动量、动能定理、机械能守恒、能量守恒综合运用
力学三大观点的综合应用

(2)若滑块恰好能够经过 C 点, 设此时滑块的速度为 v C', 根据牛顿
解得水平恒力F应满足的条件为F≥0.625 N。
-7-
知识梳理
考点自诊
2.如图所示,一质量为m2的小车支架上用细线悬挂着一质量为m3 的小球停在光滑水平面上。另一质量为m1的小车以速度v0向m2撞 来,并立即与它粘连在一起。求小球m3能向上摆起的最大高度。
-10-
命题点一
命题点二
命题点三
例1(优质试题· 全国卷Ⅲ)如图,水平地面上有两个静止的小物块a 和b,其连线与墙垂直:a和b相距l,b与墙之间也相距l;a的质量为m,b 3 的质量为 m。两物块与地面间的动摩擦因数均相同。现使a以初 4 速度v0向右滑动。此后a与b发生弹性碰撞,但b没有与墙发生碰撞。 重力加速度大小为g。求物块与地面间的动摩擦因数满足的条件。
答案:2������ (������
������ 1 2 ������ 0 2
1 +������ 2 )( ������ 1 +������ 2 +������ 3 )
解析:m1、m2碰撞瞬间,m3保持静止。设m1、m2碰后共同速度为 v1,由动量守恒得 m1v0=(m1+m2)v1①
即 v 1=
������ 1 ������ 0
-8-ቤተ መጻሕፍቲ ባይዱ
������ 1 + ������ 2
知识梳理
考点自诊
然后m3上摆的过程系统水平方向动量守恒、系统机械能守恒,三 者速度相同时小球m3向上摆起的高度最大,设三者最后共同的速度 为v,有 (m1+m2)v1=(m1+m2+m3)v②
1 1 2 2 ( m 1 +m2 ) ������ 1 =m3 gh+ ( m1 +m2 +m3 ) v ③ 2 2 ������ 1 ������ 0 由①②式得 v=������ +������ 1 2 + ������ 3
力学的三大基本观点及其应用

力学的三大基本观点及其应用一、力学的三个基本观点:力的观点: 牛顿运动定律、运动学规律动量观点:动量定理、动量守恒定律能量观点:动能定理、机械能守恒定律、能的转化和守恒定律例1.质量为M的汽车带着质量为m的拖车在平直公路上匀速前进,速度为v0 ,某时刻拖车突然与汽车脱钩,到拖车停下瞬间司机才发现.若汽车的牵引力一直未变,车与路面的动摩擦因数为μ,那么拖车刚停下时,汽车的瞬时速度是多大?小结:先大后小,守恒优先变1:质量为M的汽车带着质量为m的拖车在平直公路上以加速度a匀加速前进,当速度为v0时拖车突然与汽车脱钩,到拖车停下瞬间司机才发现.若汽车的牵引力一直未变,车与路面的动摩擦因数为μ,那么拖车刚停下时,汽车的瞬时速度是多大?小结:涉及时间,动量定理优先变2: 质量为M的汽车带着质量为m的拖车在平直公路上匀速前进,中途拖车脱钩,待司机发现时,汽车已行驶了L 的距离,于是立即关闭油门.设运行过程中所受阻力与重力成正比,汽车牵引力恒定不变,汽车停下时与拖车相距多远?小结:涉及位移,动能定理优先二、力的观点与动量观点结合:例2.如图所示,长 12 m、质量为 50 kg 的木板右端有一立柱,木板置于水平地面上,木板与地面间的动摩因数为 0.1,质量为 50 kg 的人立于木板左端,木板与人均静止,当人以 4 m/s2的加速度匀加速向右奔跑至板右端时立即抱住立柱,(取 g=10 m/s2)试求:(1)人在奔跑过程中受到的摩擦力的大小.(2)人从开始奔跑至到达木板右端所经历的时间.(3)人抱住立柱后,木板向什么方向滑动?还能滑行多远的距离?三、动量观点与能量观点综合:例3.如图所示,坡道顶端距水平面高度为 h,质量为 m1的小物块 A 从坡道顶端由静止滑下,在进入水平面上的滑道时无机械能损失,为使 A 制动,将轻弹簧的一端固定在水平滑道延长线 M 处的墙上,另一端与质量为 m2的挡板 B 相连,弹簧处于原长时,B 恰位于滑道的末端 O 点.A 与 B 碰撞时间极短,碰后结合在一起共同压缩弹簧,已知在 OM 段 A、B 与水平面间动摩擦因数均为μ,其余各处的摩擦不计,重力加速度为 g,求:(1)物块 A 在与挡板 B 碰撞前瞬间速度 v 的大小.(2)弹簧最大压缩量为 d 时的弹性势能 E p(设弹簧处于原长时弹性势能为零).四、三种观点综合应用:例4.对于两物体碰撞前后速度在同一直线上,且无机械能损失的碰撞过程,可以简化为如下模型:A、B 两物体位于光滑水平面上,仅限于沿同一直线运动.当它们之间的距离大于等于某一定值 d 时,相互作用力为零,当它们之间的距离小于 d 时,存在大小恒为 F 的斥力.设 A 物体质量 m1=1.0 kg,开始时静止在直线上某点;B 物体质量 m2=3。
动能定理,机械能守恒定律,能量守恒定律,动量定理,动量守恒定理的内容,表达式,适用条件。

动能定理,机械能守恒定律,能量守恒定律,动量定理,动量守恒定理的内容,表达式,适用条件。
动能定理指的是物体受到力的加速,物体的动能就会增加,其表达
式为:
µv2 =W,其中µ为物体的质量,v为物体的速度,W为物体受力的势能。
只要施加力,物体的动能就会改变,当物体处于静止状态时,动
能为零。
机械能守恒定律认为物体的机械能是不变的,总的机械能等于其动能
与势能的总和,表达式为:K0+U0=K+U,其中K0是物体的初始动能,U0为物体初始势能,K是物体的最终动能,U为物体的最终势能,表
示物体的动能和势能之和均不变、守恒。
能量守恒定律认为,物质运动时,能量不会被创建或消失,也就是说
能量是守恒的,它们只能以同样的形式互相转变,表达式为:Ε=Ε0,
其中Ε表示物体最终的能量,Ε0代表物体的初始能量,Ε等于Ε0,表
示能量守恒。
动量定理指的是物体受到力时,其动量就会改变,表达式为:p = mv,其中p为物体的冲量,m为物体的质量,v是物体的速度,物体的冲量
与其质量和速度成正比。
动量守恒定律认为物体的总冲量是守恒的,不会改变,表达式为:
∆p=0,虽然物体加力后,它的总冲量会改变,但是这个变化是可以由
其他物体抵消的,总的冲量是守恒的。
所有这些定律和定理都适用于物体受到力而加速或减速运动时,其运动规律是相同的,即动能定理、机械能守恒定律、能量守恒定律、动量定理和动量守恒定理的适用。
只要物体的势能发生变化,就可以使用这些定律和定理来描述物体的运动特性。
2025高考物理总复习力学三大观点的综合应用

台最右端 N 点停下,随后滑下的 B 以 2v0 的速度与 A 发
图1
生正碰,碰撞时间极短,碰撞后 A、B 恰好落在桌面上圆盘内直径的两端。已知 A、
B 的质量分别为 m 和 2m,碰撞过程中损失的能量为碰撞前瞬间总动能的14。A 与
传送带间的动摩擦因数为 μ,重力加速度为 g,A、B 在滑至 N 点之前不发生碰撞,
答案 (1)8 N 5 N (2)8 m/s (3)0.2 m
解析 (1)当滑块处于静止时桌面对滑杆的支持力等于滑块和
滑杆的重力,即N1=(m+M)g=8 N 当滑块向上滑动时受到滑杆的摩擦力f=1 N,根据牛顿第三定
律可知滑块对滑杆的摩擦力f′=1 N,方向竖直向上,则此时桌
面对滑杆的支持力为N2=Mg-f′=5 N。
一起竖直向上运动。已知滑块的质量m=0.2 kg,滑杆的质量
M=0.6 kg,A、B间的距离l=1.2 m,重力加速度g取10 m/s2,
不计空气阻力。求:
图4
01 02 03 04
目录
提升素养能力
(1)滑块在静止时和向上滑动的过程中,桌面对滑杆支持力的大
小N1和N2; (2)滑块碰撞前瞬间的速度大小v1; (3)滑杆向上运动的最大高度h。
该过程中弹簧对物体B冲量的大小。
答案 (1)mA 2gH mA+mB
(2)2t 2(mA+mB)gt+2mA 2gH
解析 (1)设A和B碰前瞬间的速度大小为v0,和B碰后瞬间的
速度大小为v,有 mAgH=21mAv20 v0= 2gH
01 02 03 04
目录
提升素养能力
由动量守恒定律有 mAv0=(mA+mB)v 解得 v=mmAA+2mgHB 。 (2)从碰后至返回到碰撞点的过程中,AB结合体做简谐运动。 根据简谐运动的对称性,可得运动时间t总=2t 回到碰撞点时速度大小为 vt=v=mmAA+2mgHB 方向竖直向上 取向上为正方向,由动量定理得I-(mA+mB)g·2t=(mA+mB)vt-[-(mA+mB)v] 解得 I=2(mA+mB)gt+2mA 2gH。
力学三大观点的应用

解析 (1)设 B 离开弹簧时,A 的瞬时速度为 vA0,B 的瞬时速度为 vB0,细线被剪断前, 弹簧的弹性势能为 Ep1 由动量守恒定律 mAvA0=mBvB0 解得:vA0=2 m/s 1 1 2 再根据机械能守恒定律:Ep1= mAv2 A0+ mBvB0=48 J 2 2 (2)当 B 第一次反弹,开始压缩弹簧,A、B 具有相同速度 v 时弹性势能最大,设为 Ep2, 由动量守恒定律: mAvA0+mBvB0=(mA+mB)v 再根据机械能守恒定律 1 1 1 2 2 Ep2= mAv2 A0+ mBvB0- (mA+mB)v =12 J 2 2 2
令小滑块 b 在长木板 c 上的滑行时间为 t,则: 1 时间 t 内小滑块 b 的位移 s1=v2t- a1t2 2 1 两块长木板的位移 s2= a2t2 2 且 s1-s2=L 10 解得:t1=1 s 或 t2= s(舍去) 3 b 刚离开长木板 c 时 b 的速度 v2′=v2-a1t1=3.6 m/s b 刚离开长木板 c 时 d 的速度 v3=a2t1=0.8 m/s
接静止在光滑的水平面上,中间放一被压缩的轻弹簧,左端与 A 连接,右端与 B 不连 接.现剪断细线,A、B 被弹簧弹开,离开弹簧时,B 物体的速度为 6 m/s,此后 B 与右 侧的挡板发生碰撞,碰撞没有能量损失.求:
图6 (1)细线被剪断前,弹簧的弹性势能; (2)B 物体被挡板反弹后,通过弹簧再次与 A 发生作用的过程中,弹簧具有弹性势能的 最大值. 答案 (1)48 J (2)12 J
力学三大观点的应用
考纲解读 1.理解动量守恒定律和机械能守恒定律守恒条件的区别及二者的综合应用.2.掌 握多过程问题的分析思路和方法,能熟练应用动量和能量观点处理多过程问题. 考点一 应用动量观点和能量观点处理多过程问题
应用力学的“三大观点”解题

分类 力的瞬时
作用 力的空间 积累作用
力的时间 积累作用
对应规律 牛顿第二定律
动能定理 机械能守恒定律
动量定理
动量守恒定律
规律内容 物体的加速度大小与合外力成正比,与质量 成反比,方向与合外力的方向相同 外力对物体所做功的代数和等于物体动能的增量 在只有重力(弹簧弹力)做功的情况下,物体的机械 能的总量保持不变 物体所受合外力的冲量等于它的动量的增量 系统不受外力或所受外力之和为零时,系统的总动 量就保持不变.(在某个方向上系统所受外力之和 为零,系统在这个方向上的动量分量就保持不变)
令 h 表示 B 上升的高度,有 h=v′2g22④ 由以上各式并代入数据得 h=4.05 m⑤ 【答案】 4.05 m
动量、能量、牛顿运动定律、匀变速直线运动综合 例 4 如图的水平轨道中,AC 段的中点 B 的正上方有一探 测器,C 处有一竖直挡板,物体 P1 沿轨道向右以速度 v1 与静止 在 A 点的物体 P2 碰撞,并接合成复合体 P,以此碰撞时刻为计 时零点,探测器只在 t1=2 s 至 t2=4 s 内工作.已知 P1、P2 的质 量都为 m=1 kg,P 与 AC 间的动摩擦因数为 μ=0.1,AB 段长 L =4 m,g 取 10 m/s2,P1、P2 和 P 均视为质点,P 与挡板的碰撞 为弹性碰撞.
(1)物块 C 的质量 mC; (2)墙壁对物块 B 的弹力在 4 s 到 12 s 的时间内对 B 的冲量 I 的大小和方向; (3)B 离开墙后的过程中弹簧具有的最大弹性势能 Ep.
【解析】 (1)由图知,C 与 A 碰前速度为 v1=9 m/s,碰后 速度为 v2=3 m/s,C 与 A 碰撞过程动量守恒,
【解析】 设物块受到水平冲量后速度为 v0.滑环固定时12 Mv02=MgL 得 v0= 2gL.
热点专题系列(5) 动力学、动量和能量观点在力学中的应用

热点专题系列(五)动力学、动量和能量观点在力学中的应用热点概述:处理力学问题的三个基本观点:①动力学观点(牛顿运动定律、运动学基本规律);②能量观点(动能定理、机械能守恒定律、功能关系与能量守恒定律);③动量观点(动量定理、动量守恒定律)。
熟练应用三大观点分析和解决综合问题是本专题要达到的目的。
[热点透析]动量与动力学观点的综合应用1.解动力学问题的三个基本观点(1)力的观点:用牛顿运动定律结合运动学知识解题,可处理匀变速运动问题。
(2)能量观点:用动能定理和能量守恒观点解题,可处理非匀变速运动问题。
(3)动量观点:用动量定理和动量守恒观点解题,可处理非匀变速运动问题。
2.力学规律的选用原则(1)如果要列出各物理量在某一时刻的动力学关系式,可用牛顿第二定律。
(2)研究某一物体受到力的持续作用发生运动状态改变时,一般用动量定理(涉及时间的问题)或动能定理(涉及位移的问题)去解决问题。
(3)若研究的对象为一物体系统,且它们之间有相互作用,一般用动量守恒定律和能量守恒定律(机械能守恒定律)去解决问题,但需注意所研究的问题是否满足守恒的条件。
(4)在涉及相对位移问题时则优先考虑能量守恒定律,系统克服摩擦力所做的总功等于系统机械能的减少量,即转变为系统内能的量。
(5)在涉及碰撞、爆炸、打击、绳绷紧等物理现象时,需注意到这些过程一般均隐含有系统机械能与其他形式能量之间的转换,这种问题由于作用时间都极短,因此用动量守恒定律去解决。
(2020·湖北省七市州教科研协作体高三下学期5月联考)如图甲所示,在光滑水平面上有一小车,其质量M=2 kg,车上放置有质量m A=2 kg的木板A,木板上有可视为质点的物体B,其质量m B=4 kg。
已知木板A与小车间的动摩擦因数μ0=0.3。
A 、B 紧靠车厢前壁,A 的左端与小车后壁间的距离为x =2 m 。
现对小车施加水平向右的恒力F ,使小车从静止开始做匀加速直线运动,经过1 s 木板A 与车厢后壁发生碰撞,该过程中A 的速度—时间图象如图乙所示,已知重力加速度大小g =10 m/s 2,最大静摩擦力等于滑动摩擦力。
专题六 力学中三大观点的综合应用

(1)最终A、B、C的共同速度为多大;
(2)求运动过程中A的最小速度; (3)整个过程中A与C及B与C因摩擦所 产生的热量之比为多大? 图3
解析
(1)由动量守恒定律有 mv0+2mv0=5mv1
3 得 v1= v0 5 (2)设经时间 t,A 与 C 恰好速度相等,此时 A 的速度最小. aA=-μg aC=μg
(3)滑块经过传送带作用后做平抛运动 1 2 h2= gt3 2 当两滑块速度相差最大时,它们的水平射程相差最大,当 m1≫m2 时,滑块 m1、m2 碰撞后的速度相差最大,经过传送带后速度相差 也最大 m1-m2 v1= v0=v0=5.0 m/s m1+m2 2m1 v2= v0=2v0=10.0 m/s m1+m2
即学即练1 如图2所示,一水平面上P点左侧光滑,右侧粗糙,
质量为m的劈A在水平面上静止,上表面光滑,A右端与 水平面平滑连接,质量为M的 物块B恰好放在水平面上P点,物块B与水平面间的动摩擦 因数为μ.一质量为m的小球C位于劈A的斜面上,距水平面
的高度为h.小球C从静止开始滑下,然后与B发生正碰(碰
撞时间极短,且无机械能损失).
图2
已知M=2m,求:
(1)小球C与劈A分离时,A的速度; (2)小球C的最后速度和物块B的运动时间.
解析 (1)设小球 C 与劈 A 分离时速度大小为 v0,此时劈 A 速度
大小为 vA 小球 C 运动到劈 A 最低点的过程中,规定向右为正方向,由水平 方向动量守恒、机械能守恒有 mv0-mvA=0 1 2 1 2 mgh= mv0+ mvA 2 2 得 v0= gh,vA= gh,之后 A 向左匀速运动
即学即练2 如图4所示,圆管构成的半圆形轨道竖直固定在水
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图5-3-1(P1--7) 动能、动量、机械能守恒 综合运用动能定理的理解1.动能定理的公式是标量式,v 为物体相对于同一参照系的瞬时速度.2.动能定理的研究对象是单一物体,或可看成单一物体的物体系.3.动能定理适用于物体做直线运动,也适用于物体做曲线运动;适用于恒力做功,也适用于变力做功;力可以是各种性质的力,既可以同时作用,也可以分段作用.只要求出在作用的过程中各力所做功的总和即可.这些正是动能定理的优越性所在.4.若物体运动过程中包含几个不同的过程,应用动能定理时可以分段考虑,也可以将全过程视为一个整体来考虑.【例1】一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图5-3-1,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ.【解析】 设该斜面倾角为α,斜坡长为l ,则物体沿斜面下滑时,重力和摩擦力在斜面上的功分别为:mgh mgl W G ==αsinαμcos 1mgl W f -=物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S 2,则22mgS W f μ-= 对物体在全过程中应用动能定理:ΣW =ΔE k . 所以 mgl sin α-μmgl cos α-μmgS 2=0 得 h -μS 1-μS 2=0.式中S 1为斜面底端与物体初位置间的水平距离.故ShS S h =+=21μ动能定理的应用技巧1.一个物体的动能变化ΔE k 与合外力对物体所做的总功具有等量代换关系.若ΔE k >0,表示物体的动能增加,其增加量等于合外力对物体所做的正功;若ΔE k <0,表示物体的动能减少,其减少量等于合外力对物体所做的负功的绝对值;若ΔE k =0,表示合外力对物体所做的功为0,反之亦然.这种等量代换关系提供了一种计算变力做功的简便方法.2.动能定理中涉及的物理量有F 、s 、m 、v 、W 、E k 等,在处理含有上述物理量的力学问题时,可以考虑使用动能定理.由于只需从力在整个位移内的功和这段位移始、末两状态的动能变化去考察,无需注意其中运动状态变化的细节,又由于动能和功都是标量,无方向性,无论是直线运动还是曲线运动,计算都会特别方便.3.动能定理解题的基本思路(1)选择研究对象,明确它的运动过程.(2)分析研究的受力情况和各个力的做功情况,然后求出合外力的总功. (3)选择初、末状态及参照系.(4)求出初、末状态的动能E k1、E k2.(5)由动能定理列方程及其它必要的方程,进行求解.【例2】如图5-3-2所示,AB 为1/4圆弧轨道,半径为R =0.8m ,BC 是水平轨道,长S =3m ,BC 处的摩擦系数为μ=1/15,今有质量m =1kg 的物体,自A 点从静止起下滑到C 点刚好停止.求物体在轨道AB 段所受的阻力对物体做的功. 【解析】物体在从A 滑到C 的过程中,有重力、AB 段的阻力、BC 段的摩擦力共三个力做功,W G =mgR ,f BC =umg ,由于物体在AB 段受的阻力是变力,做的功不能直接求.根据动能定理可知:W 外=0,所以mgR -umgS -W AB =0即W AB =mgR -umgS =1×10×0.8-1×10×3/15=6J【例3】质量为M 的木块放在水平台面上,台面比水平地面高出h =0.20m ,木块离台的右端L =1.7m.质量为m =0.10M 的子弹以v 0=180m/s 的速度水平射向木块,并以v =90m/s 的速度水平射出,木块落到水平地面时的落地点到台面右端的水平距离为s =1.6m ,求木块与台面间的动摩擦因数为μ.解:本题的物理过程可以分为三个阶段,在其中两个阶段中有机械能损失:子弹射穿木块阶段和木块在台面上滑行阶段.所以本题必须分三个阶段列方程: 子弹射穿木块阶段,对系统用动量守恒,设木块末速度为v 1,mv 0= mv +Mv 1……① 木块在台面上滑行阶段对木块用动能定理,设木块离开台面时的速度为v 2,有:22212121Mv Mv MgL -=μ……②木块离开台面后的平抛阶段,ghv s 22=……③ 由①、②、③可得μ=0.50【点悟】从本题应引起注意的是:凡是有机械能损失的过程,都应该分段处理.机械能(1)定义:机械能是物体动能、重力势能、弹性势能的统称,也可以说成物体动能和势能之总和.(2)说明①机械能是标量,单位为焦耳(J ).②机械能中的势能只包括重力势能和弹性势能,不包括其他各种势能. 机械能守恒定律内容:在只有重力或弹力做功的物体系统内,动能与重力势能可以相互转化,而总的机械能保持不变. 守恒条件:只有重力或弹力做功,只发生动能和势能的转化.分析一个物理过程是不是满足机械能守恒,关键是分析这一过程中有哪些力参与了做功,这一力做功是什么形式的能转化成什么形式的能,如果只是动能和势能的转化,而没有其它形式的能发生转化,则机械能守恒,如果没有力做功,不发生能的转化,机械能当然也不会发生变化. 一、应用机械能守恒定律解题的步骤: 1.根据题意选取研究对象(物体或系统);图5-3-2图5-3-32.分析研究对象在运动过程中的受力情况以及各力做功的情况,判断机械能是否守恒;3.确定运动的始末状态,选取零势能面,并确定研究对象在始、末状态时的机械能;4.根据机械能守恒定律列出方程进行求解注意:列式时,要养成这样的习惯,等式作左边是初状态的机械能而等式右边是末状态的机械能,这样有助于分析的条理性.【例1】如图5-5-1所示,光滑的倾斜轨道与半径为R 的圆形轨道相连接,质量为m 的小球在倾斜轨道上由静止释放,要使小球恰能通过圆形轨道的最高点,小球释放点离圆形轨道最低点多高?通过轨道点最低点时球对轨道压力多大? 【解析】 小球在运动过程中,受到重力和轨道支持力,轨道支持力对小球不做功,只有重力做功,小球机械能守恒.取轨道最低点为零重力势能面.因小球恰能通过圆轨道的最高点C ,说明此时,轨道对小球作用力为零,只有重力提供向心力,根据牛顿第二定律可列Rv m mg c 2= 得gR m Rv m c 2212=在圆轨道最高点小球机械能:mgR mgR E C 221+=在释放点,小球机械能为: mgh E A = 根据机械能守恒定律 A CE E = 列等式:R mg mgR mgh 221+=解得R h 25=同理,小球在最低点机械能 221BB mv E = gR v E E B CB 5==小球在B 点受到轨道支持力F 和重力根据牛顿第二定律,以向上为正,可列mgF Rv mmg F B62==-据牛顿第三定律,小球对轨道压力为6mg .方向竖直向下.【例2】质量为m 的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上.平衡时,弹簧的压缩量为x 0,如图5-5-8所示.物块从钢板正对距离为3 x 0的A 处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动.已知物体质量也为m 时,它们恰能回到O 点,若物块质量为2m ,仍从A 处自由落下,则物块与钢板回到O 点时,还具有向上的速度,求物块向上运动到最高点与O 点的距离. 物块从3x 0位置自由落下,与地球构成的系统机械能守恒.则有200213.mv x mg =(1) v 0为物块与钢板碰撞时的的速度.因为碰撞板短,内力远大于外力,钢板与物块间动量守恒.设v 1为两者碰撞后共同速m v 0=2m v 1 (2)图5-5-1 图5-5-8两者以v l 向下运动恰返回O 点,说明此位置速度为零。
运动过程中机械能守恒。
设接触位置弹性势能为E p ,则212)2(21mgx v m E p =+ (3) 同理2m 物块与m 物块有相同的物理过程碰撞中动量守恒2m v 0=3m v 2 (4) 所不同2m 与钢板碰撞返回O 点速度不为零,设为v 则2022')3(213)3(21v m mgx v m E p +=+ (5)因为两次碰撞时间极短,弹性形变未发生变化E p =E ’p(6)由于2m 物块与钢板过O 点时弹力为零.两者加速度相同为g ,之后钢板被弹簧牵制,则其加速度大于g ,所以与物块分离,物块以v 竖直上抛.上升距离为:gv h 22=(7)由(1)~(6)式解得v 代入(7)解得021x h =【点拨】本题考查了机械能守恒、动量守恒、能量转化的.守恒等多个知识点.是一个多运动过程的问题。
关键问题是分清楚每一个过程.建立过程的物理模型,找到相应解决问题的规律.弹簧类问题,画好位置草图至关重要.动量守恒定律1.动量:物体的质量和速度的乘积叫做动量。
动量是状态量,它与时刻相对应。
描述物体的运动状态。
⑵动量是矢量,它的方向和速度方向相同。
运算遵循平行四边形定则。
⑶动量具有相对性:由于物体的速度与参考系的选取有关,所以物体的动量也与参考系 2.动量守恒定律(1)定律内容及公式:一个系统不受外力或者受外力之和为零,这个系统的总动量保持不变。
即:22112211v m v m v m v m '+'=+ (2)动量守恒定律成立的条件①系统不受外力或者所受外力之和为零;②系统受外力,但外力远小于内力,可以忽略不计;③系统在某一个方向上所受的合外力为零,则该方向上动量守恒。
④全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。
(3)动量守恒定律的表达形式:除了22112211v m v m v m v m '+'=+,即p 1+p 2=p 1/+p 2/外,还有:Δp 1= -Δp 2【例1】如图11所示,C 是放在光滑的水平面上的一块木板,木板的质量为3m ,在木板的上面有两块质量均为m 的小木块A 和B ,它们与木板间的动摩擦因数均为μ。
最初木板静止,A 、B 两木块同时以方向水平向右的初速度V 0和2V 0在木板上滑动,木板足够长, A 、B 始终未滑离木板。
求:(1)木块B 从刚开始运动到与木板C 速度刚好相等的过程中,木块B 所发生的位移;(2)木块A 在整个过程中的最小速度。
解:(1)木块A 先做匀减速直线运动,后做匀加速直线运动;木块B 一直做匀减速直线运动;木板C 做两段加速度不同的匀加速直线运动,直到A 、B 、C 三者的速度相等为止,设为V 1。
对A 、B 、C 三者组成的系统,由动量守恒定律得:100)3(2V m m m mV mV ++=+解得:V 1=0.6V 0对木块B 运用动能定理,有:2021)2(2121V m mV mgs -=-μ 解得)50/(91:20g V s μ=(2)设木块A 在整个过程中的最小速度为V ′,所用时间为t ,由牛顿第二定律: 对木块A :g m mg a μμ==/1, 对木板C :3/23/22g m mg a μμ==,当木块A 与木板C 的速度相等时,木块A 的速度最小,因此有: t g gt V )3/2(0μμ=- 解得)5/(30g V t μ= 木块A 在整个过程中的最小速度为:.5/2010/V t a V V =-=能量守恒定律(1)内容:能量既不会消灭,也不会创生,它只会从一种形式转化为其他形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量保持不变.(2)导致能量守恒定律最后确立的两类重要事实是:确认了永动机的不可能性和发现了各种自然现象之间的相互关系与转化.(3)建立能量转化与守恒定律工作最有成效的三位科学家是:迈尔、焦耳、亥姆霍兹. (4) 能量守恒定律的建立,是人类认识自然的一次重大飞跃,是哲学和自然科学长期发展和进步的结果.它是最普遍、最重要、最可靠的自然规律之一,而且是大自然普遍和谐性的表图11现形式.做功的过程是能量转化的过程,功是能的转化的量度.需要强调的是:功是一种过程量,它和一段位移(一段时间)相对应;而能是一种状态量,它个一个时刻相对应.两者的单位是相同的(都是J ),但不能说功就是能,也不能说“功变成了能”.⑴物体动能的增量由外力做的总功来量度:W 外=ΔE k ,这就是动能定理. ⑵物体重力势能的增量由重力做的功来量度:W G = -ΔE P ,这就是势能定理.【例1】如图5-6-2所示,一根轻弹簧下端固定,竖立在水平面上.其正上方A 位置有一只小球.小球从静止开始下落,在B 位置接触弹簧的上端,在C 位置小球所受弹力大小等于重力,在D 位置小球速度减小到零.小球下降阶段下列说法中正确的是( ) A.在B 位置小球动能最大 B.在C 位置小球动能最大 C.从A →C 位置小球重力势能的减少大于小球动能的增加 D.从A →D 位置小球重力势能的减少等于弹簧弹性势能的增加 【解析】小球动能的增加用合外力做功来量度,A →C 小球受的合力一直向下,对小球做正功,使动能增加;C →D 小球受的合力一直向上,对小球做负功,使动能减小,所以B 正确.从A →C 小球重力势能的减少等于小球动能的增加和弹性势能之和,所以C 正确.A 、D 两位置动能均为零,重力做的正功等于弹力做的负功,所以D 正确.选B 、C 、D .【答案】BCD【例2】如图5-6-4所示,质量为m 的长木板A 静止在光滑水平面上,另两个质量也是m 的铁块B 、C 同时从A 的左右两端滑上A 的上表面,初速度大小分别为v 和2v ,B 、C 与A 间的动摩擦因数均为μ.⑴试分析B 、C 滑上长木板A 后,A 的运动状态如何变化? (2)为使B 、C 不相撞,A 木板至少多长?【解析】(1)B 、C 都相对于A 滑动时,A 所受合力为零,保持静止.这段时间为gv t μ=∆1 B 刚好相对于A 静止时,C 的速度为v ,A 开向左做匀加速运动,由动量守恒可求出A 、B 、C 最终的共同速度为3v v =' 这段加速经历的时间为gv t μ322=∆ 最终A 将以3v v ='做匀速运动(2)全过程系统动能的损失都将转化为系统的内能,而摩擦生热为mgd fd Q μ== 由能量守恒定律列式:()222332122121⎪⎭⎫⎝⎛⋅-+=v m v m mv mgd μ图5-6-2 D A BC 图5-6-4图5-6-6解得:gv d μ372=这就是A 木板应该具有的最小长度.【例3】如图5-6-5所示,质量为M 的木块放在光滑水平面上,现有一质量为m 的子弹以速度v 0射入木块中.设子弹在木块中所受阻力不变,大小为f ,且子弹未射穿木块.若子弹射入木块的深度为D ,则木块向前移动距离是多少?系统损失的机械能是多少?解:以子弹、木块组成系统为研究对象.画出运算草图,如图5-6-6所示.系统水平方向不受外力,故水平方向动量守恒.据动量守恒定律有mv 0= (M+m)v (设v 0方向为正) 解得:mM mv v +=0 子弹打入木块到与木块有相同速度过程中摩擦力做功:对子弹 2022121mv mv fs -=-子① 对木块 221Mv fs =木 ② 由运动草图可S 木=S 子-D ③ 由①②③解得 mM mD s +=木①+②有)木子s s f mv v m M --=-+(21)(21202 fD mv v m M -=-+20221)(21 即220)(2121v m M mv fD +-=)(2)1(121)()(21212020220220m M v m M m mM m M mv m M v m m M mv E K +-+=+-+=++-=∆图5-6-5经典练习题 1. 如图所示, DO 是水平面,AB 是斜面,初速度为v 0的物体从D 点出发沿DBA 滑动到顶点A 时速度刚好为零.如果斜面改为AC,让该物体从D 点出发沿DCA 滑动到A 点且速度刚好为零.已知物体与路面之间的动摩擦因数处处相同且不为零,则物体具有的初速度 ( )A.大于v 0B.等于v 0C.小于v 0D.取决于斜面的倾斜角2. 如图所示,固定斜面倾角为θ,整个斜面分为AB 、BC 两段,AB=2BC 。