x)=4cos³x-3cosxtan3x=sin3x/cos3x=tanxtan(π/3+x)tan(π/3-x)(3)半角公式sin²(x/2)=(1-cosx)/2cos²(x/2)=(1+cosx)/2tan²(x/2)=1-cosx/1+cosx推导:cosx=2cos²(x/2)-1=1-2sin²(x/2)(4)辅助角公式asinx+bcosx=√(a²+b²)[asinx/√(a²+b²)+bcosx/√(a²+b²)]原理:配凑为sin²m+cos²m的形式,值域为[-√(a²+b²),√(a²+b²)] (5)两角推诱导例sin(π+x)=sinπcosx+sinxcosπ=-sinxcos(π+x)=cosπcosx-sinπsinx=-cosxsin(π-x)=sinπcosx-sinxcosπ=sinxcos(π-x)=cosπcosx+sinπsinx=-cosx与二次函数的那些事儿(1)变量法e.g.求f(x)=sinx+cos2x的值域解:由题f(x)=sinx+1-2sin²x......将sinx看做熟悉的变量f(x)=-2(sin²x-1/2sinx+1/16-1/16)+1=-2(sinx-1/4)²+9/8......化为熟悉的顶点式∵sinx∈[-1,1]......注意定义域(尤其是题目如果给出角范围)∴当sinx=1/4时,有f(x)最大值9/8;当sinx=-1时,有f(x)最小值-2 ∴f(x)值域为[-2,9/8](2)换元法e.g.求f(x)=sinx+cosx+sinxcosx的值域解:由题,令t=sinx+cosx=√2sin(x+π/4) t∈[-√2,√2]f(x)=t+sinxcosx∵t²=1+2sinxcosx∴sinxcosx=(t²-1)/2即f(x)=t+t²/2-1/2......换元,注意定义域接下来由二次函数解即可(3)公式法对于复合函数或不等式而言,需要注意其单调性与奇偶性,综合运用公式、定理与方程思想。
三角函数的所有公式

三角函数的所有公式诱导公式(1)sinx=sin(x+2kπ)cosx=cos(x+2kπ)tanx=tan(x+2kπ)k∈Z原理:终边相同的角同一三角函数值相同(或可用三角函数图像的周期性验证)(2)sin(-x)=-sinxcos(-x)=cosxtan(-x)=-tanx(3)sin(π+x)=-sinxcos(π+x)=-cosxtan(π+x)=tanx(4)sin(π-x)=sinxcos(π-x)=-cosxtan(π-x)=-tanx原理:三角函数值中,正弦一二象限为正,余弦一四象限为正,正切一三象限为正(终边)(5)sin(π/2+x)=cosxcos(π/2+x)=-sinxtan(π/2+x)=-cotx(6)sin(π/2-x)=cosxcos(π/2-x)=sinxtan(π/2-x)=cotx(7)展开公式sin(3π/2+x)=sin(π+π/2+x)=-sin(π/2+x)=-cosxcos(3π/2+x)=cos(π+π/2+x)=-cos(π/2+x)=sinxtan(3π/2+x)=-cotxsin(3π/2-x)=sin(π+π/2-x)=-sin(π/2-x)=-cosxcos(3π/2-x)=cos(π+π/2-x)=-cos(π/2-x)=-sinxtan(3π/2-x)=cotx两角公式(1)两角和差公式sin(x+y)=sinxcosy+sinycosxsin(x-y)=sinxcosy-sinycosxcos(x+y)=cosxcosy-sinxsinycos(x-y)=cosxcosy+sinxsinytan(x+y)=sin(x+y)/cos(x+y)=sinxcosy+sinycosx/cosxcosy-sinxsiny=tanx+tany/1-tanxtanytan(x-y)=sin(x-y)/cos(x-y)=sinxcosy-sinycosx/cosxcosy+sinxsiny=tanx-tany/1+tanxtany证明:单位圆作图(2)二倍角公式sin2x=2sinxcosx推导:sin2x=sin(x+x)=sinxcosx+cosxsinx=2sinxcosxcos2x=(cosx)²-(sinx)²=2cos²x-1=1-2sin²x (sin²x+cos²x=1)推导:cos2x=cos(x+x)=cosxcosx-sinxsinx=cos²x-sin²xtan2x=sin2x/cos2x=2sinxcosx/cos²x-sin²x=2tanx/1-tan²x三倍角公式sin3x=sin(2x+x)=sin2xcosx+cos2xsinx=2sinx(1-sin²x)+(1-2sin²x)sinx=3sinx-4sin³xcos3x=cos(2x+x)=cos2xcosx-sinxsin2x=(2cos²x-1)cosx-2cosx(1-cos²x)=4cos³x-3cosxtan3x=sin3x/cos3x=tanxtan(π/3+x)tan(π/3-x)(3)半角公式sin²(x/2)=(1-cosx)/2cos²(x/2)=(1+cosx)/2tan²(x/2)=1-cosx/1+cosx推导:cosx=2cos²(x/2)-1=1-2sin²(x/2)(4)辅助角公式asinx+bcosx=√(a²+b²)[asinx/√(a²+b²)+bcosx/√(a²+b²)]原理:配凑为sin²m+cos²m的形式,值域为[-√(a²+b²),√(a²+b²)] (5)两角推诱导例sin(π+x)=sinπcosx+sinxcosπ=-sinxcos(π+x)=cosπcosx-sinπsinx=-cosxsin(π-x)=sinπcosx-sinxcosπ=sinx cos(π-x)=cosπcosx+sinπsinx=-cosx。
正切余切正弦余弦公式

正切余切正弦余弦公式
正切tanA=对边/邻边;余切cotA=邻边/对边;正弦sinA=对边/斜边;余弦cosA=邻边/斜边。三角函数是基本初等函数之一,是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。
三角函数相关公式
积化和差
sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]
cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]
sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]
cos(a)sin(b)=1/2*[sin(a+b)-sin(a-b)]
cot(A+B)=(cotAcotB-1)/(cotB+cotA)
cot(A-B)=(cotAcotB+1)/(cotB-cotA)
两角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-cosAsinB
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+anB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
中考数学知识点三角函数的公式

中考数学知识点三角函数的公式中考数学知识点三角函数的公式关于初中三角函数公式,在考试中用的最多的就是特殊三角度数的'特殊值。
下面一起来看看!三角函数的公式sin30°=1/2sin45°=√2/2sin60°=√3/2cos30°=√3/2cos45°=√2/2cos60°=1/2tan30°=√3/3tan45°=1tan60°=√3[1]cot30°=√3cot45°=1cot60°=√3/3其次就是两角和公式,这是在初中数学考试中问答题中容易用到的三角函数公式。
两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)除了以上常考的初中三角函数公示之外,还有半角公式和和差化积公式也在选择题中用到。
所以同学们还是要好好掌握。
半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB- ctgA+ctgBsin(A+B)/sinAsinB锐角三角函数公式sin α=∠α的对边 / 斜边cos α=∠α的邻边 / 斜边tan α=∠α的对边/ ∠α的邻边cot α=∠α的邻边/ ∠α的对边倍角公式Sin2A=2SinA.CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A) )三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina辅助角公式A sinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin2a)+(1-2sin2a)sina=3sina-4sin3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos2a-1)cosa-2(1-sin2a)cosa=4cos3a-3cosasin3a=3sina-4sin3a=4sina(3/4-sin2a)=4sina[(√3/2)2-sin2a]=4sina(sin260°-sin2a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos3a-3cosa=4cosa(cos2a-3/4)=4cosa[cos2a-(√3/2)2]=4cosa(cos2a-cos230°)=4c osa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)两角和差cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 积化和差sinαsinβ = [cos(α-β)-cos(α+β)] /2cosαcosβ = [cos(α+β)+cos(α-β)]/2sinαcosβ = [sin(α+β)+sin(α-β)]/2cosαsinβ = [sin(α+β)-sin(α-β)]/2诱导公式sin(-α) = -sinαcos(-α) = cosαtan (—a)=-tanαsin(π/2-α) = cosαcos(π/2-α) = sinαsin(π/2+α) = cosαcos(π/2+α) = -sinαsin(π-α) = sinαcos(π-α) = -cosαsin(π+α) = -sinαcos(π+α) = -cosαtanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sinα=2tan(α/2)/[1+tan^(α/2)]cosα=[1-tan^(α/2)]/1+tan^(α/2)]tanα=2tan(α/2)/[1-tan^(α/2)]其它公式(1)(sinα)^2+(cosα)^2=1(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC(9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+si n[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+c os[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0。
(完整版)三角函数公式大全

三角函数公式一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=, 正弦函数:ry=αsin 余弦函数:r x =αcos 正切函数:x y =αtan余切函数:y x =αcot 正割函数:xr=αsec 余割函数:yr=αcsc 二、同角三角函数的基本关系式六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。
”倒数关系:1csc sin =⋅x x ,1sec cos =⋅x x ,1cot tan =⋅x x 。
商数关系:x x x cos sin tan =,xxx sin cos cot =。
平方关系:1cos sin 22=+x x ,x x 22sec tan 1=+,x x 22csc cot 1=+。
积的关系:sinx=tanx·cosx cosx=sinx·cotx tanx=sinx·secxcotx=cosx·cscx secx=tanx·cscx cscx=secx·cotx三、诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)=sinα cos(2kπ+α)=cosαtan (2kπ+α)=tanα cot(2kπ+α)=cotα (其中k ∈Z) 公式二:设α为任意角,π+α的三角函数的值与α的三角函数值之间的关系: sin (π+α)=-sinα cos(π+α)=-cosα tan (π+α)=tanα cot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系: sin (-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)=sinα cos(π-α)=-cosα tan (π-α)=-tanα cot(π-α)=-cotα 公式五:απ-2与α的三角函数值之间的关系:sin (απ-2)=cosα cos(απ-2)=sinα tan (απ-2)=cotα cot(απ-2)=tanα公式六:απ+2与α的三角函数值之间的关系:sin (απ+2)=cosα cos(απ+2)=-sinαtan(απ+2)=-cotα cot(απ+2)=-tanα公式七:απ-23与α的三角函数值之间的关系: sin(απ-23)=-cosα cos(απ-23)=-sinαtan (απ-23)=cotα cot(απ-23)=tanα公式八:απ+23与α的三角函数值之间的关系:sin(απ+23)=-cosα cos(απ+23)=sinαtan (απ+23)=-cotα cot(απ+23)=-tanα公式九:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)=-sinα cos(2π-α)=cosα tan (2π-α)=-tanα cot(2π-α)=-cotα⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。
【高数必备】三角函数的各种基础公式

三角函数是数学中属于初等函数中的超越函数的一类函数。
它们的本质是任意角的集合与一个比值的集合的变量之间的映射。
通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。
另一种定义是在直角三角形中,但并不完全。
现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
由于三角函数的周期性,它并不具有单值函数意义上的反函数。
三角函数在复数中有较为重要的应用。
在物理学中,三角函数也是常用的工具。
基本初等内容它有六种基本函数(初等基本表示):函数名正弦余弦正切余切正割余割正弦函数sinθ=y/r余弦函数cosθ=x/r正切函数tanθ=y/x余切函数cotθ=x/y正割函数secθ=r/x余割函数cscθ=r/y以及两个不常用,已趋于被淘汰的函数:正矢函数versinθ=1-cosθ余矢函数vercosθ=1-sinθ同角三角函数间的基本关系式:·平方关系:sin^2( α)+cos^2( α)=1tan^2( α)+1=sec^2( α)cot^2( α)+1=csc^2( α)·积的关系:sin α=tan α*cos αcos α=cot α*sin αtan α=sin α*sec αcot α=cos α*csc αsec α=tan α*csc αcsc α=sec α*cot α·倒数关系:tan α·cot α=1sin α·csc α=1cos α·sec α=1三角函数恒等变形公式·两角和与差的三角函数:cos( α+β)=cos α-s·in cαo s·βsin βcos( α-β)=cos α·cos β+sin α·sin βsin( α±β)=sin α·cos β±cos α·sin βtan( α+β)=(tan α+ta-ntanβα)/(·1 tan β)tan( α-β)=(tan -taαn β)/(1+tan α·tan β)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin( α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)·倍角公式:sin(2 α)=2sin α·cos α=2/(tan α+cot α)cos(2 α)=cos^2(-sinα^)2( α)=2cos^2(-1=α1-2)sin^2( α)tan(2 α)=2tan α-ta/n*1^2( α)+·三倍角公式:sin(3 α)=3si-n4siαn^3( α)cos(3 α)=4cos^3(-3cαos)α·半角公式:sin(α/2)= 正负√((1-cosα)/2)cos(α/2)= 正负√((1+cosα)/2)tan(α/2)= 正负√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sin α·降幂公式sin^2( α)=-c(o1s(2α))/2cos^2( α)=(1+cos(2 α))/2tan^2( α)=-(c1os(2α))/(1+cos(2 α))·万能公式:sin α=2tan( α/2)/*1+tan^2( α/2)+cos α=*-t1an^2( α/2)+/*1+tan^2( α/2)+tan α=2tan( α/ 2-)t/a*n1^2(α/2)+·积化和差公式:sin α·cos β=(1/2)*sin( α-β+)β+ )+sin( αcos α·sin β=(1/2)*sin-(sin( -ααβ+)β+)cos α·cos β=(1/2)*cos( α-β+β)+)+cos( αsin α·s-in(1/β2)=*cos( α- c+oβs()α-β)+·和差化积公式:sin α+sin β=2sin*( α+β-)/β2+)c/2o+s*(αsin α-sin β=2cos*( α+β)/2-+βs i n)*/2(+ αcos α+cos β=2cos*( α+β)/2-β+c)o2/s]*( αcos α-cos β-=2sin*( α+β)/2+s-iβn*()/2+α·其他:sin α+sin( α+2π/n)+sin( α+2π*2/n)+sin( α+2π*3/n)+-1)⋯/n⋯]=0+sin* α+2π*(ncosα+cos(α+2π/n)+cos(α+2π*2/n)+cos( α+2π*3/n)+ ⋯⋯+cos[α+2π*(n-1)/n]=0 以及sin^2( α)+sin^2-2( πα/3)+sin^2( α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0【部分高等内容】·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i)cosx=[e^(ix)+e^(-ix)]/2tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2 !+z^3/3 !+z^4/4 !+⋯+z^n/n !+⋯。
(完整版)初中三角函数公式表
(完整版)初中三角函数公式表一、三角函数的基本定义在初中数学中,三角函数主要涉及正弦函数(sin)、余弦函数(cos)和正切函数(tan)。
这些函数与直角三角形的三边长度有着密切的关系。
1. 正弦函数(sin):正弦函数表示直角三角形中,对应于一个锐角的斜边与斜边与邻边之比。
公式为:sin(θ) = 对边 / 斜边。
2. 余弦函数(cos):余弦函数表示直角三角形中,对应于一个锐角的邻边与斜边之比。
公式为:cos(θ) = 邻边 / 斜边。
3. 正切函数(tan):正切函数表示直角三角形中,对应于一个锐角的斜边与邻边之比。
公式为:tan(θ) = 对边 / 邻边。
二、三角函数的相互关系1. 正弦函数和余弦函数的关系:sin(θ) = cos(90° θ),cos(θ) = sin(90° θ)。
2. 正切函数和余弦函数的关系:tan(θ) = sin(θ) / cos(θ)。
3. 正切函数和正弦函数的关系:tan(θ) = sin(θ) / cos(θ)。
三、三角函数的特殊值1. 0°:sin(0°) = 0,cos(0°) = 1,tan(0°) = 0。
2. 30°:sin(30°) = 1/2,cos(30°) = √3/2,tan(30°) =1/√3。
3. 45°:sin(45°) = √2/2,cos(45°) = √2/2,tan(45°)= 1。
4. 60°:sin(60°) = √3/2,cos(60°) = 1/2,tan(60°) = √3。
5. 90°:sin(90°) = 1,cos(90°) = 0,tan(90°) 无定义。
四、三角函数的周期性三角函数具有周期性,即函数值在一定的周期内会重复出现。
三角函数基础知识和主要公式
三角函数基础知识和主要公式三角函数是数学中重要的分支,它研究的是三角形中角的度量和与其相关的函数关系。
在三角函数中,最基础的三个函数是正弦函数(sin)、余弦函数(cos)和正切函数(tan)。
正弦函数定义为一个角的对边与斜边的比值,通常用sin表示。
余弦函数定义为一个角的邻边与斜边的比值,通常用cos表示。
正切函数定义为一个角的对边与邻边的比值,通常用tan表示。
三角函数有许多重要的性质和公式,下面我将介绍其中一些。
1. 周期性:正弦函数和余弦函数都是周期函数,周期为2π。
即对于任意实数x,有sin(x+2π) = sin(x)和cos(x+2π) = cos(x)。
正切函数也具有周期性,但周期为π。
2. 加法公式:sin(x+y) = sin(x)cos(y) + cos(x)sin(y),cos(x+y) = cos(x)cos(y) - sin(x)sin(y)。
这两个公式描述了两个角的和的正弦值和余弦值与它们的正弦值和余弦值之间的关系。
3. 减法公式:sin(x-y) = sin(x)cos(y) - cos(x)sin(y),cos(x-y) = cos(x)cos(y) + sin(x)sin(y)。
这两个公式描述了两个角的差的正弦值和余弦值与它们的正弦值和余弦值之间的关系。
4. 倍角公式:sin(2x) = 2sin(x)cos(x),cos(2x) = cos^2(x) -sin^2(x) = 2cos^2(x) - 1 = 1 - 2sin^2(x)。
这两个公式描述了一个角的两倍角的正弦值和余弦值与它的正弦值和余弦值之间的关系。
5. 平方和公式:sin^2(x) + cos^2(x) = 1、这个公式描述了一个角的正弦值和余弦值的平方和等于1,这也是三角恒等式中最重要的一条。
6. 倒数关系:tan(x) = 1/cot(x),cot(x) = 1/tan(x)。
这个公式描述了正切函数和余切函数之间的倒数关系。
三角函数公式大全整理
三角函数公式大全整理2023三角函数公式大全整理三角函数与幂函数、指数函数、对数函数等一样,属于基本初等函数。
三角函数是以角的弧度数为自变量的函数,常见的三角函数包括正弦函数、余弦函数、正切函数,下面作者为大家带来三角函数公式大全整理,期望对您有所帮助!三角函数公式大全整理公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tanαcot(2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanαsin(3π/2+α)= -cosαcos(3π/2+α)= sinαtan(3π/2+α)= -cotαcot(3π/2+α)= -tanαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαtan(3π/2-α)= cotαcot(3π/2-α)= tanα三角函数怎样算度数一、sin度数公式1、sin 30= 1/22、sin 45=根号2/23、sin 60= 根号3/2二、cos度数公式1、cos 30=根号3/22、cos 45=根号2/23、cos 60=1/2三、tan度数公式1、tan 30=根号3/32、tan 45=13、tan 60=根号3知识拓展:sin0=sin0°=0cos0=cos0°=1tan0=tan0°=0sin15=0.650;sin15°=0.259cos15=-0.759;cos15°=0.966tan15=-0.855;tan15°=0.268sin30°=1/2高中数学三角函数公式公式一公式二sin(2kπ+α)=sin αcos(2kπ+α)=cos αtan(2kπ+α)=tan αcot(2kπ+α)=cot αsec(2kπ+α)=sec αcsc(2kπ+α)=csc αsin(π+α)=-sin αcos(π+α)=-cos αtan(π+α)=tan αcot(π+α)=cot αsec(π+α)=-sec αcsc(π+α)=-csc α公式三公式四sin(-α)=-sin αcos(-α)=cosαtan(-α)=-tan αcot(-α)=-cot αsec(-α)=sec αcsc(-α)=-csc αsin (π-α)=sin αcos(π-α)=-cos αtan(π-α)=-tan αcot(π-α)=-cot αsec (π-α)=-sec αcsc(π-α)=csc α公式五公式六sin(α-π)=-sin αcos(α-π)=-cos αtan(α-π)=tan αcot(α-π)=cot αsec(α-π)=-sec αcsc(α-π)=-csc αsin(2π-α)=-sin αcos(2π-α)=cos αtan(2π-α)=-tan αcot (2π-α)=-cot αsec(2π-α)=sec αcsc(2π-α)=-csc α公式七公式八sin (π/2+α)=cosαcos(π/2+α)=−sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsec(π/2+α)=-cscαcsc(π/2+α)=secαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsec(π/2-α)=cscαcsc(π/2-α)=secα公式九公式十sin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsec(3π/2+α)=cscαcsc(3π/2+α)=-secαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsec(3π/2-α)=-cscαcsc(3π/2-α)=-secα高中数学三角函数推导方法定名法则90°的奇数倍+α的三角函数,其绝对值与α三角函数的绝对值互为余函数。
三角函数公式及证明
三角函数公式及证明三角函数是数学中重要的概念,它描述了一个角度与一个直角三角形的边长之间的关系。
在三角函数中,有三个基本的函数,即正弦函数、余弦函数和正切函数。
这些函数在数学和科学领域中广泛应用,并且它们之间还有一些重要的关系和恒等式。
一、正弦函数正弦函数(Sine Function)是指在任意角θ的终边所在的单位圆上取点P(x,y)的纵坐标y。
其定义域为实数集,值域为[-1,1]。
常用正弦函数的符号为sinθ,其中θ表示角度。
正弦函数的公式为:sinθ = y/r其中,y表示以θ为终边的单位圆上的点的纵坐标,r表示点到圆心的距离。
证明一:sin(α+β)=sinαcosβ+cosαsinβ我们设角α的终边交单位圆上的点A(x1,y1),角β的终边交单位圆上的点B(x2,y2)。
则A点的坐标为(cosα,sinα),B点的坐标为(cosβ,sinβ)。
那么,可以得出A点到原点O的距离为√(x1²+y1²)=1,B点到原点O的距离为√(x2²+y2²)=1根据余弦定理可以得出,线段AB的长度为√[(1-cosα)²+(1-cosβ)²+2(sinα-sinβ)²]又因为A、B两点的坐标分别为(cosα,sinα)和(cosβ,sinβ),所以根据欧氏距离公式,可以得出线段AB的长度为√[(cosα-cosβ)²+(sinα-sinβ)²]由于√[(1-cosα)²+(1-cosβ)²+2(sinα-sinβ)²]=√[(cosα-cosβ)²+(sinα-sinβ)²]展开并移项整理后可得1-2cosαcosβ-cos²α+sin²β-2sinαsinβ+cos²β+sin²α=cos²α-2cosαcosβ+cos²β+sin²α-2sinαsinβ+sin²β进一步整理可以得到1-cos²α+sin²β=cos²α+sin²β即sin²β=sin²α两边开方可以得到sinβ=sinα证明二:sin(α-β)=sinαcosβ-cosαsinβ我们将证明中的角度关系进行一些调整,即证明-sin(β-α)=sinαcosβ-cosαsinβ由于-sinθ=-1*sinθ,所以可以将式子转化为以下形式:sin(β-α)=-sinαcosβ+cosαsinβ然后将证明一中的步骤倒着进行,即可得到结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数基础公式
知识点一:
1.终边相同的角
凡是与终边相同的角,都可以表示成的形式.
要点诠释:
(1)终边相同的前提是:原点,始边均相同;
(2)终边相同的角不一定相等,但相等的角终边一定相同;
(3)终边相同的角有无数多个,它们相差的整数倍.
特例:
终边在x轴上的角集合,
终边在y轴上的角集合,
终边在坐标轴上的角的集合.
在已知三角函数值的大小求角的大小时,通常先确定角的终边位置,然后再确定大小.
2.弧度和角度的换算
(1)角度制与弧度制的互化:弧度,弧度,弧度
(2)弧长公式:(是圆心角的弧度数),扇形面积公式:.
(3)角的弧度数的绝对值是:,其中,是圆心角所对的弧长,是半径.
知识点二:任意角的三角函数的定义、三角函数的符号规律、特殊角的三角函数值、同角三角函数的关系式、诱导公式:
1.三角函数定义:
角终边上任意一点为,设则:
要点诠释:
三角函数的值与点在终边上的位置无关,仅与角的大小有关.我们只需计算点到原点的距离,
那么,,.
2.三角函数符号规律:
一全正,二正弦,三正切,四余弦(为正);
3.特殊角的三角函数值
2 sin
cos
tan
4.
5.诱导公式(奇变偶不变,符号看象限):
sin()=sin,cos()=-cos,tan()=-tan
sin()=-sin,cos()=-cos,tan()=tan
sin()=-sin,cos()=cos,tan()=-tan
sin()=-sin ,cos()=cos,tan()=-tan
sin()=sin ,cos()=cos,tan()=tan,
sin()=cos,cos()=sin
sin()=cos,cos()=-sin
要点诠释:
(1)要化的角的形式为(为常整数);
(2)记忆方法:“奇变偶不变,符号看象限”;
(3)必须对一些特殊角的三角函数值熟记,做到“见角知值,见值知角”;
(4);.
【典型例题】
题型一:三角函数的概念
例1.已知角的终边过点,求的三个三角函数值.
练习1.已知角的终边上一点,且,求的值.
例2.已知、的终边有下列关系,分别求、间的关系式。
(1)、的终边关于原点对称;
(2)、的终边关于x轴对称;
(3)、的终边关于y轴对称。
练习1.已知是任意角,则与的终边()
A.关于坐标原点对称B.关于轴对称
C.关于轴对称D.关于直线对称
题型二:扇形的弧长与面积的计算
例1.已知一半径为r的扇形,它的周长等于所在圆的周长的一半,那么扇形的中心角是多少弧度?合多少度?扇形的面积是多少?
练习1.已知一扇形的周长为40 cm,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?
例2.在面积为为定值)的扇形中,当扇形中心角为,半径为时,扇形周长最小,这时,的值分别是
A .,B.,C.,D.,
练习2.如图,扇形AOB的面积是4 cm2,它的周长是10 cm,求扇形的圆心角的弧度数及弦AB的长。
练习3.将一条绳索绕在半径为40 cm的轮圈上,绳索的下端B处悬挂着物体W,如果轮子按逆时针方向每分钟旋转6圈,现想将物体W的位置向上提升100 cm,需要多长时间才能完成这一工作?
练习4.如图,体育馆计划用运动场的边角地建造一个矩形健身室,四边形是一块正方形地皮,边长为,扇形是运动场的一部分,半径为,矩形就是计划的健身室,其中、
分别在、上,在上.设矩形的面积为,,试将表达为的函数,并且指出当在上何处时,健身室的面积最大,最大值是多少?
练习5.如图,四边形是圆心角为,半径为的扇形的内接矩形,点,在上,求四边形的最大面积.
练习6.已知半径为2的扇形圆心角为,其内接矩形如图所示,求矩形面积最大值.
练习7.如图,已知一长为,宽为的长方形木块在桌面上做无滑动的翻滚,翻滚到第三面时被一小木板挡住,使木块底面与桌面成的角.求点走过的路程及走过的弧所对应的扇形的总面积.
题型三:同角三角函数的基本关系式
例1.已知,求的值.
练习1.已知cosθ-sinθ= -,求sinθcosθ,sinθ+cosθ的值.
练习2.已知α为第二象限角,则cosα1+tan2α+sinα1+1
tan2α=________.
题型四:三角函数的诱导公式
例1.已知sin(3π+θ)=,求的值.
练习1.已知函数f (x )=a sin(πx +α)+b cos(πx +β),且f (2 009)=3,则f (2 010)的值是 ( )
A .-1
B .-2
C .-3
D .1
练习2.化简(1)
(2).
练习3.已知cos ⎝⎛⎭⎫π6-α=2
3,则sin ⎝⎛⎭⎫α-2π3=________. 练习4.已知sin(3π-α)=-2sin ⎝⎛⎭
⎫π
2+α,则sin αcos α等于( ) A .-2
5
B.2
5 C.25或-25 D .-15
课后练习
补救练习 1. A .
B .
C .
D .
2.已知,则
A .
B .
C .
D .
3.已知,则
的值为
A .
B .
C .1
D .
4.的值为 A .
B .
C .
D .
5.在中,下列关系一定成立的是
A .
B .
C .
D .
巩固练习 1.已知,则 A .
B .
C .
D .
2.的值为
A .45
B .1
C .
D .44
3.若,,则的值为
A .
B .
C .
D .
4.在中,已知,则 A .
B .
C .
D .
5.若sin α+cos α=7
13(0<α<π),则tan α等于( )
A .-13 B.125
C .-125
D.13
6.已知.求 (1)的值;
(2)的值.
7.已知角满足,且
(1)求的值;
(2)求
.
拔高练习
1.设函数(其中、、、为非零实数),若,则的值是
A.5B.3C.8D.不能确定
2.设,,,则,,的大小关系是
A .B.C.D.
3.已知函数,则
A.1B.0C.D.4
4.(1).
(2);
5.计算与化简:
(Ⅰ);
(Ⅱ);
(Ⅲ).。