图论详细讲解
图论(C++版)

基本思想:对图的每个顶点建立一个单链表,存储该顶点所有邻接顶点及其相关 信息。 每一个单链表设一个表头结点。 第i个单链表表示依附于顶点Vi的边(对有向图是以顶点Vi为头或尾的弧)。 图的邻接表存储法,又叫链式存储法。本来是要用链表实现的,但大多数情况下 只要用数组模拟即可。
• 邻接表(有向图) • 邻接表的处理方法是这样: • 图中顶点用一个一维数组存储,当然,顶点也可以用单链表 来存储,不过数组可以较容易地读取顶点信息,更加方便。 • 图中每个顶点Vi的所有邻接点构成一个线性表,由于邻接点 的个数不确定,所以我们选择用单链表来存储。
• 1.二维数组邻接矩阵存储
• • •
基本思想:对于有n个顶点的图,用一维数组vexs[n]存储顶点信息,用二维数组
A[n][n]存储顶点之间关系的信息。该二维数组称为邻接矩阵。在邻接矩阵中,以顶点 在vexs数组中的下标代表顶点,邻接矩阵中的元素A[i][j]存放的是顶点i到顶点j之间关 系的信息。
• 建立邻接矩阵时,有两个小技巧:
• 初始化数组大可不必使用两重for循环。 • 1) 如果是int数组,采用memset(g, 0x7f, sizeof(g))可 全部初始化为一个很大的数(略小于0x7fffffff), • 使用memset(g, 0, sizeof(g)),全部清为0, • 使用memset(g, 0xaf, sizeof(g)),全部初始化为一个很 小的数。 • 2)如果是double数组,采用memset(g,127,sizeof(g));可 全部初始化为一个很大的数1.38*10306, • 使用memset(g, 0, sizeof(g))全部清为0.
简单图:在图结构中,若不存在顶点到其自身的边,且同一条边不重复 出现,则称这样的图为简单图。以下两个则不属于简单图:
Dijkstra算法原理详细讲解

Dijkstra算法原理详细讲解
Dijkstra算法是图论中的一种贪心算法,用于求解最短路径问题。
该算法的贪心策略是:每次选择当前距离起点最近的节点作为中间节点,并更新起点到其它节点的距离。
通过不断选择距离起点最近的节点,并逐步更新起点到各个节点的距离,最终得到起点到终点的最短路径。
Dijkstra算法的具体实现包括以下几个步骤:
1. 初始化:将起点到各个节点的距离记为无穷大或者一个较大的值,将起点到自己的距离记为0。
2. 选择当前距离起点最近的节点作为中间节点。
这个过程可以通过维护一个距离起点最近的节点集合来实现,初始时集合中只包含起点。
3. 更新起点到与中间节点相邻的节点的距离,即对于每个与中间节点相邻的节点,如果从起点到中间节点的距离加上中间节点到该节点的距离小于起点到该节点的距离,则更新起点到该节点的距离为从起点到中间节点的距离加上中间节点到该节点的距离。
4. 重复步骤2和步骤3,直到起点到终点的距离不再更新。
5. 最终得到起点到终点的最短路径。
Dijkstra算法的时间复杂度为O(N^2),其中N为节点的数目。
如果使用优先队列来维护距离起点最近的节点集合,则算法的时间复杂度可以降为O(NlogN),但是实际应用中优先队列的实现可能较为复杂。
Dijkstra算法可以用于有向图和无向图,但是不能处理带有负权边的图。
如果图中存在负权边,则可以使用Bellman-Ford算法来求解最短路径。
高中数学图论的实际应用与教学探讨

高中数学图论的实际应用与教学探讨在高中数学的广袤领域中,图论宛如一颗璀璨的明珠,虽然它并非高中数学课程的核心部分,但其在实际生活中的应用广泛,且对于培养学生的逻辑思维和解决问题的能力具有重要意义。
本文将深入探讨高中数学图论的实际应用,并对其教学方法进行分析。
一、图论的基本概念图论是研究图的性质和应用的数学分支。
所谓“图”,并不是我们日常所理解的图像或图画,而是由一些顶点(节点)和连接这些顶点的边所组成的结构。
例如,一个城市的交通网络可以用图来表示,顶点代表城市中的各个地点,边代表道路。
在图论中,有许多重要的概念,如顶点的度(与该顶点相连的边的数量)、路径(从一个顶点到另一个顶点经过的边的序列)、回路(起点和终点相同的路径)、连通图(任意两个顶点之间都存在路径)等。
二、图论在实际生活中的应用1、交通规划城市的交通规划是图论应用的一个重要领域。
通过将城市道路网络抽象为图,可以分析交通流量,确定关键的道路节点和拥堵路段,从而优化交通信号灯设置、规划新的道路建设等,以提高交通效率,减少拥堵。
2、网络通信在计算机网络中,图论用于描述网络拓扑结构。
通过分析网络中的节点和连接关系,可以优化数据传输路径,提高网络的可靠性和性能。
3、物流配送物流企业在规划货物配送路线时,可以利用图论来找到最短路径,降低运输成本,提高配送效率。
例如,快递员在派送多个地点的包裹时,通过图论算法可以找到最优的派送顺序。
4、任务分配在项目管理中,将各项任务视为顶点,任务之间的依赖关系视为边,可以使用图论来合理安排任务的执行顺序,确保项目按时完成。
5、电路设计电子电路的设计中也会用到图论。
电路中的元件可以看作顶点,元件之间的连接看作边,通过分析电路图的拓扑结构,可以优化电路设计,提高电路的性能和可靠性。
三、高中数学图论教学的重要性1、培养逻辑思维能力图论问题的解决需要学生进行逻辑推理和分析,通过构建图、寻找路径、判断连通性等操作,锻炼学生的思维严谨性和逻辑性。
图论及其应用综述

图论综述一、简介图论是数学的一个分支。
它以图为研究对象。
图论中的图是由若干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系,用点代表事物,用连接两点的线表示相应两个事物间具有这种关系。
图G=(V,E)是一个二元组(V,E)使得E⊆[V]的平方,所以E的元素是V的2-元子集。
集合V中的元素称为图G的定点(或节点、点),而集合E的元素称为边(或线)。
通常,描绘一个图的方法是把定点画成一个小圆圈,如果相应的顶点之间有一条边,就用一条线连接这两个小圆圈,如何绘制这些小圆圈和连线时无关紧要的,重要的是要正确体现哪些顶点对之间有边,哪些顶点对之间没有边。
图论本身是应用数学的一部份,因此,历史上图论曾经被好多位数学家各自独立地建立过。
关于图论的文字记载最早出现在欧拉1736年的论著中,他所考虑的原始问题有很强的实际背景。
目前,图论已形成很多分支:如随机图论、网络图论、代数图论、拓扑图论、极值图论等。
图论的应用已经涵盖了人类学、计算机科学、化学、环境保护、非线性物理、心理学、社会学、交通管理、电信以及数学本身等。
二、基本内容2.1 图的基本概念本章首先介绍了图的一些基本性质和一些不同模型的图,包括偶图,完全图和补图,引入了定点度的来描述图的性质。
其次介绍了子图的相关概念,介绍了图的一些基本运算规则,对图的路和连通性进行了阐释。
紧接着讲解了最短路算法,定义设G为边赋权图。
u与v是G中两点,在连接u与v的所有路中,路中各边权值之和最小的路,称为u与v间的最短路。
图的代数表示,包括图的邻接矩阵和图的关联矩阵。
最后对极图理论进行了简介,主要介绍了极值图论中的一个经典结论——托兰定理。
2.2 树本章主要介绍了树的概念与性质,阐述了生成树与最小生成树的基本概念与一些常用结论与定理。
树是不含圈的无圈图,也是连通的无圈图。
树是图论中应用最为广泛的一类图。
在理论上,由于树的简单结构,常常是图论理论研究的“试验田”。
离散数学中的图论着色算法-教案

离散数学中的图论着色算法-教案一、引言1.1图论的发展历程1.1.118世纪欧拉解决哥尼斯堡七桥问题,奠定图论基础。
1.1.219世纪图论在数学和物理学领域得到发展。
1.1.320世纪图论在计算机科学中扮演重要角色。
1.1.4当前图论研究涉及网络科学、社会网络等多个领域。
1.2图论的基本概念1.2.1图由节点和边组成,用于表示物件与物件之间的关系。
1.2.2节点代表研究对象,边代表节点间的联系。
1.2.3图分为有向图和无向图,反映关系的方向性。
1.2.4图的度、路径、环等是图论中的基本术语。
1.3图论在现实中的应用1.3.1社交网络分析,如Facebook的社交图谱。
1.3.2电信网络设计,如电话网络的布局。
1.3.3交通运输规划,如航班路线的优化。
1.3.4计算机网络设计,如互联网的结构优化。
二、知识点讲解2.1图的着色问题2.1.1图的着色是将图中的节点用颜色进行标记,满足相邻节点颜色不同。
2.1.2着色问题分为正常着色和特定着色,如双色着色、列表着色等。
2.1.3着色问题在图论中具有重要地位,与图的性质紧密相关。
2.1.4着色问题广泛应用于地图着色、排课表、寄存器分配等领域。
2.2图的着色算法2.2.1Welsh-Powell算法,基于节点度进行着色。
2.2.2DSATUR算法,优先着色度数大且邻接节点着色多的节点。
2.2.3RLF算法,考虑节点邻接矩阵的行、列和节点度。
2.2.4图的着色算法不断发展,如启发式算法、遗传算法等。
2.3图的着色算法的应用2.3.1地图着色,确保相邻区域颜色不同。
2.3.2课程表安排,避免时间冲突。
2.3.3计算机寄存器分配,优化资源利用。
2.3.4光纤通信网络设计,减少信号干扰。
三、教学内容3.1图的着色问题的引入3.1.1通过地图着色实例引入图的着色问题。
3.1.2讲解正常着色和特定着色问题的区别。
3.1.3分析着色问题在现实中的应用场景。
3.1.4引导学生思考着色问题的数学模型。
【转】彻底弄懂最短路径问题(图论)

【转】彻底弄懂最短路径问题(图论)P.S.根据个⼈需要,我删改了不少问题引⼊问题:从某顶点出发,沿图的边到达另⼀顶点所经过的路径中,各边上权值之和最⼩的⼀条路径——最短路径。
解决最短路的问题有以下算法,Dijkstra算法,Bellman-Ford算法,Floyd算法和SPFA算法,另外还有著名的启发式搜索算法A*,不过A*准备单独出⼀篇,其中Floyd算法可以求解任意两点间的最短路径的长度。
笔者认为任意⼀个最短路算法都是基于这样⼀个事实:从任意节点A到任意节点B的最短路径不外乎2种可能,1是直接从A到B,2是从A经过若⼲个节点到B。
⼀.Dijkstra算法该算法在《数据结构》课本⾥是以贪⼼的形式讲解的,不过在《运筹学》教材⾥被编排在动态规划章节,建议读者两篇都看看。
(1) 迪杰斯特拉(Dijkstra)算法按路径长度递增次序产⽣最短路径。
先把V分成两组:S:已求出最短路径的顶点的集合V-S=T:尚未确定最短路径的顶点集合将T中顶点按最短路径递增的次序加⼊到S中,依据:可以证明V0到T中顶点Vk的最短路径,或是从V0到Vk的直接路径的权值或是从V0经S中顶点到Vk的路径权值之和(反证法可证)。
(2) 求最短路径步骤1. 初使时令 S={V0},T={其余顶点},T中顶点对应的距离值,若存在<V0,Vi>,为<V0,Vi>弧上的权值(和SPFA初始化⽅式不同),若不存在<V0,Vi>,为Inf。
2. 从T中选取⼀个其距离值为最⼩的顶点W(贪⼼体现在此处),加⼊S(注意不是直接从S集合中选取,理解这个对于理解vis数组的作⽤⾄关重要),对T中顶点的距离值进⾏修改:若加进W作中间顶点,从V0到Vi的距离值⽐不加W的路径要短,则修改此距离值(上⾯两个并列for循环,使⽤最⼩点更新)。
3. 重复上述步骤,直到S中包含所有顶点,即S=V为⽌(说明最外层是除起点外的遍历)。
程序员的数学4:图论入门

内容摘要
这一章通过分析图的连通性,让读者理解图中的信息流动和路径问题。 第四章介绍了图的遍历算法,包括深度优先遍历和广度优先遍历。这两种算法是常用的图遍历算 法,通过这一章的学习,读者可以掌握如何遍历一个图并获取所需信息。 第五章介绍了最小生成树算法,包括Prim算法和Kruskal算法。这两种算法是最常用的最小生成 树算法,通过这一章的学习,读者可以掌握如何找到一个图中连接所有节点的最小代价的树。 第六章介绍了拓扑排序算法,包括Kahn算法和DFS算法。拓扑排序是解决有向无环图(DAG)上 的一种排序算法,通过这一章的学习,读者可以掌握如何对一个有向无环图进行拓扑排序。 《程序员的数学4:图论入门》这本书是一本非常适合程序员阅读的数学书籍,它介绍了图论的 基本概念和应用,并提供了很多实例和练习题帮助读者理解和应用所学知识。这本书不仅可以提 高程序员的数学素养,还可以帮助程序员更好地理解和应用图论来解决实际问题。
精彩摘录
精彩摘录
《程序员的数学4:图论入门》是一本面向程序员群体的数学入门指南,其作 者罗博·福布斯将带大家探索图论的基础概念和算法,从而更好地理解和应用编 程技术。本书将选取一些精彩的摘录,供大家欣赏。
精彩摘录
“图论是一个研究图形和结构的学科,其中节点和边分别表示对象和它们之 间的关系。”
精彩摘录
这是本书最基本的概念之一,通过节点和边这两个概念,我们可以描述各种 复杂的结构。在编程中,我们通常会使用节点和边来表示数据结构,例如树、图 等。
精彩摘录
“一个图G=(V,E)由一组节点V和一组边E组成。”
精彩摘录
这个定义简洁明了,很好地概括了图论的基本构成要素。在许多应用场景中, 节点可以表示人、物体或其他实体,而边则表示这些实体之间的关系。
图论

• •
解题思路
•
• •
但是这个方法点数是平方级别的,本题明显不足。
想法2: 把边变成点,点变成边,从一条边走向另一条边的代价是这 两条边的权值的较大值。
v1 v2
•
点数变为O(n)级别,但是对于菊花图, 边数仍是n^2级别的。
max(v1,v2)
解题思路
•
•
想法3:
对想法2进行优化,利用边权差来节省边数。具体的是对于连 接某一个点的所有边按边权排序,每条边在新图对应的点向 相邻的较大的边对应的点连一条权值为两条边的权值差的边, 向相邻的较小的边连一条权值为0的边,并且把这条边对应的 点拆成两个点,经过代价为这条边的权值。 这样就把max操作通过差分把边数优化成了O(m)级。
• •
•
Tax
• 给出一个N个点M条边的无向图,经过一个点的代价
是进入和离开这个点的两条边的边权的较大值,求从 起点1到点N的最小代价。起点的代价是离开起点的 边的边权,终点的代价是进入终点的边的边权
• N<=100000 • M<=200000
解题思路
•
•
如果n<=100
可以用分层图的思想,把每个点i拆成n个点,dist[i, j] 表示: 从起点出发,最终到达点i,且到达i的前一个点是j的最短距 离。(j的代价不算在内) [i1,j1]->[i2,i1]的边权为max(v[j1,i1], v[i1, i2]) 最后枚举i取min(dist[final, i] + v[i, final])作为答案
• •
解题思路
•
最开始的想法:
之间把每个点抽象成图中的节点,四联通连边,跑最短路?
不能考虑到起始的速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
称为它为有向图,记作D =(V,A),其中V 表 示有向图D的点集合,A表示有向图D的弧集
• 1.图的基本概念与基本定理
例如.图8.4是一个无向图G=(V,E)
其中V={v1,v2,v3,v4}
E={[v1,v2],[v2,v1],[v2,v3],
[v3,v4],[v1,v4],[v2,v4],
图论详细讲解
•
引言
图论是应用非常广泛的运筹学分支,它
已经广泛地应用于物理学控制论,信息论, 工程技术,交通运输,经济管理,电子计算 机等各项领域。对于科学研究,市场和社会 生活中的许多问题,可以同图论的理论和方 法来加以解决。例如,各种通信线路的架设 ,输油管道的铺设,铁路或者公路交通网络 的合理布局等问题,都可以应用图论的方法 ,简便、快捷地加以解决。
边的两个端点是相同的,那么称为这条边是环,
如图8.4中的边[v,v3]是环。如果两个端点之间
有两个端点之间有两条以上的边,那么称为它
们为多重边,如图8.4中的边[v1,v2] ,[v2,v1]
。一个无环,无多重边的图标为简单图,一个 无环,有多重边的图标图称为多重图。
• 1.图的基本概念与基本定理
• 1.图的基本概念与基本定理
综上所述,图论中的图是由点和点与点 之间的线所组成的。通常,我们把点与点之 间不带箭头的线叫做边,带箭头的线叫做弧 。
如果一个图是由点和边所构成的,那么
,称为为无向图,记作G =(V,E),其中V表 示图G的点集合,E表示图G的边集合。连接 点vi,vj V的边记作[vi,vj],或者[vj,vi]。
•
引言
•C
•A
•B
•D
•图8.1 b
•
1.图的基本概念与基本定理
在实际的生产和生活中,人们为了反映 事物之间的关系,常常在纸上用点和线来画 出各式各样的示意图。
例8.1:图8.2是我国北京、上海、重庆等 十四个城市之间的铁路交通图,这里用点表 示城市,用点与点之间的线表示城市之间的 铁路线。诸如此类还有城市中的市政管道图 ,民用航空线图等等。
•
1.图的基本概念与基本定理
•v2
•v4
•v1
•v6
•v3
•v5
•图8.3
• 1.图的基本概念与基本定理
从以上的几个例子可以看出,我们用 点和点之间的线所构成的图,反映实际生 产和生活中的某些特定对象之间的特定关 系。一般来说,通常用点表示研究对象用 点与点之间的线表示研究对象之间的特定 关系。由于在一般情况下,图中的相对位 置如何,点与点之间线的长短曲直,对于 反映研究对象之间的关系,显的并不重要 ,因此,图论中的图与几何图,工程图等 本质上是不同的。
• 1.图的基本概念与基本定理
•太原
•石家庄
•北京 •天津 •塘沽
•济南 •青岛
•重庆
•郑州
•徐州 •连云港
•汉
•南京
•图8.2
•上海
•
1.图的基本概念与基本定理
例8.2:有六支球队进行足球 比赛,我们分别用点v1…v6表示这 六支球队,它们之间的比赛情况, 也可以用图反映出来,已知v1队战 胜v2队,v2队战胜v3队,v3队战胜v5 队,如此等等。这个胜负情况,可 以用图8.3所示的有向图反映出来 。
[v3,v3]} •v1
•v2
•v4
•v3
•图8.4
• 1.图的基本概念与基本定理
图8.5是一个有向图D=(V,A)
其中V={v1,v2,v3,v4,v5,v6,v7}
A={(v1,v2),(v,v3),(v3,v2),
(v3,v4),(v2,v4),(v4,v5),
(v4,v6),(v,v3),(v5,v4),
的个数;
奇点:d(v)=奇数; 偶点:d(v)=偶数; 悬挂点:d(v)=1;
悬挂边:与悬挂点连接的边;
孤立点:d(v)=0;
空图:E = ,无边图
• •1.图的基本概念与基本定理
• 定理8.1 所有顶点次数之 和等于所有边数的2倍。
• 定理8.2 在任一图中,奇 点的个数必为偶数。
•
• 1.图的基本概念与基本定理
(v5,v6),(v6,v7)}
•v3
•v5
•v7
•v1 •v2
•v6
•v4
•图8.5
• 1.图的基本概念与基本定理
下面介绍一些常用的名词:
一个图G或有向图D中的点数,记作P(G)或 P(D),简记作P,边数或者弧数,记作q(G)或者 q(D),简记作q。
如果边[vi,vj] E,那么称vi,vj是边的端点 ,或者vi,vj是相邻的。如果一个图G中,一条
•
引言
•C
•A
•B
•D
•图8.1 a
•
引言
当地的居民热衷于这样一个问题,一个漫 步者如何能够走过这七座桥,并且每座桥只能 走过一次,最终回到原出发地。尽管试验者很 多,但是都没有成功。
为了寻找答案,1736年欧拉将这个问题抽 象成图8.1b所示图形的一笔画问题。即能否从 某一点开始不重复地一笔画出这个图形,最终 回到原点。欧拉在他的论文中证明了这是不可 能的,因为这个图形中每一个顶点都与奇数条 边相连接,不可能将它一笔画出,这就是古典 图论中的第一个著名问题。
•
引言
随着科学技术的进步,特别是电子
计算机技术的发展,图论的理论获得了 更进一步的发展,应用更加广泛。如果 将复杂的工程系统和管理问题用图的理 论加以描述,可以解决许多工程项目和 管理决策的最优问题。因此,图论越来 越受到工程技术人员和经营管理人员的 重视。
•
引言
1736年瑞士科学家欧拉发表 了关于图论方面的第一篇科学论 文,解决了著名的哥尼斯堡七座 桥问题。德国的哥尼斯堡城有一 条普雷格尔河,河中有两个岛屿 ,河的两岸和岛屿之间有七座桥 相互连接,如图8.1a所示。
图的连通性:
链: 由两两相邻的点及其相关联的
边构成的点边序列;如: v0 ,e1 ,v1 ,e2 ,v2 ,e3 ,v3 ,…,vn-1, en , vn ;
v0 ,vn分别为链的起点和终点;
简单链:链中所含的边均不相同;
以点v为端点的边的个数称为点 v的度,记作d(v),如图8—4中 d(v1)=3, d(v2)=4,d(v3)=4,d(v4)=3
。 度为零的点称为弧立点,度为1
的点称为悬挂点。悬挂点的边称为 悬挂边。度为奇数的点称为奇点, 度为偶数的点称为偶点。
•
1.图的基本概念与基本定理
端点的度 d(v):点 v 作为边端点