等边三角形(课件)

合集下载

《等边三角形》课件PPT1

《等边三角形》课件PPT1

将两个含30°角的同样的三角尺如图摆放在一起. 4m, ∠A=30°.
例 2.已 知 : 如 图 , △ ABC 中 , AB = AC, ∠ A = 在直角三角形中, 如果有一个锐角等于300,那么它所对的直角边等于斜边的一半.
你会用学过的方法证明吗?
120°,DE垂直平分AB于D,交BC于E点. 如图:△ABC是等边三角形,AD⊥BC,DE⊥AB,若AB=8cm, 求证:CE=2BE. 如图,已知△ABC 是等边三角形,D、E 分别是
B C 30° A
2.如图:△ABC是等边三角形,
A
AD⊥BC,DE⊥AB,若AB=8cm,
BD=___,BE=_______.
E
B DC
【典例分析】
例1.已知,如图是屋架设计图的一部分,点D是斜 梁 AB 的 中 点 , 立 柱 BC,DE 垂 直 于 横 梁 AC , AB=7.4m, ∠A=30°.立柱BC,DE要多长.
AB
你会用学过的方法证明吗?
【归纳】
定理:在直角三角形中,如果一个锐角等于30°, 那么它所对的直角边等于斜边的一半.
应用格式:
B
在△ABC中,∵∠ACB=90°,∠A=30°.
∴BC=
1 2
AB.
A 300
C
这是一个判定两条线段成倍半关系的根据之一.
【比一比】看 谁 算 得 快
1.如图:在Rt△ABC中 ∠A=30°,AB+BC=12cm, 则AB=_____cm.
2.等边三角形的判定:
(1)三边相等的三角形是等边三角形. (2)三个内角都相等的三角形是等边三角形. (3)有一个角是60 °的等腰三角形是等边三角形.
【探究】
将两个含30°角的同样的三角尺如图摆放在 一起.你能借助这个图形,找到Rt△ABC的直角边 BC与斜边AB之间的数量关系吗?

等边三角形课件

等边三角形课件

等边三角形的性质与证明一、等边三角形的定义等边三角形,又称正三角形,是一种具有三条边都相等的三角形。

在等边三角形中,每个角都是60度,这是由三角形内角和定理直接得出的。

等边三角形是一种特殊的等腰三角形,因为它的三条边都相等,所以它也满足等腰三角形的性质。

二、等边三角形的性质1.角的性质:等边三角形的三个角都相等,每个角的大小为60度。

这是因为三角形的内角和为180度,而在等边三角形中,三个角都相等,所以每个角的大小为180度除以3,即60度。

2.边的性质:等边三角形的三条边都相等。

这是等边三角形的基本性质,也是它与其他三角形区别的最大特点。

3.对称性质:等边三角形具有三条对称轴,分别是三条中线。

这是因为等边三角形的每条中线都可以将三角形分成两个面积相等的小三角形,所以中线也是高线和中位线。

4.周长和面积:等边三角形的周长是任意一边长的三倍,面积可以通过公式S=(a^2√3)/4计算,其中a为边长。

三、等边三角形的证明1.角的证明:通过三角形内角和定理,我们可以得出等边三角形的每个角都是60度。

具体证明如下:设等边三角形的三个角分别为A、B、C,边长为a。

根据三角形内角和定理,有:A+B+C=180度由于三角形ABC是等边三角形,所以有:A=B=C将A=B=C代入上述等式中,得到:A+A+A=180度3A=180度A=B=C=60度2.边的证明:等边三角形的三条边都相等,这是由等边三角形的定义直接得出的。

具体证明如下:设等边三角形的三个边分别为a、b、c。

由于三角形ABC是等边三角形,所以有:a=b=c四、等边三角形的应用等边三角形在日常生活和工程应用中有广泛的应用,例如在建筑设计、机械制造、地理信息系统等领域。

等边三角形的特点使其在一些特定情况下具有特殊的优势,例如在等边三角形的网格划分中,每个网格的面积相等,这对于一些需要均匀划分的区域非常有用。

总结:等边三角形是一种具有三条边都相等的三角形,它的每个角都是60度。

等边三角形优秀PPT课件

等边三角形优秀PPT课件

04
等边三角形在生活中的应用
建筑领域应用
建筑设计
等边三角形在建筑设计中常被用作基本的几何形状,创造出 独特而稳定的结构。例如,在穹顶、尖顶和拱门等建筑元素 中,等边三角形能够提供均匀的支撑力,并赋予建筑物动感 和美感。
结构设计
等边三角形的稳定性使其在建筑结构设计中具有优势。工程 师经常利用等边三角形的特性来构建桥梁、塔楼和其他需要 坚固支撑的建筑结构。
等边三角形的判定
关键知识点总结
01பைடு நூலகம்
若三角形三边长度相等,则它是 等边三角形。
02
若三角形有两个内角为60°,则它 是等边三角形。
易错难点剖析
1 2
与等腰三角形的混淆
学生容易将等边三角形与等腰三角形混淆。等腰 三角形有两边长度相等,而等边三角形三边长度 均相等。
角度计算错误
在等边三角形中,每个内角都是60°。学生在计 算角度时可能会出错,导致后续问题无法解决。
性质总结
性质一
等边三角形的三个内角 均为60°。
性质二
等边三角形的任意一边 上的中线、高线和角平 分线互相重合(三线合
一)。
性质三
等边三角形是轴对称图 形,它有三条对称轴, 分别是三条边的垂直平
分线。
性质四
等边三角形在平面内绕 其重心旋转120°后,能 够和原来的图形重合。
02
等边三角形判定方法
周长计算公式推导
等边三角形周长公式
P = 3a,其中a为等边三角形的边长。
公式推导
等边三角形的三条边长度相等,因此周长为3倍的边长,即P = 3a。
典型例题解析
例题1
解析
例题2
解析
已知等边三角形的边长为5cm ,求其面积和周长。

等边三角形优质PPT课件

等边三角形优质PPT课件
形中的美妙性质。
THANKS
感谢观看
图形展示
通过PPT动画展示等边三角形面积计算公式的推导过程,帮助学生 理解并掌握。
周长计算方法及实例
周长计算公式
P = 3a,其中a为等边三角形的边 长。
计算实例
给出一个具体的等边三角形边长, 让学生计算其周长,并展示计算过 程。
图形展示
通过PPT展示一个具体的等边三角 形及其周长计算过程,帮助学生理 解周长的概念及计算方法。
03
02
特点
04
三个内角均为60°
任意两边之和大于第三边
05
06
任意一边都小于另外两边之和
性质与定理
01
性质
02
等边三角形的三个内角都是60°。
03
等边三角形是轴对称图形,有三条对称轴。
04
定理
05
等边三角形的三个内角平分线、三条中线、三条高线、三 条边的垂直平分线都交于一点,这个点称为等边三角形的 中心。
06
等边三角形外接圆的半径等于其边长与√3的比值,内切 圆的半径等于其边长与2√3的比值。
与其他图形关系
与等腰三角形的关系
等边三角形是特殊的等腰三角形,其 中两条腰的长度与底边相等。
与直角三角形的关系
与其他多边形的关系
等边三角形可以作为构建其他正多边 形的基本单元,如正六边形可以由6 个等边三角形组成。
斐波那契数列与等边三角形联系
斐波那契数列定义
斐波那契数列是一个自然数数列,它的定义是后一个数是前两个数的和,且前两个数分 别为0和1。
与等边三角形的联系
斐波那契数列与等边三角形有着密切的联系。在等边三角形中,可以构造出斐波那契数 列的图形表示。例如,将等边三角形的每一边按照斐波那契数列的比例进行分割,可以 得到一系列相似且不断缩小的等边三角形。这种构造方式展示了斐波那契数列在几何图

等边三角形课件

等边三角形课件

三条边都相等的三角形
三 角
A
三个角都相等的三角形

B
C 有一个角等于60°的等腰三
角形
问题3:能否根据等腰三角形的性质和判 定猜测出等边三角形的性质和判定?
类比学习:
图形 等腰三角形 (腰不一定等于底)
等边三角形
定义 两边相等的三角形 三边都相等的三角形
性 轴对称图形(1条) 轴对称图形(3条)

两个底角相等
三个角都是60º
三线合一
三线合一
关系 等边三角形一定是等腰三角形, 等腰三角形不一定是等边三角形.
类比学习:
满足什么条件的三角 形是等腰三角形?
方法1:有两边相等的三 角形是等腰三角形.(定 义)
方法2:有两个角相等的 三角形是等腰三角 形.(定理)
结合边和角来看,会有 什么新的结论吗?
满足什么条件的三角形
是等边三角形?
三条边都相等的三角形 是等边三角形(定义)
三个角都相等的三角形 是等边三角形
有一个角是60°的等腰 三角形是等边三角形
探究性质
已知:△ABC中,AB=AC=BC; 求证:∠A=∠B=∠C=60°
证明:∵ AB=AC
A
∴ ∠B=∠C
∵ AC=BC ∴ ∠A=∠B
B
C
∴ ∠A=∠B=∠C
∵ ∠A+∠B+∠C=180°
∴ ∠A=∠B=∠C=60°
探究判定一
1、 已知:△ABC中,∠A=∠B=∠C; 求证:△ABC是等边三角形
等边三角形
知识回顾
名称 图形
性质


A 两腰相等


等边对等角

部编版八年级数学上册《等边三角形》PPT课件

部编版八年级数学上册《等边三角形》PPT课件
第三单元 轴对称
3.4 等边三角形
人教版数学(八年级上)
知识回顾
什么是等边三角形?它与一般三角形有什么区别?
一般三角形
等腰三角形
有二条边相等 一般三角形
等腰三角形{
底≠腰 底=腰
定义:三条边都相等的三角形叫做等边三角形。 等边三角形也叫做正三角形是特殊的等腰三角形
等边三角形
等边三角形
名称
等腰三角形
证明
∵ △ABC 是等边三角形, ∴ ∠A =∠ABC =∠ACB =60°. ∵ DE∥BC, ∴ ∠ABC =∠ADE,
∠ACB =∠AED. ∴ ∠A =∠ADE =∠AED. ∴ △ADE 是等边三角形.
A
B
C
D
E
变式2 若点D、E 在边AB、AC 的反向延长线上,且DE∥BC,结论依然成立吗?
A
E F
B
D
C
如图, △ABC为等边三角形, ∠ 1= ∠ 2= ∠ 3 (1)求∠EDF的度数. (2)△DEF为等边三角形吗?为什么?
B
A
1F
3
D
E
2
C
已 知 △ A B C 是 等 边 三 角 形 , D, E , F 分 别 是 各 边 上 的 一 点 , 且 AD=BE=CF.
试说明△ DEF是等边三角形.
证明:∵AB=AC ∴∠B=∠C 同理 ∠A=∠B ∴∠A=∠B=∠C 又∵∠A+∠B+∠C=180° ∴∠A=∠B=∠C=60°
几何语言:在△ABC中 ∵AB=AC=BC ∴∠A=∠B=∠C=60°
A
B
C
3. 等边三角形有三条对称轴
A
B
C
三条对称轴

等边三角形课件共14张PPT

等边三角形课件共14张PPT
2
你能用一句话来
A
描述你的结论吗?
B
C
D
定理
在直角三角形中,如果一个锐角等于30° 那么它所对的直角边等于斜边的一半。
数学式:
A
30°
∵∴B∠CA=C12B=ARBt ∠ ,∠A=30°
C ┓ B 你还能用其它方法证明吗?
“在直角三角形中,如果一个锐角等于30° 那么它所对的直角边等于斜边的一半。”
C D
B
E
A
5、 如图,在△ABC中, ∠ACB= 90°,
∠B= 15°,AB的垂直平分线分别交BC、AB 于D、E。求证:DB=2AC
小结:
❖ 等边三角形的性质: 三边相等,三个角都是600,”三线合一”,三条对 称轴. ❖ 等边三角形的判定: 定义:有三边相等的三角形是等边三角形. 定理:有一个角是600的等腰三角形是等边三角形. 定理:三个角都相等的三角形是等边三角形. ❖ 特殊的直角三角形的性质: 定理:在直角三角形中, 如果有一个锐角等于300, 那么它所对的直角边等于斜边的一半. 定理:在直角三角形中, 如果一条直角边等于斜 边的一半,那么它所对的锐角等于300.
C D
B
E
A
4、 如图,上午9时,一条渔船从A出发,
以12海里/时的速度向正北航行,11时到达
B处,从A、B两处望小岛C,测得
∠NAC=150内有暗礁,问该渔船继续向正北
航行有无触礁的危险?
N
C
D
B
A
4、如图,在△ABC中, AB=AC, ∠BAC= 120°,AC的垂直平分线EF交AC 于点E,交BC于点F。求证:BF=2CF。
练习: 已知:等腰三角形的底角为150,腰长为2a. 求:腰上的高.

等边三角形PPT课件

等边三角形PPT课件

回头看了一眼,朝独自跪在那里的人最后投去悲哀的一瞥。因为挨了四鞭,那人的背还在火辣辣的痛,他的膝盖也跪疼了。不过,这个老人会带着尊严死去,或至少是抱着这样的想法死去。 (节选自《偷书贼》第七章P265~267,略有删改) 致中国读者的信 亲爱的中国读者: ? 谢谢您阅读了这
本《偷书贼》。 ? 我小时候长听故事。我的爸爸妈妈经常在厨房里,把他们小时候的故事告诉我的哥哥、两个姐姐和我,我听了非常着迷,坐在椅子上动都不动。他们提到整个城市被大火笼罩,炸弹掉在他们家附近,还有童年时期建立的坚强友谊,连战火、时间都无法摧毁的坚强友谊。 ? 其中有
所以∠B=600
2
从而∠B=300
B
C
6
逆定理
在直角三角形中锐角是30°。
A
∵ AC⊥BC , BC= 1AB
2
∴ ∠A= 30°
B
C
2021/4/8
7
例1 如图,是屋架设计图的一部分,点D是斜梁
AB的中点,立柱BC、DE垂直于横梁AC,AB=7.4 m ∠A= 30°,立柱BC、DE要多长?
;单创:/c/7radcKIT9fA

本文以小红包为线索,两次设置悬念,把小说情节推向高潮;小说的结尾安排巧妙,出人意料却又在情理之中,引人入胜. 【点评】本题考查对文本、故事情节的理解分析能力和对句子含义、作者感情的理解分析能力.其中第(2)题是重点题目,学生解答时,在理解文章内容主旨的基础上,结合
2
如图,将两个含30°角的三角尺摆放在一起。 你能借助这个图形,找到Rt △ABC的直角 边BC与斜边AB之间的数量关系吗?
A
另证:在BA上截取BE=BC,连接EC
30 ° 30 °
则△BCE是等边三角形,所以
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P )60°
B
将两个含30° 角的三角尺如图摆放在 一起,你能借助这个图形,找到Rt△ABC的直
角边BC与斜边AB之间的数量关系吗?
A
B
C
D
∵△ABC与△ADC关于AC轴对称 ∴AB=AD △ABD是等边三角形 又∵AC⊥BD∴BC=DC=1/2AB
A
你还能用其他
方法证明吗?
B
C
D
在直角三角形中,如果一个锐角等于30° 那么它所对的直角边等于斜边的一半.
A
30°
在直角△ABC中
∵∠A=30°
B┓
C ∴AC=2BC
小试牛刀:
1、如图1,△ABC中,AB=AC,∠C=
30°,DA⊥BA于A,BC=14.4cm,
则AD= 4.8

2、如图2、 ∠C=B 90°D,DC是CA的延
长线上一点, ∠BDC=15 °,且AD
=AB,则BC = 1 AD B
2

我们这节课学习了哪些知识? 谈谈你的体会.
一般三角形
等边三角形
⒈ 三个角都相等的三角形是等边三角形.
等腰三角形
等边三角形
⒉ 有一个角是60°的等腰三角形是等边 三角形.
练习
1、证等明边:三∵角△形A三BC边和△相BD等E都是等边三角形,三个
角都等于 ∴A6B0=°AC,BE=BD度,∠. ABC=∠DBE=60°
2称、轴等.边三在角△形A是BE轴和对△称CB图D中形,,有
观察下列图片,你有 什么印象?
你发现了什么? 这就是今天我们要学的
想想看,等边三角形
A
有什么性质?BFra bibliotekC⑴三边之间 AB_=AC_=BC
⑵三角之间 ∠A_=∠B_=∠C
A
B )60° 60(° C
⑴ 等边三角形的三边都相等
⑵ 等边三角形的三个内角都相等,并且 每一个角都等于60°.

思考题
一个三角形满足什么条件 就是等边三角形?
答:立柱BC的长是3.7m,DE的长是 1.85m.
要把一块三角形的土地均匀分给甲 、 乙、
丙三家农户去种植,如果∠C=90°∠A=
30°,要使这三家农户所得土地的大小和
形状都相同,请你试着分一分,在图上画出
来.
A
E

C
D
B
这是两个等边三角形,那么请移动三根火柴 ,将此图变成四个等边三角形.
提示:此题并不难,如果外部不能解决,那么 想想里面吧.


例5,下图是屋架设计图的一部分,点D是 斜梁AB的中点,立柱BC、 DE垂直于 横梁AC,AB=7.4m,∠A=30°立柱 BC 、 DE要多长?
B
D
A EC
解:∵DE⊥AC, BC⊥AC, ∠A=30° 可得 2BC=AB, 2DE=AD
∴BC=1/2 ×7.4=3.7m 又 AD=1/2 AB ∴DE=1/2 AD=1/2 ×3.7=1.85m
三 条对
3、如图,已AB知=A△C A∠BCA和BC△=∠BDDEB都E,是BE等=B边D 三角形,
求证:AE=C∴D △ABE≌△CBD
A
∴AE=CD
B EC D
课外活动小组在一次测量活动中,测得 ∠APB=60°,AP=BP=200cm,他们 便得到了一个结论:池塘最长处不小 于200cm.他们的结论对吗? A
相关文档
最新文档