玻璃加工之如何改进玻璃退火

合集下载

浮法玻璃退火窑的尺寸与结构优化设计

浮法玻璃退火窑的尺寸与结构优化设计

浮法玻璃退火窑的尺寸与结构优化设计引言:随着现代建筑、汽车、光电等行业的快速发展,对于玻璃的需求量也越来越大。

浮法玻璃作为一种广泛应用于各个领域的玻璃类型,其生产工艺和设备起到了至关重要的作用。

浮法玻璃退火窑作为浮法生产线的关键设备之一,尺寸与结构的优化设计是确保玻璃熔化和退火过程的顺利进行的重要因素之一。

1. 退火过程对浮法玻璃的影响退火过程对浮法玻璃的性能和质量有着重要的影响。

在退火过程中,玻璃会被加热至高温,然后缓慢冷却以达到消除内部应力、提高光学性能、改善表面平整度等目的。

合理的退火过程能够保证玻璃的机械性能和稳定性,同时降低开裂率,提高玻璃的品质。

2. 浮法玻璃退火窑的尺寸优化2.1 窑室的尺寸设计窑室的尺寸设计直接关系到退火过程中玻璃的受热和冷却速率。

一般来说,窑室的尺寸应十分均匀地加热玻璃,并确保能够容纳需处理的玻璃板数量。

尺寸不当会导致部分玻璃板受热过度,使得退火效果不均匀。

2.2 窑室的高度设计窑室的高度设计直接影响到玻璃板在退火过程中的变形和应力消除。

窑室过高会导致玻璃板下弯,而窑室过矮会导致玻璃板上弯,都会影响玻璃的平整度和质量。

因此,合理的窑室高度设计是非常重要的。

3. 浮法玻璃退火窑的结构优化3.1 顶部结构设计顶部结构通常由隔热层和电加热系统组成。

对于隔热层的优化设计,应选用高效的保温材料,减少热量损失。

电加热系统应合理布置,确保窑室内的温度分布均匀,避免温度集中和冷热点的出现。

3.2 底部结构设计底部结构主要包括底样、输送系统和冷却系统。

优化设计底样和输送系统能够确保玻璃板的稳定输送和定位,减少进出窑室的阻力和损失。

冷却系统应具备良好的冷却性能,确保玻璃板能够在最短时间内进行均匀冷却。

3.3 侧壁结构设计侧壁结构设计主要包括隔热层和加热系统。

隔热层的设计应具有良好的隔热性能,并且能够抵抗窑内高温的侵蚀作用。

加热系统应合理分布在侧壁上,以确保窑室内的温度分布均匀。

4. 浮法玻璃退火窑结构的优化方法4.1 借助数值模拟软件进行优化设计利用数值模拟软件,如有限元分析软件,可以对退火过程进行模拟,预测玻璃板的温度分布和应力分布,进而确定合理的尺寸和结构参数。

通过冷修技改提高玻璃退火质量

通过冷修技改提高玻璃退火质量

通过冷修技改提高玻璃退火质量耀华集团1. 前言我公司的一条500T/D浮法生产线退火窑是由公司自行设计的。

在过去的几个窑期运行中发挥了巨大的作用。

但随着超厚板的逐渐开发及退火质量要求的提高,目前的退火窑已越来越不能适应这种要求,尤其是在本窑期运行已接近8年的情况下,玻璃在退火中出现一些质量问题。

原先的一些设计理念已不能满足高质量玻璃退火的要求,因此我公司充分利用冷修时间对现在的退火窑进行了技术改造。

2.退火窑现状我公司本窑期的退火窑设有A、A1、B1、B2、C1、C2、D、RET1、RET2、E、F1、F2、F3区。

各区长度分别为11.97m、15m、15m、12m、12m、2.4m、7.2m、7.2m、1.8m、7.2m、7.2m、6m。

在生产厚板时表现出来的主要质量问题是纵切不好拜边,横切时常有生渣、破皮等端面缺陷。

另外玻璃板易在RET区、F区炸裂。

3.原因分析我们将公司退火窑与国内外的先进退火窑进行了比较、分析,发现我公司退火窑主要有以下几个方面设计得不够合理。

⑴目前我公司退火窑电加热固定在边部,这样根据板宽变化及横向温度的不同有针对性的对温度低的部位进行局部加热。

因此造成对于厚板生产时由于牙印内外温差引起的拜边质量问题不好解决。

⑵侧墙热桥多,我公司退火窑在当初设计时出于安全等方面的考虑,内外墙之间钢连接件较多。

这样增加了墙体的导热性。

使侧墙散热量增加,从而使玻璃板边部温度低。

⑶ F区风机位置。

我公司F区风机均放置在室外一楼。

风温受环境温度影响很大,尤其是在冬季,室内外温差大。

当风吹到板面上时,由于与玻璃板温差大,极易引起玻璃板炸裂。

⑷ RET、F区风嘴。

在原计划中相邻侧风嘴在纵向均在一条直线上,这样就导致相邻两风嘴之间风小。

在风嘴之间位置玻璃板出现高温点,不能保证横向温度的线形分布。

容易在此位置产生生碴等退火质量问题。

另外,F区风嘴边部无调节插板,不能对边部风量进行调节。

⑸进风方式。

目前退火窑A、B区均为鼓风,且A区进风方向为逆向进入。

平板玻璃退火二氧化硫

平板玻璃退火二氧化硫

平板玻璃退火二氧化硫
平板玻璃的退火过程是指将玻璃加热至一定温度后,再通过控制冷却速度进行处理,以改善玻璃的物理性能和化学稳定性。

退火过程通常会使玻璃具有更好的耐热性、抗张力和抗压强度,减少内部应力,提高玻璃的稳定性和耐久性。

而二氧化硫在玻璃工业中也扮演着重要的角色。

二氧化硫通常被用作玻璃生产过程中的气氛控制剂。

在玻璃熔化过程中,二氧化硫可以用来调节玻璃熔化的氧化还原平衡,防止玻璃中出现氧化铁等杂质,从而提高玻璃的质量和透明度。

此外,二氧化硫还可以用作玻璃表面的清洁剂和抛光剂,有助于提高玻璃制品的表面质量。

总的来说,平板玻璃的退火和二氧化硫在玻璃工业中都扮演着重要的角色,它们对玻璃制品的性能和质量都有着显著的影响。

通过合理的退火工艺和二氧化硫的应用,可以有效改善玻璃的性能和质量,满足不同领域对玻璃制品的需求。

浮法玻璃退火产生的缺陷及控制

浮法玻璃退火产生的缺陷及控制

浮法玻璃中退火产生的缺陷及控制河南理工大学张战营一、玻璃的退火玻璃退火的目的是减弱和防止玻璃制品中出现过大的残余内应力和光学不均匀性,稳定玻璃内部的结构。

玻璃的退火可分成两个主要过程:一是玻璃中内应力的减弱或消失,二是防止内应力的重新产生。

玻璃中内应力的减弱和消除是以松弛理论为基础的,所谓内应力松弛是指材料在分子热运动的作用下使内应力消散的过程,内应力的松弛速度在很大程度上决定于玻璃所处的温度。

玻璃在加热或冷却过程中,由于其导热性较差,在其表面层和内层之间必然产生温度梯度,因而在内外层之间产生应力。

这种由于温度梯度存在而产生的内应力称为温度应力或热应力,此种内应力的大小,既取决于玻璃中的温度梯度,又与玻璃的热膨胀系数有关(玻璃的化学成分决定玻璃的热膨胀系数)。

热应力按其存在的特点可分为暂时应力和永久应力。

暂时应力,当玻璃受不均匀的温度变化时产生的热应力,随着温度差的存在而存在,随温度差的消失而消失,被称为暂时应力。

应力的建立和消失过程。

当制品冷却开始时,因为玻璃的外层冷却速度快,所以外部温度比内部温度低,外层收缩大,而这时内层温度较高,且力求阻碍外层收缩,这样造成玻璃外层产生张应力,内部产生压应力。

在张应力过渡到压应力之间存在着中间层,其应力值为零。

当冷却接近结束时,外层体积几乎不再收缩,但此时玻璃内部仍有一定的温度,其体积力求收缩,此时造成外部受压应力,内层受张应力。

由此可见,在冷却结束时,产生的应力恰好和冷却开始时产生的应力性质相反,两者可以得到部分抵消。

冷却全部结束时,即当玻璃的外层温度和内层温度趋向完全一致时,上述两种应力恰好抵消。

我们称这种应力为暂时应力。

永久应力,当温度消失时(制品的表面和内部温度均等于常温时),残留在玻璃中的热应力称为永久应力,又称为内应力。

玻璃中永久应力的成因,是由于在高温的弹塑性阶段热应力松弛而形成的温度变形被“冻结”下来的缘故。

当玻璃板逐渐冷却到室温均衡时,玻璃中残存的应力实际等于玻璃在高温阶段松弛掉的热弹应力,但方向相反。

玻璃的退火过程改善玻璃的抗压性能

玻璃的退火过程改善玻璃的抗压性能

玻璃的退火过程改善玻璃的抗压性能玻璃是一种常见的建筑材料和装饰材料,其优良的透明性和质地使其成为许多领域中不可或缺的材料之一。

然而,玻璃的脆弱性常常限制了其在某些应用中的使用。

退火是一种经常被用来改善玻璃抗压性能的工艺,通过在特定的温度范围内加热和冷却玻璃,可以显著提高其抗压性能,使其更加耐用和可靠。

退火是一种热处理工艺,通过加热和冷却材料来改变其内部结构和性能。

在玻璃的制备过程中,由于快速冷却的原因,玻璃中会存在大量的内部压应力。

这些内部压应力会降低玻璃的抗压性能,使其更容易在外力作用下破碎。

因此,需要对玻璃进行退火处理,以消除内部压应力,提高其抗压性能。

退火过程通常包括加热和冷却两个步骤。

在加热过程中,玻璃被加热到退火温度,这个温度通常比玻璃的软化温度略高。

在这个温度下,玻璃的内部结构开始松弛,内部压应力得以释放。

然后,玻璃被冷却到室温,形成新的内部结构,这个结构相对较为稳定,玻璃的抗压性能也得以显著提高。

退火温度是影响退火效果的重要因素之一。

温度过高或者过低都会影响到退火效果。

温度过高可能导致玻璃变得过软,而温度过低则可能无法使内部结构得到充分松弛。

因此,选择合适的退火温度是提高玻璃抗压性能的关键。

此外,退火的时间也是影响退火效果的重要因素之一,时间过长或者过短都可能影响到退火效果的达成。

除了影响玻璃抗压性能的材料本身的因素,退火还受到加热和冷却速率的影响。

加热速率过快或者加热温度过高可能导致玻璃发生热应力,从而影响到退火效果。

同样,冷却速率过快也可能导致内部结构重新产生应力,降低退火效果。

因此,在实际的退火过程中,需要综合考虑加热和冷却速率,以及温度选择等因素,来达到最佳的退火效果。

总的来说,玻璃的退火过程可以显著改善其抗压性能。

通过合理选择退火温度和时间,以及控制加热和冷却速率等因素,可以使玻璃的内部结构得到充分松弛,内部压应力得以释放。

从而提高玻璃的抗压性能,使其更加耐用和可靠。

退火工艺的应用使得玻璃材料在建筑和装饰等领域中能够发挥更大的作用,并且有望在未来得到更广泛的应用。

浮法玻璃退火窑的生产效率与质量提升

浮法玻璃退火窑的生产效率与质量提升

浮法玻璃退火窑的生产效率与质量提升浮法玻璃是一种应用非常广泛的建筑和工业材料,具有高透明度、平整度好、耐高温等特点。

浮法玻璃的生产过程中,退火窑是至关重要的环节之一,对于玻璃品质的提升和生产效率的改善有着重要影响。

本文将探讨浮法玻璃退火窑的生产效率与质量提升的方法与技术。

首先,为了提高浮法玻璃退火窑的生产效率,可以从以下几个方面进行改进。

一、优化窑膛结构窑膛是浮法玻璃退火窑内的主要部件,其结构的合理设计对于玻璃品质和生产效率具有重要意义。

可以通过改变窑膛的尺寸、形状以及材质等,提高传热效率,减少能量损失,从而提高生产效率。

此外,合理设置窑膛内的风道和加热设备,保证玻璃的均匀加热和快速冷却,进一步提升生产效率。

二、改进温度控制系统温度控制是浮法玻璃退火窑的关键环节之一。

采用先进的温度控制技术,可以实现对退火工艺的精确控制,提高生产效率和产品质量。

例如,可以引入自动化控制系统,实时监测和调节温度,避免温度波动对玻璃品质的影响。

同时,合理设置温度传感器的位置,确保温度的准确测量和控制。

三、提高能源利用效率浮法玻璃退火窑是一种能耗较大的设备,提高能源利用效率对于生产效率和经济效益的提升至关重要。

可以采用节能改造技术,如在窑膛内设置热交换器,利用废热回收,减少能量消耗。

此外,选择高效的加热方式和燃料,如采用天然气替代煤炭,可以减少二氧化碳排放,达到节能减排的目的。

其次,为了提升浮法玻璃的质量,以下几点是需要考虑和改进的。

一、控制退火过程的参数退火过程中的温度、压力以及停留时间等参数的控制对于玻璃的质量具有重要影响。

通过合理调整这些参数,可以达到控制玻璃的平整度、透明度和强度等目标。

例如,控制好退火温度和时间,可以避免玻璃表面出现裂纹或变色现象。

此外,对于不同厚度和规格的玻璃,要进行相应的调整,以保证退火效果的一致性。

二、加强质量检测和控制强化质量检测和控制是提高浮法玻璃质量的有效手段之一。

可以采用先进的检测设备和方法,如采用光学检测设备实时检测玻璃的厚度和平整度。

玻璃的退火工艺制度

玻璃的退火工艺制度
璃退火工艺的应用
玻璃退火在建筑 玻璃中的应用
建筑玻璃作为建筑外墙、 窗户等重要部件,需要经 过退火工艺来提高其强度 和耐久性。通过退火工艺 可以使得建筑玻璃在受到 外力冲击时不易破裂,保 障建筑物的安全性。
玻璃退火在工艺玻璃中的应用
弯曲玻璃
保证形状和性能
夹胶玻璃
增加透光性和强度
智能制造应用
借助智能技术提升 生产效率
绿色生产理念
推动工艺向绿色生 产方向转变
玻璃退火工艺的创新 模式
01 智能化生产
引入智能设备提升生产效率
02 定制化服务
根据客户需求提供个性化定制服务
03
● 06
第六章 总结与展望
玻璃的退火工艺 制度
玻璃退火工艺作为玻璃制 造中重要的工艺环节,通 过释放内部应力、提高玻 璃品质,为玻璃产品的生 产和应用提供了重要支撑。 在未来的发展中,玻璃退 火工艺将继续发挥重要作 用,为玻璃产业的创新和 发展做出更大贡献。
谢谢观看!
玻璃退火的影响因素
温度
影响退火效果的重要因素之一
时间
控制退火过程的持续时间
冷却速率
影响玻璃内部结构的形成
玻璃厚度
决定退火参数的设定
玻璃退火的实践应用
01 工艺优化
不断改进退火工艺,提高玻璃产品质量
02 生产控制
严格控制退火参数,确保产品稳定性
03 技术创新
引入新技术提升退火效率和效果
总结
玻璃的退火工艺制度对玻璃制品质量和性能起着至关重要的 作用。通过合理控制退火参数,可以使玻璃内部应力得到释 放,提高玻璃的强度和耐热性,从而满足不同领域对玻璃产 品的需求。
提升品质
满足高品质需求
个性化处理

厚玻璃退火常见问题的解决方法

厚玻璃退火常见问题的解决方法

厚玻璃退火常见问题的解决方法赵建军(秦皇岛耀华国投浮法玻璃有限责任公司,秦皇岛066000)摘 要: 浮法玻璃的退火常见问题主要是厚玻璃的切割难、边部炸裂,通过分析产生的原因,提出合理控制玻璃退火温度制度和边部温度;同时,采用烧边火等方法改善玻璃边部应力、减少裂边,提高切裁率。

关键词: 浮法玻璃; 退火温度; 应力; 烧边火Solution to FAQ(Frequently Asked Q uestions)of ThickG lass AnnealingZHA O Jian2j un(Qinhuangdao Y aohua Guotou Float G lass Co.,Ltd,Qinhuangdao066000,China)Abstract: FAQ(frequently asked questions)of float glass annealing are cutting difficulty and edge bursting of thick glass.This paper analyzes the reasons and puts forward reasonable control of glass annealing temperature schedule&edge temperature,and suggests the way of side firing which may be adopted to improve glass edge stress,reduce edge crack and increase cutting rate.K ey w ords: float glass; annealing temperature; stress; side firing 随着市场对平板玻璃原片不断增长的需求,浮法线的数量成倍增加,我国浮法玻璃的产能已位居世界第1位,同时建筑用的10mm以上厚度的需求量也在不断上升,我们注意到厚玻璃生产时成品率偏低,其中厚玻璃在退火过程中易发生裂边和切割困难,成为影响成品率的主要因素之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

玻璃加工之如何改进玻璃退火
相关专题:玻璃
时间:2010-07-02 00:00 来源:中华玻璃网
由于禁受了激烈的温度变更,退火基础情理玻璃在成型过程中。

使内外层产生温度梯度,并且由于成品的外形、厚度、受冷却程度等玻璃机械的分歧,引起制品中产生不规则的热应力。

这种热应力能降低制品的机械强度和热稳定性,也影响玻璃的光学均一性,若应力逾越成品的极限强度,便会自行破裂。

所以玻璃制品中存在不均匀的热应力是一个严重的错误谬误退火是一种热处理过程,可使玻璃中存在热应力尽可能消除或减小至允许值。

除玻璃纤维和薄壁小型空心制品外,的确所有玻璃制品都必要履行退火。

玻璃制品中的热应力,按其存在特色,分为姑且应力和永久应力两种。

由于其导热性较差,①暂时应力。

玻璃在应变点温度以下加热或冷却时。

各部位将形成温度梯度,从而产生必然的热应力。

这种热应力,随着温差的存在而存在温差越大,姑且应力也越大,并随着温差的消失而消失。

这种热应力称为姑且应力。

但在温度失调之前,应该注重的当然姑且应力可以或许自行打消。

当姑且应力值超过玻璃的极限强度时,玻璃异常会自行破裂,所以玻璃在脆性温度范围内的加热或冷却速度不宜过快。

由温差产生的热应力,②永久应力。

玻璃从应变点温度以上开端冷却时。

玻璃冷却至室温、内外层温度失调后,并不能完全消散,玻璃中仿照照旧残存着一定的应力,这种应力称为水久应力。

永久应力的大小取决于成品在应变点温度以上时的冷却速率、玻璃的黏度、热缩短系数及制品的厚度等玻璃机械。

就是把具有永久应力的玻璃制品重新加热到玻璃内部质点可以移动的温度,玻璃的退火。

把持质点的位移使应力分散(称为应力松懈)来消除或减弱永久应力。

应力松弛速度取决于玻璃温度,温度越高,松弛速度越快。

是以,一个合适的退火温度范围,玻璃得到精采退火质量的关键实际生产过程中,完全消除永久应力是不可能的通过退火祝愿残余应力增添或均化到最低制约之内,以增强玻璃的机械强度和热稳定性厚玻璃退火的特点厚玻璃的生产体式格局重要有反向法和挡板法两种,这里重要谈判挡板法生产厚玻璃时的退火。

挡板法生产的厚玻璃其主要原理是将玻璃液“解冻”挡板区域。

其退火的重要特点如下,1。

此种方法生产的厚玻璃由于边部较冷,玻璃的边部厚度较薄,因此边部的压应力很大。

2。

玻璃越厚,热量连结在玻璃体内的时辰越长。

3。

为了满足切割请求,必须减小钢化应力。

4。

要防止边子在后退火区冷却太快,边子处产生较高的姑且张应力,导致纵裂损失。

控制边部厚度厚玻璃的退火利弊和玻璃的厚度曲线密切相干,退火改良改良厚度曲线。

出格是玻璃板的边部厚度,个体要求厚度曲线要保证边子25毫米处的厚度比平匀厚度薄约1毫米。

以往的生产中我经常做不到这一点,首要是边部太薄降低负载,以降低钢化应力厚玻璃生产由于厚度的增添,导致热量在玻璃体内的贯穿连接时辰耽误,若是在高负载下生产厚玻璃会导致玻璃体内的钢化应力增加,给后面的切割和客户的改切带来困难,也会使退火造成麻烦,炸裂增加,降低成品率。

因此必须降低负载,以满足合适的钢化应力在A区增加煤气喷枪和在清洗机后增加冷冻水如前所述,边部应力的利弊直接影响纵切的利害,
这就要求玻璃在退火窑的A区和B区尽量前进边部的温度,因为在退火窑的进口处已加了间隙喷枪,是以在A区加一对煤气喷枪是一个不错的抉择,以前进玻璃边部的张应力。

同理在清洗机后增加冷冻水也异常能提高边部的权且张应力,达到改善纵切的目的
其热量保持在玻璃体内的时辰越长,得当下降A区温度如前所述玻璃越厚。

呼应其退火时辰也就越长。

由于退火窑的退火长度是流动的因此可以或许通过得当下降A区的温度来迟误退火区,最终达到降低玻璃钢化应力的目的RET区增加边部煤气喷枪。

厚玻璃的生产中损失最大的玻璃的纵裂,如果一旦发生纵裂少则半小时,多的时刻有可以或许必要几小时,是以我要特别防备类似情况产生在厚玻璃的生产中,可以或许采取改良厚度曲线,控制边部厚度;降低负载;A 区增加煤气喷枪和在清洗机后增加冷冻水;得当下降A区温度;RET区增加边部煤气喷枪等措施来达到最佳成品率和最佳切割品质。

相关文档
最新文档