基于有限元计算的金属断裂准则的应用与分析

基于有限元计算的金属断裂准则的应用与分析
基于有限元计算的金属断裂准则的应用与分析

第32卷第3期Vo l 32 No 3

锻 压 技 术

FORGING &STAMPING TECHNOLOGY

2007年6月

Jun.2007

基于有限元计算的金属断裂准则的应用与分析

*

胡建军1**,许洪斌1,金 艳2,陈元芳1

(1 重庆工学院材料学院,重庆 400050;2 重庆工学院计算机学院,重庆 400050)

摘要:为获得金属各种断裂行为的有限元分析与实际情况的符合度,论述了金属材料在有限元分析中常见断裂的判断方法。介绍了断裂行为有限元分析关键技术和常见延性断裂准则,并提出一种获得金属断裂准则的方法,以及此方法在断裂行为有限元分析中的成功应用。介绍了断裂行为有限元分析过程中有限元网格的调整和重划分,有限元技术在挤压、金属切削、切断和精冲工艺中断裂行为的成功分析,得出断裂行为有限元分析中的关键因素。关键词:断裂行为;有限元;断裂准则

中图分类号:TG111 91;TG301 文献标识码:A 文章编号:1000 3940(2007)03 0100 04

Application and analysis of metal fracture behavior based on FEM calculation

HU Jian jun 1,XU Hong bin 1,JIN Yan 2,CHEN Yuan fang 1

(1 Depar tment o f M ater ial Science and Eng ineering ,Cho ng qing Institute of T echno lo gy ,Cho ng qing 400050,China;2 Depart ment o f Co mputer Science and Eng ineering ,Chongqing Institute of T echnolog y,Cho ng qing 400050,China)Abstract:In or der to o btain the confor mity betw een F EM analysis and the r eal conditio n of the metal fr actur e behav io r,the general judgement met ho d of metal fracture FEM analy sis w as discussed T he key technolog y of FEM used fo r metal fracture behavio r w as introduced in detail T he g ener al ductility fr act ur e criterion w as discussed and a fracture cr iter ion method was put fo rw ard T he adjustment and re meshing of f inite element gr id fo r met al fracture behavio r and t he successful applicat ion of FEM t echnolog y to metal fracture behavio r during ex trusion,cutt ing and stamping w ere int roduced T he key facto r of F EM used for metal fr act ur e behavior w as acquired Keywords:fracture behav io r;f inite element metho d;fracture cr iterion

*重庆科委自然科学基金资助项目(CSTC2006BB3407,CSTC2005BB3080)

**男,32岁,硕士,讲师

收稿日期:2006 06 13;修订日期:2006 08 25

1 引言

制造业是现代工业的基础,其中金属材料成形占有相当大的比重。在金属成形和加工工艺中,不可避免地出现材料断裂现象。对于拉深、挤压、拉

拔、轧制和锻造等工艺,是通过材料的塑性变形来获得工件最终的形状,材料的断裂是成形过程中需要避免的主要缺陷之一,在设计这些工艺时必须避免。对于通过塑性变形和断裂过程结合来实现工件的成形,例如冲裁、切料、剪切以及切削工艺,断裂往往是不可避免的,必须合理地利用材料产生的断裂,才能实现这些工艺过程

[1]

。现代工业研究方

法主要包括3种:理论分析、试验研究和有限元仿真,这3种方法可以综合利用。有限元技术以其周期短、结果准确、成本低等诸多优点,获得了广大工程技术和研究人员的青睐。本文利用有限元技术

研究材料断裂行为,准确分析金属加工和成形过程的裂纹产生和材料断裂,预测出给定加工工艺最终的产品质量,为设计工艺给出准确评判并为进一步改进工艺指明方向。

2 有限元分析技术中的断裂判断

有限元法分析在预测断裂问题上提供了强有力的工具,在实际应用中,必须针对具体情况来选择适用的断裂判据,主要用到的断裂判据如下。2 1 FLD (变形界限图)

这种判据在以平面应变为主的板料成形分析中应用广泛,不同变形模式下的板厚应变极限不同。在冲压成形中,有各种各样的变形模式,FLD 的实质就是断裂和没有断裂的变形模式的界限,判断某点是否产生断裂,就是判断该点的变形模式是落在哪个区域中。通过软件分析材料的应变,将其放在FLD 中考察,若有点落在断裂区域,则表示该点处产生断裂,反之则未产生断裂。这种方式可以判断材料的断裂,但不能直观显示断裂后材料的具体形貌特征

[2]

2 2 延性断裂准则

金属在加工过程中发生的断裂大多是延性断裂,很少发生脆性断裂。一般认为,金属中的延性断裂

是由空洞(void )的聚结和增长引起的。这些空洞是材料中由于位错堆积、第二相粒子或其他缺陷产生的,在金属塑性变形的作用下,空洞能够长大、直至一定数量的空洞聚结起来形成裂纹。很多学者已根据其研究成果提出了自己的断裂准则[3-5],如表1所示。

表1 常见断裂准则Table 1 General fracture criterion

断裂准则

公式

三向应力准则(Rice and Tracery)

f 0

exp 1 5

m

d =C 1

大变形准则(Freudenthal) f 0

d

=C

2

C ockroft and Latham 准则

f 0

1

d =C 3Atkins 准则

f

1+1/2L 1-c m d =C 4可压缩材料准则(Oyan e )

f

1+A

m

d =C 5

Ayada 准则

f 0

m

d =C 6

塑性准则(Plas tic strain )

=C 7表1中: f 发生断裂时的总塑性应变

m 静水压力

等效应力 1 最大主应力

c 材料常数,取

0 7GPa -1A 材料常数,取0 424表1中的公式可以写为一个通式:

f

f ( ,d

P

)=

C c 。

3 断裂行为有限元分析关键技术

3 1 断裂准则的获取

在金属断裂行为的有限元分析过程中,为了获

得和实际准确相符的预测结果,减少金属断裂的危险,优化金属成形工艺的设计方案,获得合理的断

裂准则是有限元分析的关键性问题之一。图1为相同工艺参数不同断裂准则冲裁工艺有限元模拟的断面结果,相差甚远。这里介绍一种利用冲裁工艺获得断裂准则的方法。研究已经显示,在冲裁工序中,裂纹的产生和材料的断裂会影响到工艺的压力-冲压深度曲线。如图2所示,在整个曲线中,1区为

图1 不同断裂准则分析结果(a)较大断裂准则

(b)较小断裂准则

Fig 1 Analysis result of different fractu re criterions

(a)Bigger fracture criterion

(b)Smaller fracture criterion

弹性变形阶段,2区为弹塑性变形阶段,3区为损伤开始出现的弹塑性阶段,4区为裂纹产生到整个冲裁工艺完成阶段。其中3区和4区的结合部为裂纹开始产生的地方。对一定材料利用预设断裂准则值进行模拟仿真,将有限元分析裂纹出现的冲压深度和试验获得曲线上裂纹开始出现的冲压深度相比较,可以判断断裂准则的正确与否。

图2 冲裁试验和模拟分析裂纹产生比较

1 弹性变形阶段

2 弹塑性变形阶段

3 损伤开始弹塑性阶段

4 断裂阶段

Fig 2 Contrast of blanking test an d s imulated analys

is fracture 1 Elastic deform ation stage 2 Elastic an d plastic deformation stage 3 Fractur starting at th e Elastic and plastic deformation s tage

4 Fractu ring stage

设U e 为实验曲线中裂纹产生时的冲压深度,U s 为模拟仿真获得裂纹产生时的冲压深度。其相对误差为: =

U e -U s

U e

,当 时,即认为符合有限元分析的参数要求,其中 为用户自定的极小值。图3为整个断裂准则获得的流程。

图3 断裂准则计算流程

Fig 3 Calcu lative flow of fracture criterion

法国学者Ribaha H ambli 利用获得的断裂准则对不同间隙冲裁工艺零件的塌角深度、光亮带、剪

101第3期胡建军等:基于有限元计算的金属断裂准则的应用与分析

裂带和毛刺深度进行有限元分析和试验研究进行对比,情况非常符合。图4为其中不同间隙冲裁工艺中,光亮带与间隙的关系曲线

[6,7]

图4 冲裁间隙-光亮带高度曲线

Fig 4 C urve of blankin g clearan ce and b right area height

3 2 有限元网格的调整和重划分

在金属断裂行为的有限元分析过程中,由于连续体出现了非连续的裂纹,为了使大变形模拟继续进行,必须对网格进行调整,包括网格的全局调整、局部调整、单元的删除、单元的分裂和单元的分离。当材料损伤达到断裂准则时,将达到断裂准则的单元删除,取其相邻单元成为新的单元。或者将其出现裂纹的部分生成新的节点和单元,这些单元和节点在后面的计算中自动与母体分离。

在塑性成形模拟中,经常遇到塑性变形区内材料发生较大应变,有限元网格会产生严重畸变,致使模拟结果失真或模拟过程终止。另外,工件和模具接触表面的相对速度有时很大,有时会发生相互嵌入的不正常现象。为了解决上述问题,计算过程需要暂时停止,进行网格重划分。在冲裁加工模拟中,材料断裂是靠删除单元来实现的,当模型中的一些单元被删除后,网格也需要重新调整。网格重新划分要通过三步来实现:(1)抽取边界,根据前一步材料变形的结果,重新定义边界;(2)重新划分网格,这与最初划分网格的过程相同;(3)将旧网格在上一时间步的计算信息映射到同一位置的新网格上[7]。

4 金属断裂行为的分析

4 1 塑性成形工艺中裂纹的产生

在塑性成形工艺中,如挤压和锻造等,裂纹是主要缺陷之一。图5是挤压工艺有限元分析成功预测的人字型裂纹,这是由于工艺摩擦力太大,材料内部受轴向拉应力作用的结果。4 2 切削加工中的材料断裂

在金属切削工艺中,是利用金属的断裂获得最终产品,材料的韧性、刀具进给和速度等都直接影响切

削的质量。图6为金属切削工艺的有限元数值仿真。

4 3 切断和冲裁工艺中的材料断裂

冲裁是涉及材料弹延性变形和断裂的剪切工艺,其不仅使金属产生塑性变形,而且产生金属的断裂分离。不同的工艺参数如间隙、模具圆角,压边圈位置和形状会获得不同的断面质量和裂纹扩展方式,这些研究对冲裁尤其是精密冲裁具有重要的理论意义和实际应用价值。图7和8分别为切断和精密冲裁工艺的数值模拟仿真。

5 结论

在金属断裂行为的预测方面,有限元技术可以对其进行模拟仿真,仿真过程能否顺利进行,对断裂行为的预测准确与否,取决于很多因素,其中断裂准则的准确获得以及有限元仿真过程断裂行为网格的调整和重新划分技术,成为工艺顺利进行和结果准确的关键。应用表明,合理利用有限元模拟仿

102锻 压 技 术 第32卷

第32卷第3期Vo l 32 No 3

锻 压 技 术

FORGING&STAMPING TECHNOLOGY

2007年6月

Jun.2007

A l 3%Si半固态SIM A过程的微观组织演变

李东成1*,于思荣2,孙国滨3,张永进2

(1 吉林大学辊锻工艺研究所,吉林长春 130025;2 吉林大学材料科学与工程学院,吉林长春 130025;

3 吉林大学辊锻件厂,吉林长春 130025)

摘要:对Al 3%Si的SIM A(Strain Induced M elt A ctiv ation-应变诱发熔化激活)半固态成形方法的组织演变过程进行了研究,以便为铝合金部件的SIM A半固态成形提供理论指导。研究结果表明:经压缩变形后的A l 3%Si合金在保温过程中的组织经过形状大小不同的多边形晶粒、均匀的粒状组织、球化组织最后演变为粗化颗粒。压缩形变量越大,半固态等温保温后,晶粒平均等积圆直径越小,球化程度越高。但是压缩形变量超过50%后,晶粒等积圆直径变化不大。随着半固态等温保温时间的延长,晶粒平均等积圆直径逐渐增大,圆度呈增加趋势,保温60到90min时,圆度基本趋于常数。

关键词:半固态成形;应变诱发熔化激活;组织演变;A l 3%Si

中图分类号:TG304 文献标识码:A 文章编号:1000 3940(2007)03 0103 04

Microstructure evolution of SIMA semi solid state formed Al 3%Si

LI Dong cheng1,YU Si rong2,SUN Guo bin3,ZHA NG Yong jin2

(1 Ro ll Fo rg ing Institute,Jilin U niver sity,Chang chun 130025,China;2 Schoo l o f M aterial Science and

Engineer ing,Jilin U niv er sity,Chang chun 130025,China; 3 Ro ll Fo rg ing W or k,Jilin U niv ersity,

Changchun 130025,China)

Abstract:T he microstr ucture ev olution of SI M A(Strain Induced M elt A ctiv ation)semi solid state for ming method fo r Al 3%Si was studied so as to pro vide a t heo retical instr uction for pro cessing the aluminum a lloy components by SIM A semi so lid state for ming process Aft er plast ic defor mation,the m icrostr uctur e evo lv ed into co arse gr ains fro m po lyg on

g ra in,uniformed g ranule and globular gr ains T he research results show that the mo re amount of defo rmatio n is,the

smaller aver ag ed diameter and t he higher r oundness ar e after heat ho lding But w hen the ration of plastic defo rmatio n is mo re than50%,the diamet er could hardly change T he lo ng er the time o f heat ho lding is,the bigg er the diameter of t he g rain and the higher ro undness ar e T he ro undness w ill almo st r ema in the same w hen the time of heat holding is be tw een60min and90min

Keywords:sem i solid state fo rming;stra in induced melt activatio n;micro structur e evolution;A l 3%Si

1 引言

金属半固态的研究始于20世纪70年代美国麻

*男,43岁,硕士,副教授

收稿日期:2006 12 30;修订日期:2007 02 05省理工学院的David Spencer[1]的研究。金属半固态加工与传统金属材料加工相比主要具有以下优点: (1)材料在半固态成形过程中变形抗力小,可以以较小的设备加工较大型的零件。成形时材料对金属模具和设备的热冲击小,有利于改善模具工作条件,

真技术对金属断裂行为进行分析,可以准确预测金属成形缺陷,优化工艺路线和工艺参数。

参考文献:

[1] 方刚,雷丽萍,曾攀.金属塑性成形过程延性断裂的准则及

其数值模拟[J].机械工程学报,2002,12(38):21-25. [2] 崔永杰.有限元分析技术中的断裂判断[J].金属成形工

艺,2002,(5):21-26.

[3] Rice J R,T racey D M.On th e ductile enlargem ent of voids on

triaxial s tress[J].Journal of M echanics and Phys ics of Sol

ids,1969,(17):201-206.[4] Cockroft M G.L atham D J.A sim ple criterion for fractur e

for ductile fractur e of metals[R].National En gineering La

boratory,Report No.240,1966.

[5] Atkins A G.Possible explanation for u nex pected departures

in hydrostatic tens ion fractu re s train relations[J].M etal S ci

ence,1981,2(15):81-83.

[6] Ridha Hamblia,M arian Resz ka.Fracture criteria identication

usin g an inverse technique m ethod and b lan king ex perim ent

[J].International J ou rnal of M echanical S cien ces,2002,44

(7):1349-1361.

[7] 方刚,曾攀.金属板料冲裁过程的有限元模拟[J].金属学

报,2001,6(37):654-657.

CATIA有限元分析计算实例-完整版

CATIA有限元分析计算实例 CATIA有限元分析计算实例 11.1例题1 受扭矩作用的圆筒 11.1-1划分四面体网格的计算 (1)进入【零部件设计】工作台 启动CATIA软件。单击【开始】→【机械设计】→【零部件设计】选项,如图11-1所示,进入【零部件设计】工作台。 图11-1单击【开始】→【机械设计】→【零部件设计】选项 单击后弹出【新建零部件】对话框,如图11-2所示。在对话框内输入新的零件名称,在本例题中,使用默认的零件名称【Part1】。点击对话框内的【确定】按钮,关闭对话框,进入【零部件设计】工作台。 (2)进入【草图绘制器】工作台 在左边的模型树中单击选中【xy平面】, 如图11-3所示。单击【草图编辑器】工具栏内的【草图】按钮,如图11-4所示。这时进入【草图绘制器】工作台。 图11-2【新建零部件】对话框

图11-3单击选中【xy平面】 (3)绘制两个同心圆草图 点击【轮廓】工具栏内的【圆】按钮,如图11-5所示。在原点点击一点,作为圆草图的圆心位置,然后移动鼠标,绘制一个圆。用同样分方法再绘制一个同心圆,如图11-6所示。 图11-4【草图编辑器】工具栏 图11-5【轮廓】工具栏 下面标注圆的尺寸。点击【约束】工具栏内的【约束】按钮,如图11-7所示。点击选择圆,就标注出圆的直径尺寸。用同样分方法标注另外一个圆的直径,如图11-8所示。 图11-6两个同心圆草图 图11-7【约束】工具栏 双击一个尺寸线,弹出【约束定义】对话框,如图11-9所示。在【直径】数值栏内输入100mm,点击对话框内的【确定】按钮,关闭对话框,同时圆的直径尺寸被修改为100mm。用同样的方法修改第二个圆的直径尺寸为50mm。修改尺寸后的圆如图11-10所示。

有限元分析方法和材料断裂准则

一、有限元模拟方法 金属切削数值模拟常用到两种方法,欧拉方法和拉格朗日方法。欧拉方法适合在一个可以控制的体积内描述流体变形,这种方法的有限元网格描述的是空间域的,覆盖了可以控制的体积。在金属切削过程中,切屑形状的形成过程不是固定的,采用欧拉方法要不断的调整网格来修改边界条件,因此用欧拉方法进行动态的切削过程模拟比较困难。欧拉方法适用于切削过程的稳态分析(即“Euler方法的模拟是在切削达到稳定状态后进行的”[2]),仿真分析之前要通过实验的方法给定切屑的几何形状和剪切角[1]。 而拉格朗日方法是描述固体的方法,有限元网格由材料单元组成,这些网格依附在材料上并且准确的描述了分析物体的几何形状,它们随着加工过程的变化而变化。这种方法在描述材料的无约束流动时是很方便的,有限元网格精确的描述了材料的变形情况。实际金属切削加工仿真中广泛采用的拉格朗日方法,它可以模拟从初始切削一直到稳态的过程,能够预测切屑的形状和工件的残余应力等参数[2]。但是用这种方法预定义分离准则和切屑分离线来实现切屑和工件的分离,当物质发生大变形时常常使网格纠缠,轻则严重影响了单元近似精度,重则使计算中止或者引起严重的局部变形[1]。 为了克服欧拉描述和拉格朗日描述各自的缺点,Noh和Hirt在研究有限差分法时提出了ALE(Arbitrary Lagrange-Euler)描述,后来又被Hughes,liu和Belytschko等人引入到有限元中来。其基本思想是:计算网格不再固定,也不依附于流体质点,而是可以相对于坐标系做任意运动。由于这种描述既包含Lagrange的观点,可应用于带自由液面的流动,也包括了Euler观点,克服了纯Lagrange 方法常见的网格畸变不如意之处。自20世纪80年代中期以来,ALE描述己被广泛用来研究带自由液面的流体晃动问题、固体材料的大变形问题、流固祸合问题等等。金属的高速切削过程是一个大变形、高应变率的热力祸合过程,正适合采用ALE方法。 采用ALE方法进行高速切削仿真克服了拉格朗日方法和欧拉方法需要预先定义分离线、切屑和工件分离准则,假定切屑形状等缺点,避免了网格畸变以及网格再划分等问题,使切屑和工件保持良好的接触,使计算易于收敛[1][4]。 二、材料断裂准则 在金属切削成形有限元模拟中提出了多种切屑分离准则,这些准则可以分为两种类型:物理准则和几何准则。 优点: 几何分离准则需要预定义加工路径,在加工路径上判断刀尖与刀尖前单元节点的距离变化来判断分离与否。当两点的距离小于某个临界值时,刀尖前单元的节点被分成两个,其中一个节点沿前刀面向上移动形成切屑,另一个保留在加工表面上形成己加工表面[1][2]。。 物理分离准则是基于刀尖前单元节点的应力、应变及应变能等物理量定义分离条件,当单元中的该物理量的值超过给定材料的对应值时,单元节点就会分离[2]。(物理标准主要是基于制定的一些物理量的值是否达到临界值而进行判断的,主要有基于等效塑性应变准则、基于应变能密度准则、断裂应力准则等[5])。 Carroll和Strenkowski使用了等效塑性应变作为物理分离准则的标准,在一些有限元软件中该标准的演化得到了应用,ABAQUS/Explicit中的剪切失效准则(shear failure)就是这样一种物理准则,它根据单元积分点处的等效塑性应变值是否到达预设值来判断材料是否失效[1]。 缺点:

matlab有限元分析实例

MATLAB: MATLAB是美国MathWorks公司出品的商业数学软件,用于数据分析、无线通信、深度学习、图像处理与计算机视觉、信号处理、量化金融与风险管理、机器人,控制系统等领域。 MATLAB是matrix&laboratory两个词的组合,意为矩阵工厂(矩阵实验室),软件主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式。 MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等。MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++,JAVA的支持。 MATLAB有限元分析与应用:

《MATLAB有限元分析与应用》是2004年4月清华大学出版社出版的图书,作者是卡坦,译者是韩来彬。 内容简介: 《MATLAB有限元分析与应用》特别强调对MATLAB的交互应用,书中的每个示例都以交互的方式求解,使读者很容易就能把MATLAB用于有限分析和应用。另外,《MATLAB有限元分析与应用》还提供了大量免费资源。 《MATLAB有限元分析与应用》采用当今在工程和工程教育方面非常流行的数学软件MATLAB来进行有限元的分析和应用。《MATLAB有限元分析与应用》由简单到复杂,循序渐进地介绍了各种有限元及其分析与应用方法。书中提供了大量取自机械工程、土木工程、航空航天工程和材料科学的示例和习题,具有很高的工程应用价值。

有限元法的基本思想及计算 步骤

有限元法的基本思想及计算步骤 有限元法是把要分析的连续体假想地分割成有限个单元所组成的组合体,简称离散化。这些单元仅在顶角处相互联接,称这些联接点为结点。离散化的组合体与真实弹性体的区别在于:组合体中单元与单元之间的联接除了结点之外再无任何关联。但是这种联接要满足变形协调条件,即不能出现裂缝,也不允许发生重叠。显然,单元之间只能通过结点来传递内力。通过结点来传递的内力称为结点力,作用在结点上的荷载称为结点荷载。当连续体受到外力作用发生变形时,组成它的各个单元也将发生变形,因而各个结点要产生不同程度的位移,这种位移称为结点位移。在有限元中,常以结点位移作为基本未知量。并对每个单元根据分块近似的思想,假设一个简单的函数近似地表示单元内位移的分布规律,再利用力学理论中的变分原理或其他方法,建立结点力与位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程,从而求解结点的位移分量。然后利用插值函数确定单元集合体上的场函数。显然,如果单元满足问题的收敛性要求,那么随着缩小单元的尺寸,增加求解区域内单元的数目,解的近似程度将不断改进,近似解最终将收敛于精确解。 用有限元法求解问题的计算步骤比较繁多,其中最主要的计算步骤为: 1)连续体离散化。首先,应根据连续体的形状选择最能完满地描述连续体形状的单元。常见的单元有:杆单元,梁单元,三角形单元,矩形单元,四边形单元,曲边四边形单元,四面体单元,六面体单元以及曲面六面体单元等等。其次,进行单元划分,单元划分完毕后,要将全部单元和结点按一定顺序编号,每个单元所受的荷载均按静力等效原理移植到结点上,并在位移受约束的结点上根据实际情况设置约束条件。 2)单元分析。所谓单元分析,就是建立各个单元的结点位移和结点力之间的关系式。现以三角形单元为例说明单元分析的过程。如图1所示,三角形有三个结点i,j,m。在平面问题中每个结点有两个位移分量u,v和两个结点力分量F x,F y。三个结点共六个结点位移分量可用列

金属切削过程韧性断裂的有限元仿真现状

金属切削过程韧性断裂的有限元仿真现状 工件材料的断裂准则是金属切削加工有限元仿真的关键技术。分析了国内外金属切削加工有限元仿真的研究现状,并进一步对不同工件材料的断裂仿真技术的特点、适用条件进行了比较分析,指出了现阶段工件材料断裂准则仿真技术尚存在的问题,探讨了切削过程有限元仿真技术的发展趋势,为切削过程有限元建模发展提供一定的参考。 标签:金属切削:韧性断裂;有限元模型 引言 金属切削加工在21世纪依然是机械制造业的主要加工方法。它在保证高效率和低成本的基础上,通过刀具和工件的相互作用,去除工件表面的多余材料,来获得所需工件形状、加工精度和表面质量要求。而在在金属切削加工工艺中,不可避免地出现材料断裂现象,所以必须合理地利用材料产生的断裂,才能实现切削工艺过程[1]。 现代工业研究方法主要包括三种:理论分析、试验研究和有限元仿真,这三种方法可以综合利用。有限元技术以其周期短、结果准确、成本低等诸多优点,获得了广大工程技术和研究人员的青睐。基于有限元仿真技术强大的数值分析能力,它已成为定量研究金属切削加工过程的有效手段,该技术对减少制造成本,缩短产品制造周期和提高产品质量具有重要意义。 1 应用背景 19世纪中期,人们开始对金属切削过程的研究,到现在已经有一百多年历史。由于金属切削本身具有非常复杂的机理,对其研究一直是国内外研究的重点和难点。过去通常采用实验法,它具有跟踪观测困难、观测设备昂贵、实验周期长、人力消耗大、综合成本高等不利因素。 传统的切削过程研究中,试验法是最主要的研究方法,即根据试验结果得出经验公式,从而预报切削力。日益增长的时间设备材料和人力成本的消耗促使人们寻找更通用、更有效的研究方法。而有限元法在分析弹塑性大变形问题,包括分析需要考虑与温度相关的材料性能参数和具有很大的应变速率的问题方面有着杰出的表现。 在金属断裂行为的预测方面,有限元技术可以对其进行模拟仿真,仿真过程能否顺利进行,对断裂行为的预测准确与否,取决于很多因素,其中断裂准则的准确获得以及有限元仿真过程断裂行为网格的调整和重新划分技术,成为工艺顺利进行和结果准确的关键。应用表明,合理利用有限元模拟仿真技术对金属断裂行为进行分析,可以准确预测金属成形缺陷,优化工艺路线和工艺参数[2]。

Ansys有限元分析实例[教学]

Ansys有限元分析实例[教学] 有限元分析案例:打点喷枪模组(用于手机平板电脑等电子元件粘接),该产品主要是使用压缩空气推动模组内的顶针作高频上下往复运动,从而将高粘度的胶水从喷嘴中打出(喷嘴尺寸,0.007”)。顶针是这个产品中的核心零件,设计使用材料是:AISI 4140 最高工作频率是160HZ(一个周期中3ms开3ms关),压缩空气压力3-8bar, 直接作用在顶针活塞面上,用Ansys仿真模拟分析零件的强度是否符合要求。 1. 零件外形设计图:

2. 简化模型特征后在Ansys14.0 中完成有限元几何模型创建:

3. 选择有限元实体单元并设定,单元类型是SOILD185,由于几何建模时使用的长度单位是mm, Ansys采用单位是长度:mm 压强: 3Mpa 密度:Ton/M。根据题目中的材料特性设置该计算模型使用的材料属性:杨氏模量 2.1E5; 泊松比:0.29; 4. 几何模型进行切割分成可以进行六面体网格划分的规则几何形状后对各个实体进行六面体网格划分,网格结果: 5. 依据使用工况条件要求对有限元单元元素施加约束和作用载荷:

说明: 约束在顶针底端球面位移全约束; 分别模拟当滑块顶断面分别以8Bar,5Bar,4Bar和3Bar时分析顶针的内应力分布,根据计算结果确定该产品允许最大工作压力范围。 6. 分析结果及讨论: 当压缩空气压力是8Bar时: 当压缩空气压力是5Bar时:

当压缩空气压力是4Bar时: 结论: 通过比较在不同压力载荷下最大内应力的变化发现,顶针工作在8Bar时最大应力达到250Mpa,考虑到零件是在160HZ高频率在做往返运动,疲劳寿命要求50百万次以上,因此采用允许其最大工作压力在5Mpa,此时内应力为156Mpa,按线性累积损伤理论[3 ]进行疲劳寿命L-N疲劳计算,进一部验证产品的设计寿命和可靠性。

有限元分析与应用详细例题

《有限元分析与应用》详细例题 试题1:图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比 较: 1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算; 2)分别采用不同数量的三节点常应变单元计算; 3)当选常应变三角单元时,分别采用不同划分方案计算。 一.问题描述及数学建模 无限长的刚性地基上的三角形大坝受齐顶的水压作用可看作一个平面问题,简化为平面三角形受力问题,把无限长的地基看着平面三角形的底边受固定支座约束的作用,受力面的受力简化为受均布载荷的作用。 二.建模及计算过程 1. 分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算 下面简述三节点常应变单元有限元建模过程(其他类型的建模过程类似): 1.1进入ANSYS 【开始】→【程序】→ANSYS 10.0→ANSYS Product Launcher →change the working directory →Job Name: shiti1→Run 1.2设置计算类型 ANSYS Main Menu: Preferences →select Structural →OK 1.3选择单元类型 单元是三节点常应变单元,可以用4节点退化表示。 ANSYS Main Menu: Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad 4 node 42 →OK (back to Element Types window)→Options… →select K3: Plane Strain→OK→Close (the Element Type window) 1.4定义材料参数

solidworks进行有限元分析的一般步骤

1.软件形式: ㈠. SolidWorks的内置形式: ◆COSMOSXpress——只有对一些具有简单载荷和支撑类型的零件的静态分析。 ㈡. SolidWorks的插件形式: ◆COSMOSWorks Designer——对零件或装配体的静态分析。 ◆COSMOSWorks Professional——对零件或装配体的静态、热传导、扭曲、频率、掉落测试、优化、疲劳分析。 ◆COSMOSWorks Advanced Professional——在COSMOSWorks Professional的所有功能上增加了非线性和高级动力学分析。 ㈢. 单独发行形式: ◆COSMOS DesignSTAR——功能与COSMOSWorks Advanced Professional相同。 2.使用FEA的一般步骤: FEA=Finite Element Analysis——是一种工程数值分析工具,但不是唯一的数值分析工具!其它的数值分析工具还有:有限差分法、边界元法、有限体积法… ①建立数学模型——有时,需要修改CAD几何模型以满足网格划分的需要, (即从CAD几何体→FEA几何体),共有下列三法: ▲特征消隐:指合并和消除在分析中认为不重要的几何特征,如外圆角、圆边、标志等。▲理想化:理想化是更具有积极意义的工作,如将一个薄壁模型用一个平面来代理(注:如果选中了“使用中面的壳网格”做为“网格类型”,COSMOSWorks会自动地创建曲面几何体)。▲清除:因为用于划分网格的几何模型必须满足比实体模型更高的要求。如模型中的细长面、多重实体、移动实体及其它质量问题会造成网格划分的困难甚至无法划分网格—这时我们可以使用CAD质量检查工具(即SW菜单: Tools→Check…)来检验问题所在,另外含有非常短的边或面、小的特征也必须清除掉(小特征是指其特征尺寸相对于整个模型尺寸非常小!但如果分析的目的是找出圆角附近的应力分布,那么此时非常小的内部圆角应该被保留)。 ②建立有限元模型——即FEA的预处理部分,包括五个步骤: ▲选择网格种类及定义分析类型(共有静态、热传导、频率…等八种类别)——这时将产生一个FEA算例,左侧浏览器中之算例名称之后的括号里是配置名称; ▲添加材料属性: 材料属性通常从材料库中选择,它不并考虑缺陷和表面条件等因素,与几何模型相比,它有更多的不确定性。 ◇右键单击“实体文件夹”并选择“应用材料到所有”——所有零部件将被赋予相同的材料属性。 ◇右键单击“实体文件夹”下的某个具体零件文件夹并选择“应用材料到所有实体”——某个零件的所有实体(多实体)将被赋予指定的材料属性。 ◇右键单击“实体文件夹”下具体零件的某个“Body”并选择“应用材料到实体”——只有

裂纹扩展的扩展有限元(xfem)模拟实例详解

基于ABAQUS 扩展有限元的裂纹模拟 化工过程机械622080706010 李建 1 引言 1.1 ABAQUS 断裂力学问题模拟方法 在abaqus中求解断裂问题有两种方法(途径):一种是基于经典断裂力学的模型;一种是基于损伤力学的模型。 断裂力学模型就是基于线弹性断裂力学及其基础上发展的弹塑性断裂力学等。如果不考虑裂纹的扩展,abaqus可采用seam型裂纹来分析(也可以不建seam,如notch型裂纹),这就是基于断裂力学的方法。这种方法可以计算裂纹的应力强度因子,J积分及T-应力等。 损伤力学模型是指基于损伤力学发展而来的方法,单元在达到失效的条件后,刚度不断折减,并可能达到完全失效,最后形成断裂带。这两个模型是为解决不同的问题而提出来的,当然他们所处理的问题也有交叉的地方。 1.2 ABAQUS 裂纹扩展数值模拟方法 考虑模拟裂纹扩展,目前abaqus有两种技术:一种是基于debond的技术(包括VCCT);一种是基于cohesive技术。 debond即节点松绑,或者称为节点释放,当满足一定得释放条件后(COD 等,目前abaqus提供了5种断裂准则),节点释放即裂纹扩展,采用这种方法时也可以计算出围线积分。 cohesive有人把它译为粘聚区模型,或带屈曲模型,多用于模拟film、裂纹扩展及复合材料层间开裂等。cohesive模型属于损伤力学模型,最先由Barenblatt 引入,使用拉伸-张开法则(traction-separation law)来模拟原子晶格的减聚力。这样就避免了裂纹尖端的奇异性。Cohesive 模型与有限元方法结合首先被用于混凝土计算和模拟,后来也被引入金属及复合材料。Cohesive界面单元要服从cohesive 分离法则,法则范围可包括粘塑性、粘弹性、破裂、纤维断裂、动力学失效及循环载荷失效等行为。 此外,从abaqus6.9版本开始还引入了扩展有限元法(XFEM),它既可以模拟静态裂纹,计算应力强度因子和J积分等参量,也可以模拟裂纹的开裂过程。被誉为最具有前途的裂纹数值模拟方法。本文将利用abaqus6.9版本中的扩展有限元法功能模拟常见的Ⅰ型裂纹的扩展。 2 Ⅰ型裂纹的扩展有限元分析 本文针对断裂力学中的平面Ⅰ型裂纹扩展问题用abaqus中的扩展有限元方法进行数值模拟,获得了裂纹扩展的整个过程,裂尖单元的应力变化曲线,以及裂纹尖端塑性区的形状。在此基础上绘制裂纹扩展的能量历史曲线变化趋势图。

有限元分析软件比较分析

有限元分析软件 有限元分析是对于结构力学分析迅速发展起来的一种现代计算方法。它是50 年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。 有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC 四个比较知名比较大的公司,其中ADINA、ABAQUS 在非线性分析方面有较强的能力目前是业内最认可的两款有限元分析软件,ANSYS、MSC 进入中国比较早所以在国内知名度高应用广泛。目前在多物理场耦合方面几大公司都可以做到结构、流体、热的耦合分析,但是除ADINA 以外其它三个必须与别的软件搭配进行迭代分析,唯一能做到真正流固耦合的软件只有ADINA。ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下。ABAQUS专注结构分析目前没有流体模块。MSC是比较老的一款软件目前更新速度比较慢。ADINA是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。 结构分析能力排名:ABAQUS、ADINA、MSC、ANSYS 流体分析能力排名:ANSYS、ADINA、MSC、ABAQUS 耦合分析能力排名:ADINA、ANSYS、MSC、ABAQUS 性价比排名:最好的是ADINA,其次ABAQUS、再次ANSYS、最后MSC ABAQUS 软件与ANSYS 软件的对比分析: 1.在世界范围内的知名度:两种软件同为国际知名的有限元分析软件,在世界范围内具有各自广泛的用户群。ANSYS 软件在致力于线性分析的用户中具有很好的声誉,它在计算机资源的利用,用户界面开发等方面也做出了较大的贡献。ABAQUS软件则致力于更复杂和深入的工程问题,其强大的非线性分析功能在设计和研究的高端用户群中得到了广泛的认可。由于ANSYS 产品进入中国市场早于ABAQUS,并且在五年前ANSYS 的界面是当时最好的界面之一,所以在中国,ANSYS 软件在用户数量和市场推广度方面要高于ABAQUS。但随着ABAQUS北京办事处的成立,ABAQUS软件的用户数目和市场占有率正在大幅度和稳步提高,并可望在今后的几年内赶上和超过ANSYS。 2.应用领域:ANSYS 软件注重应用领域的拓展,目前已覆盖流体、电磁场和多物理场耦合等十分广泛的研究领域。ABAQUS 则集中于结构力学和相关领域研究,致力于解决该领域的深层次实际问题。 3.性价比:ANSYS 软件由于价格政策灵活,具有多种销售方案,在解决常规的

ANSYS 有限元分析基本流程

第一章实体建模 第一节基本知识 建模在ANSYS系统中包括广义与狭义两层含义,广义模型包括实体模型和在载荷与边界条件下的有限元模型,狭义则仅仅指建立的实体模型与有限元模型。建模的最终目的是获得正确的有限元网格模型,保证网格具有合理的单元形状,单元大小密度分布合理,以便施加边界条件和载荷,保证变形后仍具有合理的单元形状,场量分布描述清晰等。 一、实体造型简介 1.建立实体模型的两种途径 ①利用ANSYS自带的实体建模功能创建实体建模: ②利用ANSYS与其他软件接口导入其他二维或三维软件所建立的实体模型。 2.实体建模的三种方式 (1)自底向上的实体建模 由建立最低图元对象的点到最高图元对象的体,即先定义实体各顶点的关键点,再通过关键点连成线,然后由线组合成面,最后由面组合成体。 (2)自顶向下的实体建模 直接建立最高图元对象,其对应的较低图元面、线和关键点同时被创建。 (3)混合法自底向上和自顶向下的实体建模 可根据个人习惯采用混合法建模,但应该考虑要获得什么样的有限元模型,即在网格划分时采用自由网格划分或映射网格划分。自由网格划分时,实体模型的建立比较1e单,只要所有的面或体能接合成一体就可以:映射网格划分时,平面结构一定要四边形或三边形的面相接而成。 二、ANSYS的坐标系 ANSYS为用户提供了以下几种坐标系,每种都有其特定的用途。 ①全局坐标系与局部坐标系:用于定位几何对象(如节点、关键点等)的空间位置。 ②显示坐标系:定义了列出或显示几何对象的系统。 ③节点坐标系:定义每个节点的自由度方向和节点结果数据的方向。 ④单元坐标系:确定材料特性主轴和单元结果数据的方向。 1.全局坐标系 全局坐标系和局部坐标系是用来定位几何体。在默认状态下,建模操作时使用的坐标系是全局坐标系即笛卡尔坐标系。总体坐标系是一个绝对的参考系。ANSYS提供了4种全局坐标系:笛卡尔坐标系、柱坐标系、球坐标系、Y-柱坐标系。4种全局坐标系有相同的原点,且遵循右手定则,它们的坐标系识别号分别为:0是笛卡尔坐标系(cartesian),1是柱坐标系 (Cyliadrical),2是球坐标系(Spherical),5是Y-柱坐标系(Y-aylindrical),如图2-1所示。

基于有限元计算的金属断裂准则的应用与分析

第32卷第3期Vo l 32 No 3 锻 压 技 术 FORGING &STAMPING TECHNOLOGY 2007年6月 Jun.2007 基于有限元计算的金属断裂准则的应用与分析 * 胡建军1**,许洪斌1,金 艳2,陈元芳1 (1 重庆工学院材料学院,重庆 400050;2 重庆工学院计算机学院,重庆 400050) 摘要:为获得金属各种断裂行为的有限元分析与实际情况的符合度,论述了金属材料在有限元分析中常见断裂的判断方法。介绍了断裂行为有限元分析关键技术和常见延性断裂准则,并提出一种获得金属断裂准则的方法,以及此方法在断裂行为有限元分析中的成功应用。介绍了断裂行为有限元分析过程中有限元网格的调整和重划分,有限元技术在挤压、金属切削、切断和精冲工艺中断裂行为的成功分析,得出断裂行为有限元分析中的关键因素。关键词:断裂行为;有限元;断裂准则 中图分类号:TG111 91;TG301 文献标识码:A 文章编号:1000 3940(2007)03 0100 04 Application and analysis of metal fracture behavior based on FEM calculation HU Jian jun 1,XU Hong bin 1,JIN Yan 2,CHEN Yuan fang 1 (1 Depar tment o f M ater ial Science and Eng ineering ,Cho ng qing Institute of T echno lo gy ,Cho ng qing 400050,China;2 Depart ment o f Co mputer Science and Eng ineering ,Chongqing Institute of T echnolog y,Cho ng qing 400050,China)Abstract:In or der to o btain the confor mity betw een F EM analysis and the r eal conditio n of the metal fr actur e behav io r,the general judgement met ho d of metal fracture FEM analy sis w as discussed T he key technolog y of FEM used fo r metal fracture behavio r w as introduced in detail T he g ener al ductility fr act ur e criterion w as discussed and a fracture cr iter ion method was put fo rw ard T he adjustment and re meshing of f inite element gr id fo r met al fracture behavio r and t he successful applicat ion of FEM t echnolog y to metal fracture behavio r during ex trusion,cutt ing and stamping w ere int roduced T he key facto r of F EM used for metal fr act ur e behavior w as acquired Keywords:fracture behav io r;f inite element metho d;fracture cr iterion *重庆科委自然科学基金资助项目(CSTC2006BB3407,CSTC2005BB3080) **男,32岁,硕士,讲师 收稿日期:2006 06 13;修订日期:2006 08 25 1 引言 制造业是现代工业的基础,其中金属材料成形占有相当大的比重。在金属成形和加工工艺中,不可避免地出现材料断裂现象。对于拉深、挤压、拉 拔、轧制和锻造等工艺,是通过材料的塑性变形来获得工件最终的形状,材料的断裂是成形过程中需要避免的主要缺陷之一,在设计这些工艺时必须避免。对于通过塑性变形和断裂过程结合来实现工件的成形,例如冲裁、切料、剪切以及切削工艺,断裂往往是不可避免的,必须合理地利用材料产生的断裂,才能实现这些工艺过程 [1] 。现代工业研究方 法主要包括3种:理论分析、试验研究和有限元仿真,这3种方法可以综合利用。有限元技术以其周期短、结果准确、成本低等诸多优点,获得了广大工程技术和研究人员的青睐。本文利用有限元技术 研究材料断裂行为,准确分析金属加工和成形过程的裂纹产生和材料断裂,预测出给定加工工艺最终的产品质量,为设计工艺给出准确评判并为进一步改进工艺指明方向。 2 有限元分析技术中的断裂判断 有限元法分析在预测断裂问题上提供了强有力的工具,在实际应用中,必须针对具体情况来选择适用的断裂判据,主要用到的断裂判据如下。2 1 FLD (变形界限图) 这种判据在以平面应变为主的板料成形分析中应用广泛,不同变形模式下的板厚应变极限不同。在冲压成形中,有各种各样的变形模式,FLD 的实质就是断裂和没有断裂的变形模式的界限,判断某点是否产生断裂,就是判断该点的变形模式是落在哪个区域中。通过软件分析材料的应变,将其放在FLD 中考察,若有点落在断裂区域,则表示该点处产生断裂,反之则未产生断裂。这种方式可以判断材料的断裂,但不能直观显示断裂后材料的具体形貌特征 [2] 。

有限元分析案例

有限元分析案例 图1 钢铸件及其砂模的横截面尺寸 砂模的热物理性能如下表所示: 铸钢的热物理性能如下表所示: 一、初始条件:铸钢的温度为2875o F,砂模的温度为80o F;砂模外边界的对流边界条件:对流系数0.014Btu/hr.in2.o F,空气温度80o F;求3个小时后铸钢及砂模的温度分布。 二、菜单操作: 1.Utility Menu>File>Change Title, 输入Casting Solidification; 2.定义单元类型:Main Menu>Preprocessor>Element Type>Add/Edit/Delete, Add, Quad 4node 55; 3.定义砂模热性能:Main Menu>Preprocessor>Material Props>Isotropic,默认材料编号1, 在Density(DENS)框中输入0.054,在Thermal conductivity (KXX)框中输入0.025,在S pecific heat(C)框中输入0.28; 4.定义铸钢热性能温度表:Main Menu>Preprocessor>Material Props>-Temp Dependent->Temp Table,输入T1=0,T2=2643, T3=2750, T4=2875; 5.定义铸钢热性能:Main Menu>Preprocessor>Material Props>-Temp Dependent ->Prop Table, 选择Th Conductivity,选择KXX, 输入材料编号2,输入C1=1.44, C2=1.54, C3=1.22, C4=1.22,选择Apply,选择Enthalpy,输入C1=0, C2=128.1, C3=163.8, C4=174.2; 6.创建关键点:Main Menu>Preprocessor>-Modeling->Create>Keypoints>In Active

(完整word版)有限元分析软件的比较

有限元分析软件的比较(购买必看)-转贴 随着现代科学技术的发展,人们正在不断建造更为快速的交通工具、更大规模的建筑物、更大跨度的桥梁、更大功率的发电机组和更为精密的机械设备。这一切都要求工程师在设计阶段就能精确地预测出产品和工程的技术性能,需要对结构的静、动力强度以及温度场、流场、电磁场和渗流等技术参数进行分析计算。例如分析计算高层建筑和大跨度桥梁在地震时所受到的影响,看看是否会发生破坏性事故;分析计算核反应堆的温度场,确定传热和冷却系统是否合理;分析涡轮机叶片内的流体动力学参数,以提高其运转效率。这些都可归结为求解物理问题的控制偏微分方程式,这些问题的解析计算往往是不现实的。近年来在计算机技术和数值分析方法支持下发展起来的有限元分析(FEA,Finite Element A nalysis)方法则为解决这些复杂的工程分析计算问题提供了有效的途径。在工程实践中,有限元分析软件与CAD系统的集成应用使设计水平发生了质的飞跃,主要表现在以下几个方面: 增加设计功能,减少设计成本; 缩短设计和分析的循环周期; 增加产品和工程的可靠性; 采用优化设计,降低材料的消耗或成本; 在产品制造或工程施工前预先发现潜在的问题; 模拟各种试验方案,减少试验时间和经费; 进行机械事故分析,查找事故原因。 在大力推广CAD技术的今天,从自行车到航天飞机,所有的设计制造都离不开有限元分析计算,FEA在工程设计和分析中将得到越来越广泛的重视。国际上早20世纪在50年代末、60年代初就投入大量的人力和物力开发具有强大功能的有限元分析程序。其中最为著名的是由美国国家宇航局(NASA)在1965年委托美国计算科学公司和贝尔航空系统公司开发的NASTRAN有限元分析系统。该系统发展至今已有几十个版本,是目前世界上规模最大、功能最强的有限元分析系统。从那时到现在,世界各地的研究机构和大学也发展了一批规模较小但使用灵活、价格较低的专用或通用有限元分析软件,主要有德国的ASKA、英国的PA FEC、法国的SYSTUS、美国的ABQUS、ADINA、ANSYS、BERSAFE、BOSOR、COSMOS、ELAS、MARC和STARDYNE等公司的产品。 以下对一些常用的软件进行一些比较分析: 1. LSTC公司的LS-DYNA系列软件

板结构有限元分析实例详解

板结构有限元分析实例详解1:带孔平板结构静力分析本节介绍带孔平板结构静力分析问题,同时介绍布尔操作的基本用法。 8.3.1 问题描述与分析 有孔的矩形平板,左侧边缘固定,长400mm,宽200 mm,厚度为10 mm,圆孔在板的正中心,半径为40 mm,左侧全约束,右侧边缘均布应力1MPa,如图8.7所示。求板的变形、位移及应力变化情况。(材料的材料属性为:弹性模量为300000 MPa,剪切模量为0.31。) 图8.7 带孔的矩形平板 由于小孔处边缘不规则,本文采用PLANE82高阶平面单元进行分析。 8.3.2 求解过程 8.3.2.1 定义工作目录及文件名 启动ANSYS Mechanical APDL Product Launcher窗口,如图8.8所示。在License下 拉选框中选择ANSYS Multiphysics产品,在Working Directory输入栏中输入工作目 录:C:\ANSYS12.0 Structural Finite Elements Analysis and Practice\Chapter 8\8-1,在Job Name一栏中输入工作文件名:Chapter8-1。以上参数设置完毕后,单 击Run按钮运行ANSYS。

图8.8 ANSYS设置窗口菜单 可以先在目标文件位置建立工作目录,然后单击Browse按钮选择工作目录;也 可以通过单击Browse按钮选择工作文件名。 8.3.2.2 定义单元类型和材料属性 选择Main Menu>Preferences命令,出现Preferences for GUI Filtering对话框, 如图8.9所示,在Individual discipline(s) to show in the GUI中勾选Structural,过滤掉ANSYS GUI菜单中与结构分析无关的选项,单击OK按钮关闭该对话框。 图8.9 Preferences for GUI Filtering对话框

有限元分析及应用大作业

有限元分析及应用大作业 作业要求: 1)个人按上机指南步骤至少选择习题中3个习题独立完成,并将计算结果上交; 也可根据自己科研工作给出计算实例。 2)以小组为单位完成有限元分析计算; 3)以小组为单位编写计算分析报告; 4)计算分析报告应包括以下部分: A、问题描述及数学建模; B、有限元建模(单元选择、结点布置及规模、网格划分方案、载荷及边界 条件处理、求解控制) C、计算结果及结果分析(位移分析、应力分析、正确性分析评判) D、多方案计算比较(结点规模增减对精度的影响分析、单元改变对精度的 影响分析、不同网格划分方案对结果的影响分析等) 题一:图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较: 1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算;(注意ANSYS中用四边形单元退化为三节点三角形单元) 2)分别采用不同数量的三节点常应变单元计算; 3)当选常应变三角单元时,分别采用不同划分方案计算。 解:1.建模: 由于大坝长度>>横截面尺寸,且横截面沿长度方向保持不变,因此可将大坝看作无限长的实体模型,满足平面应变问题的几何条件;对截面进行受力分析,作

用于大坝上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力,满足平面应变问题的载荷条件。因此该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况P=98000-9800*Y;建立几何模型,进行求解;假设大坝的材料为钢,则其材料参数:弹性模量E=2.1e11,泊松比σ=0.3; 2:有限元建模过程: 2.1 进入ANSYS : 程序→ANSYS APDL 15.0 2.2设置计算类型: ANSYS Main Menu: Preferences →select Structural →OK 2.3选择单元类型: ANSYS Main Menu: Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad 4node 182(三节点常应变单元选择Solid Quad 4node 182,六节点三角形单元选择Solid Quad 8node 183)→OK (back to Element Types window) →Option →select K3: Plane Strain →OK→Close (the Element Type window) 2.4定义材料参数: ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2.1e11, PRXY:0.3 →OK 2.5生成几何模型: 生成特征点: ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints→In Active CS →依次输入四个点的坐标:input:1(0,0),2(10,0),3(1,5),4(0.45,5) →OK 生成坝体截面: ANSYS Main Menu: Preprocessor →Modeling →Create →Areas →Arbitrary →Through KPS →依次连接四个特征点,1(0,0),2(6,0),3(0,10) →OK 2.6 网格划分: ANSYS Main Menu: Preprocessor →Meshing →Mesh Tool→(Size Controls) lines: Set →依次拾取两条直角边:OK→input NDIV: 15 →Apply→依次拾取斜边:OK →input NDIV: 20 →OK →(back to the mesh tool window)Mesh:Areas, Shape: tri, Mapped →Mesh →Pick All (in Picking Menu) →Close( the Mesh Tool window) 2.7 模型施加约束: 给底边施加x和y方向的约束: ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Displacement →On lines →pick the lines →OK →select Lab2:UX, UY →OK 给竖直边施加y方向的分布载荷: ANSYS 命令菜单栏: Parameters →Functions →Define/Edit →1) 在下方的下拉列表框内选择x ,作为设置的变量;2) 在Result窗口中出现{X},写入所施加的载荷函数: 98000-9800*{Y};3) File>Save(文件扩展名:func) →返回:Parameters →Functions →Read from file:将需要的.func文件打开,参数名取meng,它表示随之将施加的载荷→OK →ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Pressure →On Lines →拾取竖直边;OK →在下拉列表框中,选择:Existing table →OK →选择需要的载荷为meng参数名→OK 2.8 分析计算: ANSYS Main Menu: Solution →Solve →Current LS →OK(to close the solve Current Load

相关文档
最新文档