【教学设计】《等边三角形》(数学人教八上)

合集下载

人教版数学八年级上册12.3.2《等边三角形》教学设计

人教版数学八年级上册12.3.2《等边三角形》教学设计

人教版数学八年级上册12.3.2《等边三角形》教学设计一. 教材分析等边三角形是初中数学的重要内容,它既有三角形的普遍性质,又有自己独特的性质。

人教版数学八年级上册12.3.2《等边三角形》一节,主要让学生掌握等边三角形的定义、性质和判定方法,以及了解等边三角形在实际生活中的应用。

通过学习,学生能进一步理解三角形的性质,提高解决问题的能力。

二. 学情分析学生在学习等边三角形之前,已经学习了三角形的分类、三角形的性质等知识,具备了一定的图形观念和空间想象力。

但部分学生对三角形的性质理解不深,对等边三角形的认识可能仅停留在表面。

因此,在教学过程中,需要关注学生的知识基础,引导学生深入理解等边三角形的性质。

三. 教学目标1.知识与技能:掌握等边三角形的定义、性质和判定方法,能运用等边三角形的性质解决实际问题。

2.过程与方法:通过观察、操作、猜想、验证等方法,培养学生的空间想象能力和推理能力。

3.情感态度与价值观:培养学生对数学的兴趣,增强学生对几何图形的审美观念。

四. 教学重难点1.重点:等边三角形的定义、性质和判定方法。

2.难点:等边三角形性质的证明和应用。

五. 教学方法1.情境教学法:通过生活实例引入等边三角形,激发学生的学习兴趣。

2.启发式教学法:引导学生观察、操作、猜想、验证等边三角形的性质,培养学生的思维能力。

3.小组合作学习:让学生在小组内讨论、分享学习心得,提高学生的合作能力。

六. 教学准备1.教学课件:制作课件,展示等边三角形的图片、性质和判定方法。

2.教学素材:准备一些等边三角形的实物模型,如三角形纸片、塑料三角形等。

3.教学工具:准备黑板、粉笔、直尺、圆规等。

七. 教学过程1.导入(5分钟)利用课件展示一些生活中的等边三角形图片,如金字塔、自行车的三角形架等,引导学生关注等边三角形。

提问:你们知道这些图形有什么共同的特点吗?让学生思考并回答,从而引出等边三角形的定义。

2.呈现(10分钟)展示等边三角形的性质和判定方法。

八年级数学上册《等边三角形的性质》教案、教学设计

八年级数学上册《等边三角形的性质》教案、教学设计
1.基础巩固题:
(1)请学生完成教材第页的练习题,重点加强对等边三角形性质的记忆和理解。
(2)运用等边三角形的性质,计算给定等边三角形的面积和周长,并简要说明计算过程。
2.提高拓展题:
(1)探索等边三角形内角平分线、中线、高之间的关系,并运用这些性质解决பைடு நூலகம்际问题。
(2)在等边三角形中,若以一个顶点为圆心,边长为半径画圆,求圆内接三角形的其他顶点与该顶点的距离。
4.通过对等边三角形的性质的学习,让学生掌握几何图形的对称美和简洁美,提高他们对数学美的欣赏能力。
(二)过程与方法
1.采用问题驱动的教学方法,引导学生通过观察、猜想、验证等过程,自主发现等边三角形的性质。
2.利用几何画板等教学工具,让学生直观感受等边三角形的性质,提高他们对几何图形的理解能力。
3.通过小组合作、讨论交流等形式,培养学生合作学习的能力,提高他们解决问题的效率。
四、教学内容与过程
(一)导入新课
1.引入实例:展示一幅美丽的等边三角形图案,如古代建筑中的窗花、艺术品等,引发学生对等边三角形的关注。
2.提出问题:请学生观察图案,思考等边三角形具有哪些特点?它们之间有何联系?
3.创设悬念:通过问题引导学生思考,为新课的学习做好铺垫,激发学生的探究欲望。
(二)讲授新知
6.课后作业,拓展延伸:布置具有挑战性的课后作业,使学生在课后继续巩固所学知识,同时培养他们的拓展思维能力。
7.教学评价,关注成长:在教学过程中,教师应关注学生的成长,采用多元化评价方式,如课堂表现、作业完成情况、小组合作表现等,全面评价学生的学习效果。
8.情感教育,培养兴趣:在教学过程中,注重激发学生对等边三角形性质的兴趣,引导学生体验数学发现的乐趣,培养他们热爱数学的情感。

人教版八年级数学上册13.3.2《等边三角形(1)》教学设计

人教版八年级数学上册13.3.2《等边三角形(1)》教学设计

人教版八年级数学上册13.3.2《等边三角形(1)》教学设计一. 教材分析等边三角形是八年级数学上册的教学内容,它是三角形的一种特殊形式,具有三条边相等、三个角相等的性质。

本节课的教学内容主要包括等边三角形的定义、性质和判定。

教材通过引入等边三角形的概念,让学生了解等边三角形的基本性质,并通过实例演示等边三角形的判定方法。

通过本节课的学习,学生能够掌握等边三角形的基本性质,并能够运用这些性质解决相关问题。

二. 学情分析学生在学习本节课之前,已经掌握了三角形的基本概念和性质,具备了一定的观察和推理能力。

然而,对于等边三角形的特殊性质和判定方法,学生可能较为陌生。

因此,在教学过程中,需要注重引导学生通过观察和推理来发现等边三角形的性质,并通过实例来巩固和应用这些性质。

三. 教学目标1.知识与技能:理解等边三角形的定义,掌握等边三角形的基本性质,学会判定一个三角形是否为等边三角形。

2.过程与方法:通过观察、推理和举例,培养学生的逻辑思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识。

四. 教学重难点1.重点:等边三角形的定义和性质。

2.难点:等边三角形的判定方法。

五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动参与课堂讨论。

2.引导发现法:通过提问和引导,让学生自主发现等边三角形的性质,培养学生的推理能力。

3.实例教学法:通过举实例,让学生更好地理解等边三角形的性质和判定方法。

六. 教学准备1.教学课件:制作课件,展示等边三角形的图片和实例。

2.教学道具:准备一些等边三角形的模型或图片,用于展示和操作。

3.练习题:准备一些有关等边三角形的练习题,用于巩固和拓展学生的知识。

七. 教学过程1.导入(5分钟)通过展示一些等边三角形的图片,引导学生观察和思考:这些三角形有什么特殊的性质?你能否找出它们之间的共同点?2.呈现(10分钟)向学生介绍等边三角形的定义和性质,并通过举例来展示等边三角形的判定方法。

13.3.2等边三角形(第1课时)教学设计 2022-2023学年人教版八年级上册数学

13.3.2等边三角形(第1课时)教学设计 2022-2023学年人教版八年级上册数学

13.3.2等边三角形(第1课时)教学设计一、教学目标1.了解等边三角形的定义;2.掌握等边三角形的性质;3.能够判断一个三角形是否为等边三角形;4.能够解决与等边三角形相关的问题。

二、教学内容1.等边三角形的定义;2.等边三角形的性质;3.判断等边三角形的方法;4.解决与等边三角形相关的问题。

三、教学重难点1.等边三角形的定义和性质;2.判断等边三角形的方法。

四、教学过程第一步:导入新知1.引入等边三角形的概念,让学生观察等边三角形的特点;2.引导学生讨论等边三角形的性质,例如三条边相等,内角均为60度;3.通过讨论和示例,让学生初步了解等边三角形的定义和性质。

第二步:学习等边三角形的定义和性质1.学生自主阅读课本对应内容,并做好笔记;2.教师针对学生的疑问和困惑进行讲解和解答;3.通过课堂练习和小组讨论,巩固学生对等边三角形的定义和性质的掌握。

第三步:判断等边三角形的方法1.介绍判断等边三角形的方法:通过测量三角形的三条边长是否相等以及内角是否为60度;2.给出一些实际问题,让学生尝试使用判断等边三角形的方法进行解答;3.教师鼓励学生积极思考和讨论,引导学生正确运用判断等边三角形的方法。

第四步:解决与等边三角形相关的问题1.提供一些实际问题,让学生运用所学知识解决;2.鼓励学生从多个角度思考问题,培养他们的综合分析和解决问题的能力;3.教师扩展相关知识,拓宽学生的思路和视野。

第五步:提出问题,激发学生思考1.提出一些开放性问题,让学生尝试进行思考和解答;2.引导学生相互讨论,互相学习和启发,培养他们的思辨和合作能力;3.教师适时给予指导和引导,引导学生深入思考和探索。

五、教学评价1.观察学生在课堂练习和小组讨论中的表现;2.收集学生的笔记和作业,对他们的理解和应用进行评价;3.针对学生的问题和困难进行及时的辅导和指导。

六、教学反思本节课主要介绍了等边三角形的定义、性质,以及判断等边三角形的方法。

人教版八年级数学上册13.3.2《等边三角形(2)》教学设计

人教版八年级数学上册13.3.2《等边三角形(2)》教学设计

人教版八年级数学上册13.3.2《等边三角形(2)》教学设计一. 教材分析等边三角形是初中数学的重要内容,人教版八年级数学上册13.3.2《等边三角形(2)》一节,主要让学生掌握等边三角形的性质,以及等边三角形在实际生活中的应用。

本节内容是在学生已经掌握了三角形的基本概念、三角形的分类、三角形的基本性质等知识的基础上进行讲解的,为后续学习正多边形和圆的知识打下基础。

二. 学情分析学生在学习本节内容前,已经掌握了三角形的基本概念、三角形的分类、三角形的基本性质等知识,但对等边三角形的性质的理解可能还比较模糊,需要通过实例和操作来进一步理解和掌握。

此外,学生可能对等边三角形在实际生活中的应用有所了解,但需要通过课堂讲解和练习来加深理解。

三. 教学目标1.让学生掌握等边三角形的性质。

2.让学生能够应用等边三角形的性质解决实际问题。

3.培养学生的观察能力、操作能力和解决问题的能力。

四. 教学重难点1.等边三角形的性质。

2.等边三角形在实际生活中的应用。

五. 教学方法采用讲授法、演示法、实践法、讨论法等多种教学方法,以激发学生的学习兴趣,提高学生的学习效果。

六. 教学准备1.准备相关的教学PPT和教学素材。

2.准备等边三角形的模型或图片。

3.准备黑板和粉笔。

七. 教学过程1.导入(5分钟)通过复习三角形的基本概念、三角形的分类、三角形的基本性质等知识,引出等边三角形的性质。

2.呈现(10分钟)用PPT展示等边三角形的性质,让学生初步了解等边三角形的性质。

3.操练(15分钟)让学生分组合作,用准备好的等边三角形模型或图片,进行观察和操作,验证等边三角形的性质。

4.巩固(10分钟)用PPT呈现一些有关等边三角形的练习题,让学生独立完成,巩固对等边三角形性质的理解。

5.拓展(10分钟)让学生举例说明等边三角形在实际生活中的应用,分享给其他同学。

6.小结(5分钟)让学生总结本节课所学的内容,教师进行补充和讲解。

7.家庭作业(5分钟)布置一些有关等边三角形的练习题,让学生回家做。

《13.3.2 等边三角形》教学设计教学反思-2023-2024学年初中数学人教版12八年级上册

《13.3.2 等边三角形》教学设计教学反思-2023-2024学年初中数学人教版12八年级上册

《等边三角形》教学设计方案(第一课时)一、教学目标1. 知识与技能:理解等边三角形的定义,掌握等边三角形的性质和特点。

2. 过程与方法:通过观察、讨论、探究等教学活动,培养学生的观察、分析、概括、推理等思维能力。

3. 情感态度与价值观:培养学生的空间观念和观察能力,激发学生对数学的兴趣和热爱。

二、教学重难点1. 教学重点:理解等边三角形的定义,掌握等边三角形的性质。

2. 教学难点:如何引导学生发现等边三角形的特点,培养学生的观察和分析能力。

三、教学准备1. 准备教学用具:黑板、白板、等边三角形模型、尺子等。

2. 制作教学课件:包括等边三角形的图片、性质、特点等内容。

3. 安置预习任务:学生预习课实情关内容,准备发言讨论。

四、教学过程:1. 导入新课(5分钟)通过复习等腰三角形的性质和判定方法,引出等边三角形的观点,激发学生探究新知识的兴趣。

2. 探究新知(20分钟)(1)操作与观察:让学生动手画、剪、折等边三角形,通过观察得出等边三角形的特点及性质。

(2)等边三角形的定义:三边相等,三个角均为60度的三角形为等边三角形。

(3)等边三角形的性质:等边三角形的三个角相等,均为60度;等边三角形具有稳定性。

(4)等边三角形的判定方法:根据定义及等腰三角形和直角三角形的判定方法,得出三种判定方法:* 三边相等的两个三角形为等边三角形;* 有一个角为60度的两个三角形为等边三角形;* 有一个角是30度的直角三角形和有一个角是60度的锐角三角形为等边三角形。

3. 合作交流(10分钟)让学生分组讨论,交流自己的探究结果,教师进行巡回指导。

4. 教室练习(15分钟)让学生完成课本上的相关练习题,检验学生对新知识的掌握情况,针对出现的问题进行讲解。

5. 总结评判(5分钟)让学生总结本节课所学内容,教师进行评判总结,鼓励学生积极思考,勇于探究。

教学设计方案(第二课时)一、教学目标1. 理解等边三角形的定义,掌握等边三角形的性质和特点。

人教版数学八年级上册《等边三角形的性质和判定》教学设计2

人教版数学八年级上册《等边三角形的性质和判定》教学设计2

人教版数学八年级上册《等边三角形的性质和判定》教学设计2一. 教材分析等边三角形的性质和判定是初中数学八年级上册的教学内容,这部分内容在教材中占据重要的地位。

等边三角形是特殊类型的三角形,具有独特的性质。

本节课的教学内容主要包括等边三角形的性质及其应用,以及等边三角形的判定方法。

通过学习本节课的内容,学生能够更深入地了解等边三角形的性质,提高他们的空间想象能力和逻辑思维能力。

二. 学情分析学生在学习本节课之前,已经学习了三角形的性质、分类和判定等基础知识,对于三角形的概念和性质有一定的了解。

但等边三角形作为一种特殊的三角形,其性质和判定方法与普通三角形有所不同,需要学生进行进一步的学习和理解。

此外,学生需要通过观察、操作、推理等过程,发现等边三角形的性质和判定方法,因此,学生的观察能力、操作能力和推理能力有待提高。

三. 教学目标1.知识与技能目标:学生能够掌握等边三角形的性质及其应用,了解等边三角形的判定方法,提高他们的空间想象能力和逻辑思维能力。

2.过程与方法目标:通过观察、操作、推理等过程,学生能够发现等边三角形的性质和判定方法,培养他们的观察能力、操作能力和推理能力。

3.情感态度与价值观目标:学生能够积极参与课堂学习,对数学产生浓厚的兴趣,培养他们的团队协作能力和自主学习能力。

四. 教学重难点1.重点:等边三角形的性质及其应用,等边三角形的判定方法。

2.难点:发现等边三角形的性质和判定方法,理解等边三角形性质之间的联系。

五. 教学方法1.情境教学法:通过实物模型、图片等引导学生观察和操作,激发学生的学习兴趣。

2.问题驱动法:设置问题引导学生思考和讨论,培养学生的问题解决能力。

3.小组合作法:学生进行小组讨论和合作,培养学生的团队协作能力。

4.归纳总结法:引导学生总结等边三角形的性质和判定方法,提高学生的归纳能力。

六. 教学准备1.教学素材:准备等边三角形的模型、图片等教学素材。

2.教学工具:准备黑板、粉笔、投影仪等教学工具。

人教版数学八年级上册13.3.2等边三角形(第2课时)教学设计

人教版数学八年级上册13.3.2等边三角形(第2课时)教学设计
3.等边三角形的判定方法:介绍等边三角形的判定方法,如:SSS判定法(三边相等)、SAS判定法(两边相等且夹角相等)、ASA判定法(两角相等且夹边相等)等。
(三)学生小组讨论
1.分组讨论:将学生分成若干小组,让每个小组针对等边三角形的性质、判定方法进行讨论,共同总结规律。
2.互动交流:各小组展示讨论成果,其他小组进行补充、质疑,形成全面、深入的理解。
3.提出问题:引导学生思考,如果一个三角形的三条边都相等,那么这个三角形会有哪些性质?如何判定一个三角形是等边三角形?
(二)讲授新知
1.等边三角形的定义:在学生观察、思考的基础上,给出等边三角形的定义:三条边都相等的三角形称为等边三角形。
2.等边三角形的性质:引导学生通过实际操作、观察、讨论等途径,发现并总结等边三角形的性质,如:三个角相等,均为60度;三条中线、高、角平分线重合等。
2.作业量要适中,避免学生负担过重。
3.鼓励学生主动思考,培养解决问题的能力。
4.家长要关注学生的学习进度,协助教师督促学生完成作业。
5.教师要及时批改作业,了解方法:通过例题讲解,让学生掌握等边三角形的判定方法,并能熟练运用。
(5)巩固练习:设计不同难度的题目,让学生独立完成,巩固所学知识。
(6)课堂小结:总结本节课所学内容,强调等边三角形的性质和判定方法。
(7)作业布置:布置适量的作业,巩固所学知识,提高学生的运用能力。
3.教学策略:
(1)关注学生的个体差异,因材施教,提高教学的有效性。
1.激发学生对数学学习的兴趣,培养良好的学习习惯和积极的学习态度。
2.培养学生的空间观念,提高对几何图形的审美意识和鉴赏能力。
3.增强学生解决问题的自信心,培养勇于探索、敢于创新的精神。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《等边三角形》◆教材分析本节课是人教版八年级上册第13章第3节内容,课标对本节课的要求是探索等边三角形的性质定理(等边三角形的各角都等于60°)及等边三角形的判定定理(三个角都相等的三角形或有一个角是60°的等腰三角形是等边三角形).本节内容是延续了从一般三角形到等腰三角形再到等边三角形的学习,进一步认识特殊的轴对称图形——等边三角形,继续探究等边三角形的特殊性质和判定方法,更是今后证明角相等、线段相等的重要工具,在教材中处于重要的地位,起着承前启后的作用.◆教学目标【知识与能力目标】1、经历探索等腰三角形成为等边三角形的条件及其推理证明过程。

2、探索──发现──猜想──证明直角三角形中有一个角为30°的性质.3、有一个角为30°的直角三角形的性质的简单应用【过程与方法目标】1.经历运用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维2.经历观察、实验、猜想、证明的数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点.3、经历“探索──发现──猜想──证明”的过程,引导学生体会合情推理与演绎推理的相互依赖和相互补充的辩证关系4、培养学生用规范的数学语言进行表达的习惯和能力【情感态度价值观目标】1.积极参与数学学习活动,对数学有好奇心和求知欲2.在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.【教学重点】1、等边三角形判定定理的发现与证明。

2、等腰三角形的判定定理及其应用3、含30°角的直角三角形的性质定理的发现与证明.【教学难点】1.等边三角形判定定理的发现与证明2.引导学生全面、周到地思考问题.3、含30°角的直角三角形性质定理的探索与证明◆教学过程一、情景导入:师:我们在前两节课研究证明了等腰三角形的性质和判定定理,我们知道,在等腰三角形中有一种特殊的等腰三角形——三条边都相等的三角形,叫等边三角形.回答下面的三个问题.1.把等腰三角形的性质用到等边三角形,能得到什么结论?2.一个三角形满足什么条件就是等边三角形?3.你认为有一个角等于60°的等腰三角形是等边三角形吗?你能证明你的结论吗?把你的证明思路与同伴交流.(教师应给学生自主探索、思考的时间)[生甲]由等边对等角的性质可知,等边三角形的三个角相等,又由三角形三内角和定理可知,等边三角形的三个角相等,并且都等于60°.[生乙]等腰三角形已有两边分别相等,所以我认为只要腰和底边相等,等腰三角形就是等边三角形了.[生丙]等边三角形的三个内角都相等,且分别都等于60°,我认为等腰三角形的三个内角都等于60°,也就是说这个等腰三角形就是等边三角形了.(此时,部分同学同意上面的看法,部分同学不同意上面的看法,引起激烈的争论,教师可让同学代表发表自己的看法)[生丁]我不同意这个同学的看法,因为任何一个三角形满足这个条件都是等边三角形.根据等角对等边,三个内角都是60°,所以它们所对的边一定相等,但这一问题中“已知是等腰三角形,满足什么条件时便是等边三角形”,我觉得他给的条件太多,浪费!师:给三个角都是60°,这个条件确实有点浪费,那么给什么条件不浪费呢?下面同学们可以在小组内交流自己的看法.二、学习新知探索等腰三角形成等边三角形的条件.[生]如果等腰三角形的顶角是60°,那么这个三角形是等边三角形.师:你能给大家陈述一下理由吗?[生]根据三角形的内角和定理,顶角是60°,等腰三角形的两个底角的和就是180°-60°=120°,再根据等腰三角形两个底角是相等的,所以每个底角分别是120°÷2=60°,则三个内角分别相等,根据等角对等边,则此时等腰三角形的三条边是相等的,即顶角为60°的等腰三角形为等边三角形.[生]等腰三角形的底角是60°,那么这个三角形也是等边三角形,同样根据三角形内角和定理和等角对等边、等边对等角的性质.师:从同学们自主探索和讨论的结果可以发现:在等腰三角形中,不论底角是60°,还是顶角是60°,那么这个等腰三角形都是等边三角形.你能用更简洁的语言描述这个结论吗?[生]有一个角是60°的等腰三角形是等边三角形.(这个结论的证明对学生来说可能有一定的难点,难点是意识到分别讨论60°的角是底角和顶角两种情况.这是一种分类讨论的思想,教师要关注学生得出证明思路的过程,引导学生全面、周到地思考问题,并有意识地向学生渗透分类的思想方法)师:你在与同伴的交流过程中,发现了什么或受到了何种启示?[生]我发现我的证明过程没有意识到“有一个角是60°”,在等腰三角形中有两种情况:(1)这个角是底角;(2)这个角是顶角.也就是说我们思考问题要全面、周到.师:我们来看有多少同学意识到分别讨论60°的角是底角和顶角的情况,我们鼓掌表示对他们的鼓励.今天,我们探索、发现并证明了等边三角形的判定定理;有一个角等于60°的等腰三角形是等边三角形,我们在证明这个定理的过程中,还得出了三角形为等边三角形的条件,是什么呢?[生]三个角都相等的三角形是等边三角形.师:下面就请同学们来证明这个结论.课件展示已知:如图,在△ABC中,∠A=∠B=∠C.求证:△ABC是等边三角形.证明:∵∠A=∠B,∴BC=AC(等角对等边).又∵∠A=∠C,∴BC=AB(等角对等边).∴AB=BC=AC,即△ABC是等边三角形.师:这样,我们由等腰三角形的性质和判定方法就可以得到.等边三角形的三个内角都相等,并且每一个角都等于60°;三个角都相等的三角形是等边三角形.有一个角是60°的等腰三角形是等边三角形.师:有了上述结论,我们来学习下面的例题,体会上述定理.例:如图,课外兴趣小组在一次测量活动中,测得∠APB=60°,AP=BP=200 m,他们便得出一个结论:A、B之间距离不少于200 m,他们的结论对吗?【分析】我们从该问题中抽象出△APB,由已知条件∠APB=60°且AP=BP,由本节课探究结论知△APB为等边三角形.解:在△APB中,AP=BP,∠APB=60°,所以∠PAB=∠PBA=(180°-∠APB)=(180°-60°)=60°.于是∠PAB=∠PBA=∠APB.从而△APB为等边三角形,AB的长是200 m,由此可以得出兴趣小组的结论是正确的.师:我们学习过直角三角形,今天我们先来看一个特殊的直角三角形,看它具有什么性质.大家可能已猜到,我让大家准备好的含30°角的直角三角形,它有什么不同于一般的直角三角形的性质呢?问题:用两个全等的含30°角的直角三角尺,你能拼出一个怎样的三角形?能拼出一个等边三角形吗?说说你的理由.课件展示由此你能想到,在直角三角形中,30°角所对的直角边与斜边有怎样的大小关系?你能证明你的结论吗?(让学生经历拼摆三角尺的活动,发现结论,同时引导学生意识到,通过实际操作探索出来的结论,还需要给予证明)[生]用含30°角的直角三角尺摆出了如下两个三角形.(1)(2)其中,图(1)是等边三角形,因为△ABD≌△ACD,所以AB=AC,又因为Rt△ABD中,∠BAD=60°,所以∠ABD=60°,有一个角是60°的等腰三角形是等边三角形.[生]图(1)中,∠B=∠C=60°,∠BAC=∠BAD+∠CAD=30°+30°=60°,所以∠B=∠C=∠BAC=60°,即△ABC是等边三角形.师:同学们从不同的角度说明了自己拼成的图(1)是等边三角形.由此你能得出在直角三角形中,30°角所对的直角边与斜边的关系吗?[生]在直角三角形中,30°角所对直角边是斜边的一半.师:我们仅凭实际操作得出的结论还需证明,你能证明它吗?[生]可以,在图(1)中,我们已经知道它是等边三角形,所以AB=BC=AC.而∠ADB=90°,即AD⊥BC.根据等腰三角形“三线合一”的性质,可得BD=DC=BC.所以BD=AB,即在Rt△ABD中,∠BAD=30°,它所对的边BD是斜边AB的一半.[师生共析]这位同学能结合前后知识,把问题思路解释得如此清晰,很了不起.下面我们一同来完成这个定理的证明过程.定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.已知:如图①,在Rt△ABC中,∠C=90°,∠BAC=30°.求证:BC=AB.①②分析:从三角尺的摆拼过程中得到启发,延长BC至D,使CD=BC,连接AD.证明:在△ABC中,∠ACB=90°,∠BAC=30°,则∠B=60°.延长BC至D,使CD=BC,连接AD(如图2)∵∠ACB=60°,∴∠ACD=90°.∵AC=AC,∴△ABC≌△ADC(SAS).∴AB=AD(全等三角形的对应边相等).∴△ABD是等边三角形(有一个角是60°的等腰三角形是等边三角形).∴BC=BD=AB.师:这个定理在我们实际生活中有广泛的应用,因为它由角的特殊性,揭示了直角三角形中的直角边与斜边的关系,下面我们就来看一个例题.课件展示例1:如图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=7.4 m,∠A=30°,立柱BC、DE要多长?【分析】观察图形可以发现在Rt△AED与Rt△ACB中,由于∠A=30°,所以DE=AD,BC=AB,又由D是AB的中点,所以AD=AB.解:因为DE⊥AC,BC⊥AC,∠A=30°,由定理知BC=AB,DE=AD,所以BD=×7.4=3.7(m).又AD=AB,所以DE=AD=×3.7=1.85(m).答:立柱BC的长是3.7 m,DE的长是1.85 m.师:再看下面的例题.例2:等腰三角形的底角为15°,腰长为2a,求腰上的高.已知:如图,在△ABC中,AB=AC=2a,∠ABC=∠ACB=15°,CD是腰AB上的高.求CD的长.【分析】观察图形可以发现,在Rt△ADC中,AC=2a,而∠DAC是△ABC的一个外角,则∠DAC=15°×2=30°,根据在直角三角形中,30°角所对的边是斜边的一半,可求出CD.解:∵∠ABC=∠ACB=15°,∴∠DAC=∠ABC+∠BCA=30°.∴CD=AC=a(在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半).三、归纳总结:这节课,我们自主探索、思考了等腰三角形成为等边三角形的条件,并对这个结论的证明有意识地渗透分类讨论的思想方法.这节课我们学的定理非常重要,在我们今后的学习中起着非常重要的作用.我们又在这个基础上推理证明了含30°的直角三角形的边的关系.这个定理是个非常重要的定理,在今后的学习中起着非常重要的作用.◆教学反思略。

相关文档
最新文档