玻璃如何退火

合集下载

玻璃退火的四个阶段

玻璃退火的四个阶段

玻璃退火的四个阶段玻璃退火是一种常用的玻璃加工方法,通过加热和冷却的过程,使玻璃获得理想的物理性能和外观效果。

玻璃退火的过程可以分为四个阶段:预热阶段、加热阶段、保温阶段和冷却阶段。

一、预热阶段在玻璃退火过程中,首先需要进行预热阶段。

预热阶段的目的是将玻璃的温度提高到一定程度,以便后续的加热和保温。

预热温度一般较低,通常在300°C左右。

预热时间的长短取决于玻璃的厚度和尺寸,一般为几分钟到几十分钟。

二、加热阶段在预热阶段之后,进入加热阶段。

加热阶段是玻璃退火的关键阶段,也是最耗时的阶段。

在这个阶段,需要将玻璃的温度逐渐提高到所需的退火温度。

退火温度的选择要根据玻璃的种类和要求来确定,一般在500°C到600°C之间。

加热温度的升降速度要适中,过快或过慢都会影响退火效果。

三、保温阶段当玻璃的温度达到所需的退火温度后,进入保温阶段。

保温阶段的目的是让玻璃在退火温度下保持一定的时间,使其内部的应力得到释放,晶体结构得到重组。

保温时间的长短取决于玻璃的厚度和尺寸,一般为几小时到几十小时。

四、冷却阶段在保温阶段结束后,进入冷却阶段。

冷却阶段的目的是将玻璃的温度逐渐降低到室温,使其内部的结构稳定。

冷却速度的选择要根据玻璃的种类和要求来确定,一般需要较慢的冷却速度,以避免因快速冷却导致的玻璃破裂。

玻璃退火的四个阶段相互关联,每个阶段都起到了关键的作用。

预热阶段为加热提供了条件,加热阶段使玻璃达到退火温度,保温阶段使玻璃内部的应力得到释放,冷却阶段使玻璃的结构稳定。

通过这四个阶段的有序进行,玻璃能够获得理想的退火效果。

玻璃退火的过程对于玻璃产品的性能和质量起着至关重要的作用。

通过适当的退火温度和时间,可以减少玻璃内部的应力,提高其抗压强度和耐热性能。

同时,退火还可以改善玻璃的外观效果,使其更加清澈透明。

玻璃退火是一项重要的玻璃加工工艺,通过预热、加热、保温和冷却四个阶段的有序进行,可以使玻璃获得理想的物理性能和外观效果。

高硼硅玻璃的回火工艺流程

高硼硅玻璃的回火工艺流程

高硼硅玻璃的回火工艺流程高硼硅玻璃是一种具有特殊性能的玻璃材料,具有高折射率、低热膨胀系数和优异的抗热震性能。

为了进一步提高其性能,需要通过回火工艺对其进行处理。

高硼硅玻璃的回火工艺流程主要包括以下几个步骤:1. 退火预处理:将高硼硅玻璃制品放入退火炉中,进行退火预处理。

退火温度一般为850左右,退火时间根据需求可在1小时至数小时之间。

退火预处理的目的是消除材料内部的应力,使材料达到相对平衡的状态。

2. 低温回火:将经过退火预处理的高硼硅玻璃制品放入回火炉中,进行低温回火处理。

回火温度一般在500左右,回火时间根据需求可在1小时至数小时之间。

低温回火的目的是进一步消除残留应力,提高材料的抗热震性能。

3. 中温回火:将经过低温回火处理的高硼硅玻璃制品放入回火炉中,进行中温回火处理。

回火温度一般在800左右,回火时间根据需求可在1小时至数小时之间。

中温回火的目的是进一步减小材料内部的残余应力,提高材料的抗热震性能和耐热性能。

4. 高温回火:将经过中温回火处理的高硼硅玻璃制品放入回火炉中,进行高温回火处理。

回火温度一般在1000左右,回火时间根据需求可在1小时至数小时之间。

高温回火的目的是使材料达到最佳的热稳定性和抗热震性能,提高材料的机械强度和耐热性能。

5. 冷却处理:高温回火后,将制品从回火炉中取出,进行冷却处理。

冷却速度一般要适当控制,避免产生额外的应力和裂纹。

可采用自然冷却或者采用特殊的冷却方法,具体根据制品的要求来决定。

通过以上的回火工艺流程,可以有效地改善高硼硅玻璃的性能,提高材料的抗热震性能、耐热性能和机械强度。

同时,回火工艺也可以减小材料内部应力,提高玻璃制品的稳定性和可靠性。

总之,高硼硅玻璃的回火工艺流程是一个复杂而关键的工艺,在制品的制备过程中起到重要的作用。

通过合理的回火工艺流程,可以使高硼硅玻璃材料达到更好的性能指标,满足各类工业和科研领域的需求。

光伏玻璃退火窑工作原理

光伏玻璃退火窑工作原理

光伏玻璃退火窑工作原理
嘿呀!今天咱们就来好好聊聊光伏玻璃退火窑的工作原理呢!
首先呀,咱们得知道,光伏玻璃退火窑那可是个相当重要的设备哇!
1. 光伏玻璃为啥要退火呢?哎呀呀,这是因为在生产过程中,玻璃经历了高温加工,内部存在着巨大的应力呀!如果不进行退火处理,这玻璃就容易出现破裂、变形等问题呢,那可就糟糕啦!所以说,退火这一步至关重要呀!
2. 那这退火窑是怎么工作的呢?哇!它其实是通过控制温度来实现退火的哟!在退火窑的不同区域,温度是不一样的呢!一开始,温度比较高,然后逐渐降低,形成一个温度梯度呀。

3. 还有哦!退火窑里有专门的加热和冷却装置呢!加热装置负责把温度升高到合适的范围,冷却装置则让温度慢慢降下来,这样就能让玻璃内部的应力慢慢释放出来啦。

4. 哎呀呀!在退火窑工作的时候,还得精确控制气氛呢!比如说,要保持一定的氧气含量、湿度等等,这样才能保证退火的效果达到最佳呀!
5. 而且呢,退火窑的运行速度也是有讲究的哟!速度太快或者太慢都不行,得根据玻璃的特性和生产要求来调整呢。

6. 哇塞!还有还有!为了确保退火的质量,退火窑里还会安装各种监测设备,时刻监控温度、气氛等参数的变化呀!
总之呢,光伏玻璃退火窑的工作原理可复杂啦,但又特别重要!
它就像一个神奇的魔法盒子,能让光伏玻璃变得更加完美,为我们的太阳能发电事业做出巨大的贡献呀!怎么样,朋友们,这下你们对光伏玻璃退火窑的工作原理是不是有了更清楚的了解啦?。

玻璃退火窑的热量分析

玻璃退火窑的热量分析

玻璃退火窑:是使玻璃带以一定的速度冷却以降低和均化热应力的热工设备,是玻璃生产过程中必不可少的设备。

玻璃的退火主要是通过风机和阀门控制风的压力和流量的大小,使玻璃在退火窑内按一定的速度进行冷却降温。

按照玻璃退火窑各部分的结构和功能划分,沿玻璃前进方向依次分为封闭区、Ret区和敞开区等区域。

按照玻璃退火工艺要求,封闭区又依次分为A区、B区、C区等;敞开区依次分为D区、F区等。

如图1所示。

封闭区即相对封闭的区域,除了入口和出口外均被玻璃退火窑壳体封闭起来,以便保持玻璃退火环境的相对稳定,详见图2。

图1 玻璃退火窑区划简图图2 玻璃退火窑封闭区横截面简图热量的来源:(1)玻璃散发的热量。

一条玻璃生产线在生产一定产品规格的情况下,玻璃在各区内散发的热量是基本稳定的。

玻璃降温所散发的热量是玻璃退火窑热量的主要来源。

(2)辅助电加热散发的热量。

为了弥补玻璃散发热量的不足和退火窑边部的温度低于中间部位温度而形成的横向温差及玻璃退火窑烤窑升温的需要,在退火窑边部玻璃板上和板下均设置有电加热器(见图1和图2)。

这些电加热器所释放的热量Q电是根据其功率的大小而确定的。

(3)各区之间相互作用的热量:包括相互传导的热量和风传导的热量。

热量的去向:(1)玻璃退火窑壳体吸收的热量。

玻璃退火窑壳体是玻璃退火窑的主要构成体,由耐热钢板、普通钢板、保温棉和槽钢等构成,既起到对玻璃的保温作用,又不可避免地吸收一部分热量,这部分热量最终散发到厂房内。

(2)冷却风吸收的热量。

冷却风是使玻璃退火降温的主要因素,通过风机和阀门控制冷却风的压力和流量的大小。

(3)退火窑辊子吸收的热量。

退火窑辊子是支撑和输送玻璃的重要元件,与玻璃板直接接触并且大部分辊体在退火窑内,因此退火窑辊子也吸收一部分热量。

这些热量一部分用来维持辊子本身的温度,另有一部分散发到厂房内等。

退火窑的保温和密封:(1)退火窑的保温。

退火窑封闭区保温棉的性能是退火窑保温增热的关键,因此应选用质量好、导热系数低的保温棉,并且制作退火窑时应尽量填实、填满。

第十章玻璃的退火讲解

第十章玻璃的退火讲解

热应力:玻璃中由于温度差而产生的应力。
按其存在的特点又可分成暂时应力和永久应力。
玻璃工艺学
2
(一)暂时应力: 当玻璃温度低与应变点(=10 13.6Pa.S)时处于弹性 变形温度范围内(>1014Pa.S)即脆性状态时,经受不均 匀的温度变化时产生的热应力。 特点:随温度梯度的产生而产生,随温度梯度的消 失而消失。 暂时应力的产生过程: 在温度低于应变点时,玻璃内结构集团已不能产生粘 滞性流动,主要靠弹性松弛来消除应力。
3、慢冷阶段 为了使制品在冷却后不再产生永久应力或仅产生微小的永久 应力,冷却速度要求较慢,常采用线性降温。 开始冷却速度: ho = (c/ 分) 下降10℃后继续冷却速度:
13a 2
ho h= ( 1 2 2
To-T 20
) c/分
H -每降低100c后下一个100c的降温速度 To-退火温度 T-每降低100c后的温度 慢冷阶段结束时温度必须小于或等于应变点温度,否则在快 冷阶段重新产生永久应力而退火无效。
5、容易分相的玻璃制品退火时,退火温度不能过高,退火时 间不能过长,次数要少。
玻璃工艺学
24
玻璃工艺学 19
温度
退火温度
上限退火温度
下限退火温度
时间
加热 保温 慢冷 快冷
1、加热阶段 加热时玻璃制品表面为压应力,升温速度可较快:
130 最大升温速度 hc = 2(c/ 分) a a-空心或单面受热的玻璃制品的总厚,cm 实心制品的半厚, cm 玻璃工艺学
20
考虑表面微裂纹、缺陷、厚度均匀性及退火炉温度分布均匀 性,一般工业中采用
玻璃工艺学 23
2、形状复杂、厚度大的制品的加热及冷却速度要慢;

玻璃退火过程介绍

玻璃退火过程介绍
(3)不可逆转的结构差和可逆转的结构差
在退火阶段(<1014.5ρ),玻璃经结构调整减小了结构差(长度差,密度差和热膨胀系数差),趋向于密实化。玻璃的各部在经历的时间, (弹塑性体)、 (弹塑性初态)、 (亚刚体)和 (三者之和)上说,是有差别的。 ,尤其是 较大的单位,相应的密度高,长度短和热膨胀率低。与 , 较小的部位之间产生了结构差,冷至刚体被固定而不可逆转,形成了永久应力即是结构应力,绝无第二种应力可言。
[1]退火阶段(1011~1014.5ρ,595~516.05 ℃)和后续退火阶段(1014.5~10∞ρ,516.05~30 ℃)
玻璃作结构调整,减小由温差产生的结构差,使冷至刚体时,被固定的、不可逆转的结构差所致的永久应力,符合制品的规定值。历经了最佳、次佳和最次三种退火状态。分别与弹塑性体、弹性体初态和亚刚体的三种物理特性相对应。
冷却过程中,玻璃的黏度呈指数剧增。然而,玻璃的物理特性却是呈现出连续、渐变的规律,总共历经了六个物理特性阶段[1]:
(1)自由流动的熔体
η=101.88~105ρ,1 500~918.30 ℃[2]Δt=581.70℃
文献依据:“<105ρ时,玻璃液能作自由流动;拉薄开始于105.25ρ,893.86 ℃”。
①最佳退火状态(弹塑性体)
温差所致的结构差是玻璃冷至弹塑性体时产生的。并不是冷至弹性体初态的终点,于~1013ρ才产生的。高温下,玻璃的黏度较低,结构基团位移活度大,在均匀的温度场作“顺向位移”结构调整容易进行,减小结构差的效果最好,使制品中残留的永久应力更小之贡献最大。玻璃在弹塑性体阶段处于最佳退火状态。
②次佳退火状态(弹性体初态)
结构基团位移→分子位移。黏度剧增使位移活度锐减,减小结构差的调整明显削弱。玻璃在弹性体初态阶段处于次佳退火状态。

玻璃的退火工艺制度

玻璃的退火工艺制度
璃退火工艺的应用
玻璃退火在建筑 玻璃中的应用
建筑玻璃作为建筑外墙、 窗户等重要部件,需要经 过退火工艺来提高其强度 和耐久性。通过退火工艺 可以使得建筑玻璃在受到 外力冲击时不易破裂,保 障建筑物的安全性。
玻璃退火在工艺玻璃中的应用
弯曲玻璃
保证形状和性能
夹胶玻璃
增加透光性和强度
智能制造应用
借助智能技术提升 生产效率
绿色生产理念
推动工艺向绿色生 产方向转变
玻璃退火工艺的创新 模式
01 智能化生产
引入智能设备提升生产效率
02 定制化服务
根据客户需求提供个性化定制服务
03
● 06
第六章 总结与展望
玻璃的退火工艺 制度
玻璃退火工艺作为玻璃制 造中重要的工艺环节,通 过释放内部应力、提高玻 璃品质,为玻璃产品的生 产和应用提供了重要支撑。 在未来的发展中,玻璃退 火工艺将继续发挥重要作 用,为玻璃产业的创新和 发展做出更大贡献。
谢谢观看!
玻璃退火的影响因素
温度
影响退火效果的重要因素之一
时间
控制退火过程的持续时间
冷却速率
影响玻璃内部结构的形成
玻璃厚度
决定退火参数的设定
玻璃退火的实践应用
01 工艺优化
不断改进退火工艺,提高玻璃产品质量
02 生产控制
严格控制退火参数,确保产品稳定性
03 技术创新
引入新技术提升退火效率和效果
总结
玻璃的退火工艺制度对玻璃制品质量和性能起着至关重要的 作用。通过合理控制退火参数,可以使玻璃内部应力得到释 放,提高玻璃的强度和耐热性,从而满足不同领域对玻璃产 品的需求。
提升品质
满足高品质需求
个性化处理

光伏玻璃退火窑原理

光伏玻璃退火窑原理

光伏玻璃退火窑原理
光伏玻璃退火窑的原理如下:
1.玻璃原片生产过程中,熔融玻璃液从池窑中连续流出并漂浮在相对密度大的锡液表面上。

在重力和表面张力的作用下,玻璃液在锡液表面上铺开、摊平,形成上下表面平整的玻璃带,向锡槽尾部拉引。

2.玻璃带被拉引出锡槽后,经过渡辊合,进入退火窑。

在退火窑内,玻璃带严格按照制定的退火温度曲线进行退火,使玻璃的残余应力控制在要求范围内。

3.出退火窑的玻璃带随即进入冷端,经过切割掰断、加速分离、掰边、纵掰纵分等步骤后,通过斜坡道,并经吹风清扫,然后进入分片线。

4.人工取片装箱包装堆垛成品由叉车送入成品库。

总之,光伏玻璃退火窑是一个复杂的过程,如需了解更多,可以咨询退火窑行业专业人士。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在制作供应玻璃微珠时最重要的一点就是玻璃退火,那玻璃退火该注意些什么呢?
玻璃退火,就是把具有永久应力的玻璃制品重新加热到玻璃内部质点可以移动的温度,利用质点的位移使应力分散(称为应力松弛)来消除或减弱永久应力。

应力松弛速度取决于玻璃温度,温度越高,松弛速度越快。

因此,一个合适的退火温度范围,是玻璃获得良好退火质量的关键。

高于退火温度限时,玻璃会软化变形:底于退火所需求温度时,玻璃结构实际上可以认为已固定,内部质点已不能移动,也就无法分散或消除应力。

玻璃在退火温度范围内保温一段时间,以使原有的永久应力消除。

之后要以适当的冷却速度冷却,以保证玻璃中不再产生新的永久应力,如果冷却速度过快,就有重新产生永久应力的可能,这在退火制度中用慢冷阶段保障,慢冷阶段必须持续到最低退火温度以下。

玻璃在退火温度以下冷却时,只会产生暂时应力,以节约时间和减少生产线长度,但也必须控制一定的冷却过快时,可能会使产生的暂时应力大于玻璃本身的极限强度而导致制品爆裂
相关参考资料:/。

相关文档
最新文档