解析算法-枚举算法练习题
raptor枚举法例题

枚举法(也称为遍历法或穷举法)是一种解决问题的方法,通过列举所有可能的情况来找到问题的解。
Raptor是一种流程图设计工具,通常用于教授编程和算法概念。
以下是一个使用Raptor的枚举法示例题目:
问题描述:
假设你有一个硬币堆,其中有5枚硬币,其中一枚硬币是假币,比其他硬币轻。
你只有一台天平,可以用来比较两组硬币。
请找出假币,并确定它比其他硬币轻。
解决方法:
我们可以使用枚举法来解决这个问题。
首先,列举所有可能的情况,然后通过称重来找出假币。
将5枚硬币分成3组:A组有2枚硬币,B组有2枚硬币,C组只有1枚硬币。
使用天平比较A组和B组:
a. 如果A组和B组的重量相同,说明假币在C组中。
将C组中的硬币放在一侧,再选择一枚真正的硬币放在另一侧,称重。
如果假币比真正的硬币轻,那么假币就是C组中的硬币;否则,真正的硬币是假币。
b. 如果A组和B组的重量不同,那么假币在较轻的一组中。
将A组中的硬币分成两枚一组,称为A1和A2,将B组中的硬币分成两枚一组,称为B1和B2。
然后比较A1和B1的重量:
如果A1和B1的重量相同,那么假币在A2或B2中。
使用天平比较A2和B2,找出假币。
如果A1和B1的重量不同,那么假币在A1或B1中。
找出较轻的硬币即可确定假币。
这个问题的解决方案使用了枚举法,通过列举所有可能的情况并使用天平来比较硬币的重量,最终找出了假币并确定它比其他硬币轻。
枚举算法经典例题

枚举算法经典例题一、以下哪个问题适合使用枚举算法解决?A. 查找一个无序数组中的最大值B. 求解旅行商问题(TSP)的最短路径C. 生成一个集合的所有子集D. 对一个有序数组进行二分查找(答案)C二、在使用枚举算法生成一个长度为n的二进制串的所有可能组合时,时间复杂度为多少?A. O(n)B. O(n!)C. O(2n)D. O(n2)(答案)C三、枚举算法在解决以下哪个问题时,可能会因为问题规模过大而变得不实际?A. 找出一个字符串中的所有字符排列B. 计算一个数的阶乘C. 验证一个数是否为素数D. 求解一个50x50的棋盘上的骑士周游问题(答案)D四、以下哪个不是枚举算法的特点?A. 简单易实现B. 适用于所有问题C. 可能产生大量计算D. 通常用于小规模问题(答案)B五、在使用枚举算法解决排列问题时,如果要对n个元素进行排列,总共会有多少种不同的排列方式?A. nB. n!C. 2nD. n2(答案)B六、以下哪个问题不适合直接使用枚举算法解决,因为其解空间太大?A. 找出一个数组中所有元素的和B. 求解一个密码的所有可能组合(密码长度为10,字符集为大小写字母和数字)C. 找出一个字符串中的最长回文子串D. 计算一个数的平方根(精确到小数点后10位)(答案)B七、枚举算法在解决组合问题时,如果要从n个元素中选出k个元素,总共会有多少种不同的组合方式?A. nkB. k!C. C(n, k) = n! / (k!(n-k)!)D. 2n(答案)C八、以下哪个场景是枚举算法的典型应用?A. 大规模数据的排序B. 图的遍历C. 查找一个数是否在有序数组中D. 生成并检查所有可能的解以找到满足条件的解(答案)D。
小学数学《常规应用题的解法——枚举法》练习题(含答案)

小学数学《常规应用题的解法——枚举法》练习题(含答案)知识要点我们在课堂上遇到的数学问题,有一些需要计算总数或种类的趣题,因其数量关系比较隐蔽,很难利用计算的方法解决。
我们可以抓住对象的特征,按照一定的顺序,选择恰当的标准,把问题分为不重复、不遗漏的有限种情形,通过一一列举或计数,最终达到解决目的。
这就是枚举法,也叫做列举法或穷举法。
解题指导11.枚举法在数字组合中的应用。
按照一定的组合规律,把所有组合的数一一列举出来。
【例1】用数字1,2,3组成不同的三位数,分别是哪几个数?【思路点拨】根据百位上的数字的不同分为3类。
第一类:百位上为1的有:123 132第二类:百位上为2的有:213 231第三类:百位上为3的有:312 321答:可以组成123,132,213 ,231,312 ,321六个数。
【变式题1】用0、6、7、8、9这五个数字组成各个数位上数字不相同的两位数共有多少个?解题指导22.骰子中的点数掷骰子是生活中常见的游戏玩法,既可以掷一个骰子,比较掷出的点数大小,也可以掷两个骰子,把两个骰子的点数相加,再比较点数的大小。
一个骰子只有6个点数,而两个骰子的点数经过组合最小是2,最大是12。
在解决有关掷两个骰子的问题时,要全面考虑所有出现的点数情况。
【例2】小明和小红玩掷骰子的游戏,共有两枚骰子,一起掷出。
若两枚骰子的点数和为7,则小明胜;若点数和为8,则小红胜。
试判断他们两人谁获胜的可能性大。
【思路点拨】将两枚骰子的点数和分别为7与8的各种情况都列举出来,就可得到问题的结论。
用a+b表示第一枚骰子的点数为a,第二枚骰子的点数是b的情况。
出现7的情况共有6种,它们是:1+6,2+5,3+4,4+3,5+2,6+1。
出现8的情况共有5种,它们是:2+6,3+5,4+4,5+3,6+2。
所以,小明获胜的可能性大。
注意,本题中若认为出现7的情况有1+6,2+5,3+4三种,出现8的情况有2+6,3+5,4+4也是三种,从而得“两人获胜的可能性一样大”,那就错了。
小学三年级奥数讲解及练习题:简单枚举

小学三年级奥数讲解及练习题:简单枚举(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、合同协议、策划方案、规章制度、演讲致辞、应急预案、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as workplace documents, contract agreements, planning plans, rules and regulations, speeches, emergency plans, experiences, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!小学三年级奥数讲解及练习题:简单枚举小学三年级奥数讲解及练习题:简单枚举无论是在学校还是在社会中,我们经常接触到练习题,只有多做题,学习成绩才能提上来。
分类枚举经典讲解和练习题(经典完整版)

分类枚举经典讲解和练习题小芳为了给灾区儿童捐款,把储蓄罐里的钱全拿了出来。
她想数数有多少钱。
小朋友,你知道小芳是怎么数的吗?小芳是个聪明的孩子,她把钱按1分、2分、5分、1角、2角、5角、1元等分类去数。
所以很快就好了。
小芳数钱,用的就是分类枚举的方法。
这是一种很重要的思考方法,在很多问题的思考过程中都发挥了很大的作用。
下面就让我们一起来看看它的本领吧!例题与方法例1.右图中有多少个三角形?例2.右图中有多少个正方形?例3.在算盘上,用两粒珠子可以表示几个不同的三位数?分别是哪几个数?例4.用数字1,2,3可以组成多少个不同的三位数?分别是哪几个数?例5.往返于南京和上海之间的泸宁高速列车沿途要停靠常州、无锡、苏州三站。
问:铁路部门要为这趟车准备多少种车票?例6.小明有面值为3角、5角的邮票各两枚。
他用灾些邮票能付多少种不同的邮资(寄信时,所需邮票的钱数)?例7.有一种用6位数表示日期的方法。
例如,用940812表示1994年8月12日。
用这种方法表示1991年全年的日期,那么全年中6位数字都不相同的日期共有多少天?练习与思考1.下图中有多少个三角形?(1)(2)2.右图中有多少个长方形?3.用0,1,2,3可组成多少个不同的三位数?4.从北京到南京的特快列车,中途要停靠9个站。
在几种不同标价的车票?5.用3张10元和2张50元一共可以组成多少咱币值(组成的钱数)?6.中、日、韩进行四国足球赛。
每两队踢一场。
按积分排名次,一共踢多少场?7.丽丽有红、蓝、黑帽子各一顶,红蓝、黑围巾各一条。
冬天,丽丽每天戴一顶帽子、围一条围巾,有几种不同的搭配方式?8.用例7的方法表示1994年的日期,6位数字各不相同的共有多少天?。
高中信息技术学考复习13解析算法与枚举算法训练含答案

训练13解析算法与枚举算法1.下列问题中适合使用解析算法解决的是()A.计算两个电阻的并联值B.输出2~100以内的所有素数C.查找100以内所有能被6整除的数D.找出100以内所有6的倍数2.编写Python程序,将华氏温度转换为摄氏温度并保留两位小数,转换公式为:C=5 (F-32)/9,程序如下,划线处应填()f=float(input(″请输入华氏温度:″))c=print(″对应的摄氏温度为:%.2f ″%c)A.5//9 (f-32)B.5/9 (f-32)C.5/9 (f-32)D.5/9(f-32)3.用枚举算法输出100以内既能被3整除又能被5整除的数据,我们可以从算法不同角度去思考,确定枚举范围,下列选项中Python程序处理有误的是()A.for i in range(1,101):if i%3==0 and i%5==0:print(i)B.for i in range(1,101):if i %15==0:print(i)C.for i in range(15,101,15):print(i)D.for i in range(1,101//15):print(i 15)4.解析算法的基本思想是根据问题的与之间的关系,找出求解问题的,并通过表达式的来实现问题的求解。
5.枚举算法的程序实现中,使用(单选,填字母:A.分支结构/B.循环结构)罗列出问题所有可能的解,循环中通过(单选,填字母:A.分支结构/B.循环结构)判断当前的可能解是不是真正的解。
6.编写Python程序,实现如下功能:输入全票价格和消费者身高,输出消费者应付的实际票价。
实际票价的计算规则为:身高1.2米及以下免票;身高1.2米以上且1.4米及以下半票;身高超过1.4米全票。
程序代码如下。
在划线处填上合适的代码。
jg=float(input('请输入全票价格:'))h=float(input('请输入消费者身高(米):'))if h<=1.2:pj=0①pj=jg 0.5②pj=jgprint('票价为',round(pj,2),'元')7.某压缩算法的基本思想是用一个数值和一个字符代替具有相同值的连续字符串。
专题02 解析和枚举算法及VB程序实现(专项练习)(参考答案)

第1页共1页专题2解析和枚举算法及VB程序实现(专项练习)(参考答案)1.【答案】(1)500(2)①False②Label1.Caption=Str(c) ③开始【解析】(1)计时器timer的interval属性表示时钟频率,其单位为毫秒。
题干中的频率为0.5秒,故答案为500。
(2)①根据题意可知,按钮标题变为“开始”的同时,计时器停止工作,故答案为false。
②根据题意可知,每次产生的抽奖号码都要显示在label1中,故答案为Label1.Caption=Str(c)。
(3)初始时为“开始”,单击一次后变为“停止”,单击两次后变为“开始”,以此类推可知,单击奇数次后为停止,单击偶数次后为开始。
故答案为开始。
2.【答案】(1)Com1(2)①n = Val(Text1.Text) ②Str(2*(n-i)+1) ③Text2.Text = s【解析】(1)代码中第一行的“Com1_Click”是事件驱动过程名,由对象名和事件名组成,故答案为Com1。
(2)①变量n为正整数,类型为整型,其值通过文本框text1输入,故答案为n = Val(Text1.Text)。
②代码中for循环的功能是逐个推理数字串中的数据,数字串前半段为依次递增2,后半段为依次递减2,else解决的就是后半段数据的计算,s为字符串型,故答案为Str(2*(n-i)+1)。
③最终的结果存储在变量s中,需要通过文本框text2输出,故答案为Text2.Text = s。
3.【答案】(1)Caption(2)①n = Val(Text1.Text) ②y * 10 + x Mod10③Str(sum)【解析】(1)窗体类对象的标题显示内容由Caption属性来决定,故填Caption。
(2)①变量n表示回文数,类型为长整型,其值通过text1来输入,故答案为n = Val(Text1.Text)。
②返回个位数,将原有的y扩大10倍。
二年级奥数枚举法试题

二年级奥数枚举法试题一、枚举法试题。
1. 小明有3件不同的上衣,2条不同的裤子,小明一共有多少种不同的穿法?- 解析:我们可以用枚举法来解决这个问题。
上衣分别设为A、B、C,裤子设为1、2。
那么穿法有:A1、A2、B1、B2、C1、C2,一共3×2 = 6种不同的穿法。
2. 用1、2、3这三个数字可以组成多少个不同的三位数?- 解析:百位上是1时,有123和132;百位上是2时,有213和231;百位上是3时,有312和321。
所以一共可以组成6个不同的三位数。
3. 从1 - 5这五个数字中,每次取两个不同的数字相加,能得到多少个不同的和?- 解析:1 + 2=3,1+3 = 4,1+4 = 5,1+5 = 6,2 + 3=5(与前面重复舍去),2+4 = 6(与前面重复舍去),2+5 = 7,3+4 = 7(与前面重复舍去),3 + 5=8,4+5 = 9。
所以能得到3、4、5、6、7、8、9共7个不同的和。
4. 有5个小朋友,每两个人握一次手,一共要握多少次手?- 解析:设这5个小朋友为A、B、C、D、E。
A小朋友要和B、C、D、E握手,共4次;B小朋友已经和A握过了,所以B要和C、D、E握手,共3次;C小朋友已经和A、B握过了,所以C要和D、E握手,共2次;D小朋友已经和A、B、C握过了,所以D要和E握手,共1次。
所以一共握手4+3+2 + 1=10次。
5. 把7个相同的苹果放在3个不同的盘子里,每个盘子至少放1个,有多少种不同的放法?- 解析:可以这样枚举:(1,1,5)、(1,2,4)、(1,3,3)、(2,2,3),共4种不同的放法。
6. 用0、1、2、3能组成多少个没有重复数字的两位数?- 解析:当十位是1时,有10、12、13;当十位是2时,有20、21、23;当十位是3时,有30、31、32。
一共9个没有重复数字的两位数。
7. 有红、黄、蓝三种颜色的小旗各一面,从中选用1面或2面升上旗杆,分别用来表示一种信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 编写VB 程序完成计算!101!71!411+++=F 的值。
2. 根据以下迭代公式编写VB 程序求π的近似值。
3. 角谷猜想。
对任意一个大于1的正整数n ,进行如下运算:若n 是奇数时,n 的值替换为3n+1,若n 是偶数时,n 的值替换为n/2;重复以上运算,n 最终变为1。
编写一个VB 程序输出验算过程。
1.“玫瑰花数”是指一个4位整数,其各个位数字的4次方和恰好等于该数本身,例如,
1634是一玫瑰花数, 444443611634+++=。
编写VB 程序输出所有的玫瑰花数。
2.孔雀开屏数。
如果一个n 位整数k 的各位数字之和的n 次幂等于k 本身,则这个数k 称为孔雀开屏数。
如三位数512=(5+1+2)3
,512就是一个三位的孔雀开屏数。
编写VB 程序输出二~五位数中的所有孔雀开屏数。
3. 孪生素数。
孪生素数是指两个相邻奇数且都是素数,如3,5;11、13;它们是最近的素数,就像孪生兄弟一样。
输出100以内的所有孪生素数。
4. 方程x+y+z=n 有几组正整数解
(提高篇)方程x+y+z≤n有几组正整数解。