图论第5章
合集下载
图论第5、6章

第5章 对集
算法用生长“以u为根的M交错树”的 方法 ,来系统地搜索M可扩路. 树中除 u外都是M饱和的,直到碰到第一个 M 不饱和的顶点时,即得一M可扩路.当树 不能再生长下去时,即有N(S)=T.
本算法是个‘好’算法: 从一个M到 下一个,至多进行X次搜索运算;M 至多扩大X次.
例:
5.5 最优分派问题
第5章 对集
构作一个具有二分类(X, Y)的偶图G,其中 X={X1, X2, …, Xn},Y={Y1, Y2, …, Yn}, 并且Xi与Yj相连当且仅当工人Xi胜任工作Yj. 于是问题转化为确定G是否有完美对集的问 题.
下面给出的算法称为匈牙利算法,对任意 一个具有二分类(X, Y)的偶图G,它寻找G 的一个饱和X中所有顶点对集,或找到X的 一个子集S,使|N(S)| < |S| .
第5章 对集
若G有正常的k边着色,则称G是k边可着色的. 每个无环图都是ε边可着色的; 若G是k边可着色的,则一定是k+1边可着色的. 使G为k边可着色的最小整数k称为G的边色数, 记为χ’(G) . 若G的边色数为k,也称G是k边色的. 下图的边色数是多少?
第5章 对集
显然,在任何正常边着色中,和任一顶 点关联的边必须分配以不同的颜色,因 此
第5章 对集
定理5.2(Hall 1935) 设G是具有二分类(X,Y) 的偶图,则G包含饱和X的每个顶点的对集当 且仅当
|NG(S)|≥|S| 对所有S ⊆ X成立.
❖Hall定理是图论中最有用的定理之一,它 在数学及其他许多学科中都有应用.
Hall定理的证明
第5章 对集
必要性 假设G包含对集M,它饱和X的每个顶 点,并设S是X的子集. 由于S的顶点在M下和 N(S)中相异顶点配对,显然有|N(S)| ≥ |S| .
图论第5章

例如:
上图是3-正则图,且可以1-因子分解,但不存在Hamilton圈。
定理9 若3-正则图有割边,则不可1-因子分解。 证明 若3-正则图G可1-因子分解,因去掉G的不含割边的1-因子 后,图中每个点均为2度,从而每条边均在回路中,特别地割边 也在回路中,矛盾。 注:没有割边的3-正则图可能也没有1-因子分解,如彼得森图。
因与 S 中的顶点关联的边必与 N(S) 中的顶点关联,所以 我们可以推出E1 E2。 因此
k N S E2 E1 k S
由此可知
N S S
再根据Hall定理,可知G有一个饱和X的每个顶点的匹配M,
由于|X| = |Y|,所以M是完美匹配。
图G的一个覆盖: 指V(G)的一个子集 K,使得G的每条边都至 少有一个端点在 K 中。 G的最小覆盖: G中点数最少的覆盖。 例
|M|≤|M*|≤|
~ |≤|K|。 K
~ 由于|M|=|K |,所以 |M| = |M*|, | K | = |K|。
定理4(Kǒnig, 1931) 在偶图中,最大匹配的边数等于最小 覆盖的顶点数。 证明 设G 是具有二分类(X, Y)的偶图,M*是G的最大 匹配,用U 表示 X 中的 M* 非饱和顶点的集,用 Z 表示 由 M*交错路连接到 U 中顶点的所有顶点的集。
所以,G有完美匹配。
例 彼得森图满足推论的条件(即没有割边的 3-正则图),故它有完美匹配.
注: 有割边的3正则图不一定就没有完美匹配 。
有完美匹配
没有完美匹配
§5.4 因子分解
图G的因子: G的一个至少有一条边的生成子图; G的因子分解: 将G分解为若干个边不重的因子之并。 n-因子:指n度正则的因子。 例:1-因子的边集构成一个完美匹配。 2-因子的连通分支为一个圈。
第五章 图论

第五章 图论
图论可应用于多个领域,如信息论,控制论, 运筹学,运输网络,集合论等(如用关系图来 描述一个关系)。
计算机领域,其可应用于人工智能,操作系统, 计算机制图,数据结构)
§1
图论基本概念
1-1 图的实例 问题1、哥尼斯堡桥问题
A C B D C B A D
问题:一个散步者能否从任一块陆地出发,走过七 座桥,且每座桥只走过一次,最后回到出发点?
同理,结点间按别的对应方式,便都不存在一一对应
关系。
所以G1,G2不同构。
两图同构有必要条件:
(1)结点数相同; (2)边数同; (3)次数相同的结点数目相等。
1-5 多重图与带权图
1.5.1 多重图 定义11、一个结点对对应多条边,称为多重边。
包含多重边的图称为多重图,否则,成为简单图。
如:
如:基本通路:p1,p2,p3.
简单通路:p1,p2,p3,p5,p6. p4,p7既不是基本通路,也不是简单通路。
定义3、起始结点和终止结点相同的通路称为回路。 各边全不同的回路称为简单回路,各点全不同 的回路称为基本回路。
例2、上例中,1到1的回路有: c1: (1,1,),c2: (1,2,1),c3: (1,2,3,1), 1 2
例2、设有四个城市c1,c2,c3,c4;其中c1与c2间, c1与c4间,c2与c3间有高速公路直接相连,用图表 示该事实。 解:G=<V,E>,其中:V={c1,c2,c3,c4}, E={l1,l2,l3}={(c1,c2),(c1,c4),(c2,c3)} 例3、有四个程序p1,p2,p3,p4,其间调用关系为p1 p2, p1 p4,p2 p3,用图表示该事实。 解:G=<V,E>,V={p1,p2,p3,p4}, E={l1,l2,l3}={(p1,p2),(p1,p4),(p2,p3)}
图论可应用于多个领域,如信息论,控制论, 运筹学,运输网络,集合论等(如用关系图来 描述一个关系)。
计算机领域,其可应用于人工智能,操作系统, 计算机制图,数据结构)
§1
图论基本概念
1-1 图的实例 问题1、哥尼斯堡桥问题
A C B D C B A D
问题:一个散步者能否从任一块陆地出发,走过七 座桥,且每座桥只走过一次,最后回到出发点?
同理,结点间按别的对应方式,便都不存在一一对应
关系。
所以G1,G2不同构。
两图同构有必要条件:
(1)结点数相同; (2)边数同; (3)次数相同的结点数目相等。
1-5 多重图与带权图
1.5.1 多重图 定义11、一个结点对对应多条边,称为多重边。
包含多重边的图称为多重图,否则,成为简单图。
如:
如:基本通路:p1,p2,p3.
简单通路:p1,p2,p3,p5,p6. p4,p7既不是基本通路,也不是简单通路。
定义3、起始结点和终止结点相同的通路称为回路。 各边全不同的回路称为简单回路,各点全不同 的回路称为基本回路。
例2、上例中,1到1的回路有: c1: (1,1,),c2: (1,2,1),c3: (1,2,3,1), 1 2
例2、设有四个城市c1,c2,c3,c4;其中c1与c2间, c1与c4间,c2与c3间有高速公路直接相连,用图表 示该事实。 解:G=<V,E>,其中:V={c1,c2,c3,c4}, E={l1,l2,l3}={(c1,c2),(c1,c4),(c2,c3)} 例3、有四个程序p1,p2,p3,p4,其间调用关系为p1 p2, p1 p4,p2 p3,用图表示该事实。 解:G=<V,E>,V={p1,p2,p3,p4}, E={l1,l2,l3}={(p1,p2),(p1,p4),(p2,p3)}
运筹学-图论

以可允许的10个状态向量作为顶点,将可能互相转移的状态用线段连接起 来构成一个图。
根据此图便可找到渡河方法。
(1,1,1,1) (1,1,1,0) (1,1,0,1) (1,0,1,1) (1,0,1,0) (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,1,0,0) (0,1,0,1)
简单链:(v1 , v2 , v3 , v4 ,v5 , v3 )
v2
简单圈: (v4 , v1 , v2 , v3 , v5 , v7 , v6 ,v3 , v4 )
v6
v4
v5
v3
v7
连通图:图中任意两点之间均至少有一条通路,否则称为不连通 图。
v1 v5
v1
v6
v2
v2
v4
v3
v5
v4
v3
连通图
以后除特别声明,均指初等链和初等圈。
不连通图
有向图:关联边有方向 弧:有向图的边 a=(u ,v),起点u ,终点v; 路:若有从 u 到 v 不考虑方向的链,且 各方向一致,则称之为从u到v 的 路; 初等路: 各顶点都不相同的路; 初等回路:u = v 的初等路; 连通图: 若不考虑方向是
无向连通图; 强连通图:任两点有路;
端点的度 d(v):点 v 作为端点的边的个数 奇点:d(v)=奇数;
偶点:d(v) = 偶数; 悬挂点:d(v)=1; 悬挂边:与悬挂点连接的边; 孤立点:d(v)=0; 空图:E = ,无边图
v1
v3
v5 v6
v2
v4
图 5.7
v5
v4
V={v1 , v2 , v3 , v4 , v5 ,v6 , v7 }
圈:若 v0 ≠ vn 则称该链为开链,否则称为闭链或 回路或圈;
根据此图便可找到渡河方法。
(1,1,1,1) (1,1,1,0) (1,1,0,1) (1,0,1,1) (1,0,1,0) (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,1,0,0) (0,1,0,1)
简单链:(v1 , v2 , v3 , v4 ,v5 , v3 )
v2
简单圈: (v4 , v1 , v2 , v3 , v5 , v7 , v6 ,v3 , v4 )
v6
v4
v5
v3
v7
连通图:图中任意两点之间均至少有一条通路,否则称为不连通 图。
v1 v5
v1
v6
v2
v2
v4
v3
v5
v4
v3
连通图
以后除特别声明,均指初等链和初等圈。
不连通图
有向图:关联边有方向 弧:有向图的边 a=(u ,v),起点u ,终点v; 路:若有从 u 到 v 不考虑方向的链,且 各方向一致,则称之为从u到v 的 路; 初等路: 各顶点都不相同的路; 初等回路:u = v 的初等路; 连通图: 若不考虑方向是
无向连通图; 强连通图:任两点有路;
端点的度 d(v):点 v 作为端点的边的个数 奇点:d(v)=奇数;
偶点:d(v) = 偶数; 悬挂点:d(v)=1; 悬挂边:与悬挂点连接的边; 孤立点:d(v)=0; 空图:E = ,无边图
v1
v3
v5 v6
v2
v4
图 5.7
v5
v4
V={v1 , v2 , v3 , v4 , v5 ,v6 , v7 }
圈:若 v0 ≠ vn 则称该链为开链,否则称为闭链或 回路或圈;
第五章_图论2

6
通路定理
[定理]通路定理 在n阶图G中,如果有顶点u到v (u v) 的通路,那么u到v必有一条长度小于等
于n1的基本通路。
7
通路定理证明
定理:在有n个顶点的图G中,如果有顶点u到v的通路,必有长 度不大于n-1的基本通路。
证明:(1)先证明u和v之间存在基本通路 若uv之间的通路P中有相同的顶点,则从P中删除相同顶点之间
路径,直到P中没有相同顶点,这样得到的路径为u和v之间的基 本通路。
(2) 再证基本通路长度不大于n-1 (反证法)设u和v之间的基本通路的长度≥n。 ∵ 一条边关联两个顶点, ∴长度≥n的基本通路上至少有n+1个顶点。 ∴至少有两个相同顶点在u和v之间的基本通路上,这与基本通路 的性质“任意两个顶点不同”相矛盾。
图G从vi点到vj点有通路当且仅当?
bij = 1
21
图的连通性与可达矩阵
有向图的连通性(n1): 设有向图G的可达矩阵为B
(1) G强连通 B中元素全为1 (2) G是单向连通的 B中所有关于主对角线对称
的两个元素中至少一个值为1
无向图的连通性(n1): 设无向图G的可达矩阵为B
G连通 B中元素全为1
[定义]基本通(回)路
结点各不相同的通路称为基本通路。 中间结点各不相同的回路称为基本回路。
A
基本通路:ACEBD
B
E
基本回路:ABCDEA
C
D
5
有向通(回)路
[定义]有向通(回)路 若通路v0v1 … vn各边是有向边,且vi-1和vi 分别是有向边的始点与终点,则称该通路为 有向通(回)路。
通路uxv相连。
由u和v的任意性,可知~G是连通的。
27
通路定理
[定理]通路定理 在n阶图G中,如果有顶点u到v (u v) 的通路,那么u到v必有一条长度小于等
于n1的基本通路。
7
通路定理证明
定理:在有n个顶点的图G中,如果有顶点u到v的通路,必有长 度不大于n-1的基本通路。
证明:(1)先证明u和v之间存在基本通路 若uv之间的通路P中有相同的顶点,则从P中删除相同顶点之间
路径,直到P中没有相同顶点,这样得到的路径为u和v之间的基 本通路。
(2) 再证基本通路长度不大于n-1 (反证法)设u和v之间的基本通路的长度≥n。 ∵ 一条边关联两个顶点, ∴长度≥n的基本通路上至少有n+1个顶点。 ∴至少有两个相同顶点在u和v之间的基本通路上,这与基本通路 的性质“任意两个顶点不同”相矛盾。
图G从vi点到vj点有通路当且仅当?
bij = 1
21
图的连通性与可达矩阵
有向图的连通性(n1): 设有向图G的可达矩阵为B
(1) G强连通 B中元素全为1 (2) G是单向连通的 B中所有关于主对角线对称
的两个元素中至少一个值为1
无向图的连通性(n1): 设无向图G的可达矩阵为B
G连通 B中元素全为1
[定义]基本通(回)路
结点各不相同的通路称为基本通路。 中间结点各不相同的回路称为基本回路。
A
基本通路:ACEBD
B
E
基本回路:ABCDEA
C
D
5
有向通(回)路
[定义]有向通(回)路 若通路v0v1 … vn各边是有向边,且vi-1和vi 分别是有向边的始点与终点,则称该通路为 有向通(回)路。
通路uxv相连。
由u和v的任意性,可知~G是连通的。
27
第五章图论树

条边,要使G成为树,G中只应留下5条边,故应删去
10条边,选C。
4。最小生成树 在带权图G中所生成的总权数最小的生成树称为
最小生成树。 5。最小生成树的求法
选取权数最大的边所在的回路,去掉其中权数 最大的边,如此做下去,直到求出生成树为止。这 样求出的生成树一定是最小生成树。
还有一种方法称为克鲁斯特尔算法。先去掉所有 的边,然后从权数最小的边的开始,从小到大逐步选 取,如果所选取的边和已选取的边构成了回路,则不 选取这条边重新选取,直到连接完所有的结点。这样 求出的树就是最小生成树。
3。任何非平凡树中至少有2片树叶。
二、生成树
1。生成树 若图G的生成子图是一棵树,则称此树是G的生
成树。
2。树的补 图G中不属于生成树T的边的集合称为树T的补。
3。生成树的求法 一般可用破圈法做,即把图G中的回路去掉一
条边,使它不再是回路。如此做下去,直到恰好把
所有的回路都破坏掉,就得到了生成树。
用破圈法一共要去掉
条边。
e 1v
[例题]
设G=<V,E>是有p个结点,s条边的连通图,则从G
中删去
条边,才能确定G的一棵生成树。
解:设要删去k条边,s k v 1, k s 1 v
[例题]
设G是有6个结点的完全图,从G中删去 C 条
边则能得到树。
A) 6
B) 9
C) 10
D) 15
解:∵G是有6个结点的完全图,∴G中共有6×5/2=15
a
1e 2
d
T=<{a,b,c,d,e},{(c,b),(b,e),(e,a),(e,d)}>。 3 b
c
1
[例题]
图论5-8章-习题课

6. 设 G 是连通的平面图,证明:G 为二部图当且仅当 G 的对偶图为欧 拉图。
证明:设 G 的对偶为 G*,则 G* 是连通的。必要性: G 为二部图,则 G 中无奇数长度回路,故 G* 中无奇数度顶点,因此 G* 是一个欧拉 图。充分性:G* 是一个欧拉图,则 G* 中无奇数度顶点,故 G 中 无奇数长度回路,因此 G 为一个二部图。
第二十八页,编辑于星期六:八点 分。
《图论》4-8 章 习题课
14. 匈牙利算法求二部图的可增广道:如图,设初始匹配 {(x2, y2), (x3, y3), (x5, y5)},求其最大匹配。
x1
x2
x3
x4
x5
y1
y2
y3
y4
y5
28
第二十九页,编辑于星期六:八点 分。
《图论》4-8 章 习题课
12
第十三页,编辑于星期六:八点 分。
《图论》4-8 章 习题课
7. 证明:k 色图 G 中至少有 k(k1)/2 条边。
13
第十四页,编辑于星期六:八点 分。
《图论》4-8 章 习题课
7. 证明:k 色图G中至少有 k(k1)/2 条边。 证明:按 G 的一个 k 正常着色方案划分 G 的顶点为 k 个集合 V1,
第四页,编辑于星期六:八点 分。
《图论》4-8 章 习题课
2. 证明:Perterson 图不是平面图。
证二:反证。设其为平面图。由图示,每个面至少有5条边,即 l=5,代 入:
m (n 2)l l2
得: 3m 5(n2) 将 n =10, m =15 代入得 45 40,矛盾。
4
第五页,编辑于星期六:八点 分。
v1
v2
证明:设 G 的对偶为 G*,则 G* 是连通的。必要性: G 为二部图,则 G 中无奇数长度回路,故 G* 中无奇数度顶点,因此 G* 是一个欧拉 图。充分性:G* 是一个欧拉图,则 G* 中无奇数度顶点,故 G 中 无奇数长度回路,因此 G 为一个二部图。
第二十八页,编辑于星期六:八点 分。
《图论》4-8 章 习题课
14. 匈牙利算法求二部图的可增广道:如图,设初始匹配 {(x2, y2), (x3, y3), (x5, y5)},求其最大匹配。
x1
x2
x3
x4
x5
y1
y2
y3
y4
y5
28
第二十九页,编辑于星期六:八点 分。
《图论》4-8 章 习题课
12
第十三页,编辑于星期六:八点 分。
《图论》4-8 章 习题课
7. 证明:k 色图 G 中至少有 k(k1)/2 条边。
13
第十四页,编辑于星期六:八点 分。
《图论》4-8 章 习题课
7. 证明:k 色图G中至少有 k(k1)/2 条边。 证明:按 G 的一个 k 正常着色方案划分 G 的顶点为 k 个集合 V1,
第四页,编辑于星期六:八点 分。
《图论》4-8 章 习题课
2. 证明:Perterson 图不是平面图。
证二:反证。设其为平面图。由图示,每个面至少有5条边,即 l=5,代 入:
m (n 2)l l2
得: 3m 5(n2) 将 n =10, m =15 代入得 45 40,矛盾。
4
第五页,编辑于星期六:八点 分。
v1
v2
图论第五章

Ch.5. Coloring of Graphs
4
Graph Theory
Clique number
5.1.6
The clique number of a graph G, written ω(G), is the maximum size of a set of pairwise adjacent vertices (clique) in G.
Ch.5. Coloring of Graphs
11
Graph Theory
Proposition 5.1.16. If G is an interval graph, then (G) =ω(G)
Proof: Order the vertices according to the left endpoints of the intervals in an interval representation. Apply greedy coloring, and suppose that x receives k, the maximum color assigned. Since x does not receive a smaller color, the left endpoint a of its interval belongs also to intervals that already have colors 1 through k-1. These intervals all share the point a, so we have a k-clique consisting of x and neighbors of x with colors 1 through k-1. Hence ω(G) ≥ k ≥ (G). Since (G) ≥ ω(G) always, this coloring is optimal.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例如, Г1 Г2 Г3
M 可扩路
取M = {红边}
M 交 错 路
可看出:对Г3 ,若取Г3中非 M 的边再连同 M 的不在 Г3中的边组成 M’,则 M’ 的边数比 M的边数多,这 表明 M 不是该图的最大匹配。
定理1(Berge, 1957)G的匹配 M是最大匹配当且仅当G不含 M 可扩路 。 证明 设M是G的匹配,并假设G 包 含M可扩充路 v0v1…v2m+1 , 定义M′ E 为 M′= (M\{ v1v2, v3v4,…,v2m-1 v2m})∪{ v0v1, v2v3,…,v2m v2m+1} 则M′是G的匹配,且 | M′| = |M| +1,因而M就不是最大匹 配。 反之,假设M不是最大匹配,且令M′是G的最大匹配,则 | M′| > |M| 置H = G[M△M′],这里M△M′表示M和M′的对称差。
于是 K 是G的覆盖,并且显然有
~ |M*|= | K |
~ 由定理3,是 K 最小覆盖。
~
例1 矩阵的一行或一列统称为一条线。证明:包含了一个 (0,1)矩阵中所有“1”的线的最小条数,等于具有性质“ 任意两个1都不在同一条线上”的“1”的最大个数。
一个覆盖
一个最小覆盖
设K是G的覆盖,M是G的匹配,由于K至少包含M中每条边 的一个端点,所以 |M|≤| K |。 特别地,若M*是最大匹配,且 K 是最小覆盖,则
| M * | K
定理3 设M是匹配,K是覆盖,若|M|=|K|,则M是最大匹配, 且K是最小覆盖。
~ 是最小覆盖,则, 证明 设M*是最大匹配 , K
又因N(S)中每个顶点v 均由一个M*交错路连接于u,故v∈Z, 从而v∈T, 这表明N(S ) T , 于是有T = N(S )。
由| T |= |S |-1 和T =N(S )推出
|N(S )| = | T |= |S |-1< |S |
这与假定(2.1)式矛盾。 所以M*饱和X的所有顶点。 推论 若G是k正则偶图(k>0),则G有完美匹配。 证明 G是具有二分类(X, Y)的k正则偶(k>0)。 由于G是k正则的,所以k|X|=|E(G)|=k|Y|,所以|X| = |Y| 。 任取X的一个子集S ,令 E1={e | e∈E, 并且 e 与 S 中的顶点关联} E2={e | e∈E, 并且 e 与 N(S) 中的顶点关联}。
|M|≤|M*|≤|
~ |≤|K|。 K
~ | = |K|。 由于|M|=|K |,所以 |M| = |M*|, | K
定理4(Kǒnig, 1931) 在偶图中,最大匹配的边数等于最小 覆盖的顶点数。 证明 设G 是具有二分类(X, Y)的偶图,M*是G的最大 匹配,用U 表示 X 中的 M* 非饱和顶点的集,用 Z 表示 由 M*交错路连接到 U 中顶点的所有顶点的集。
H 的每个顶点在H中具有的度是1或2,因为它最多只 能和M的一条边以及 M′的一条边相关联。 因此 H 的每个分支或是由M和M′中的边交错组成的偶 圈,或是由M和M′中的边交错组成的路。 由于 M′包含的边多于M的边,因而H中必定有的一条 路P,其边始于M′且终止于M′,因此P的起点和终点在 H中被M′所饱和,在图G中就是M非饱和的。
关系:
(1) 完美匹配必是最大匹配,而最大匹 配不一定是完美匹配。 (2) 一个图的最大匹配必存在,但完美 匹配不一定存在。 (3) 图G 存在完美匹配的一个必要条件 是 G 的点数为偶。
设M 为图G的一个匹配 M 交错路:G 中由M中的边与非M 中的边交替组成的路。 M 可扩路:起点与终点均为M 非饱和点的M交错路。
置S =Z∩X ,T= Z∩Y。
类似于Hall定理的证明,可知T中的每个顶点都是M*饱和 的,并且N(S)=T。 S
定义 K ( X \ S ) T。
U X \S
T=N (S)
~ 中,因为否则就存在 则G的每条边必然至少有一个端点在 K 一条边,其一个端点在S中,而另一个端点在Y\T中,这与 N(S)=T相矛盾。
因与 S 中的顶点关联的边必与 N(S) 中的顶点关联,所以 我们可以推出E1 E2。 因此
k N S E2 E1 k S
由此可知
N S S
再根据Hall定理,可知G有一个饱和X的每个顶点的匹配M,
由于|X| = |Y|,所以M是完美匹配。
图G的一个覆盖: 指V(G)的一个子集 K,使得G的每条边都至 少有一个端点在 K 中。 G的最小覆盖: G中点数最少的覆盖。 例
于是P是G的一条M可扩路。
§5.2 偶图的匹配与覆盖
取图 G 的一个顶点子集S,令 N (S) = { v | 存在 u∈S,且v与u 相邻} 称 N (S) 为 S 的邻集。
v1
例如在右图中
v8
v7
v6
v2
v3
v4
v5
取 S = {v1, v2},则 N (S) = {v8, v3, v1, v2}
定理2(Hall,1935) 设G为具有二分类(X, Y)的偶图,则 G包含饱和X的每个顶点的匹配当且仅当 |N(S)|≥|S| (2.1) 对所有 S X 成立. 证明 假设G包含匹配M,它饱和X的每个顶点,并设S是X 的子集。由于S的顶点在 M 下和N(S)中的相异顶点配对, 显然有 |N(S)|≥|S| 。 反之,假设G是满足(2.1)式的偶图, M*是G的最大匹配。 假定M*不饱和X的所有顶点。 设 u 是X的一个M* 非饱和点,并设
Z={ v | v∈V,且v通过M*交错路与u连接 }。
S
置S = Z∩X 和 T = Z∩Y。
u
T=N (S)
由于M*是最大匹配,从Berge定理可知:u为Z中唯一的M*非 饱和点(否则将含 M * 可扩路)。且任意一对配对点v和w, 若v∈S,则必w∈T,反之亦然。
因此,| T |= |S |-1 而且 T N(S ) 。
例1 设图G 为: G的匹配有: M1 = {v1v8}
v1
v8
v7
v6
v2
v3
v4
v5
M2 = {v1v3,v8v4,v7v5} M3 = {v1v2,v8v3,v7v4,v6v5} 等等 对 M2,点v1是的饱和点,点v2是非饱和点。
M1 和M2既不是最
M 可扩路
取M = {红边}
M 交 错 路
可看出:对Г3 ,若取Г3中非 M 的边再连同 M 的不在 Г3中的边组成 M’,则 M’ 的边数比 M的边数多,这 表明 M 不是该图的最大匹配。
定理1(Berge, 1957)G的匹配 M是最大匹配当且仅当G不含 M 可扩路 。 证明 设M是G的匹配,并假设G 包 含M可扩充路 v0v1…v2m+1 , 定义M′ E 为 M′= (M\{ v1v2, v3v4,…,v2m-1 v2m})∪{ v0v1, v2v3,…,v2m v2m+1} 则M′是G的匹配,且 | M′| = |M| +1,因而M就不是最大匹 配。 反之,假设M不是最大匹配,且令M′是G的最大匹配,则 | M′| > |M| 置H = G[M△M′],这里M△M′表示M和M′的对称差。
于是 K 是G的覆盖,并且显然有
~ |M*|= | K |
~ 由定理3,是 K 最小覆盖。
~
例1 矩阵的一行或一列统称为一条线。证明:包含了一个 (0,1)矩阵中所有“1”的线的最小条数,等于具有性质“ 任意两个1都不在同一条线上”的“1”的最大个数。
一个覆盖
一个最小覆盖
设K是G的覆盖,M是G的匹配,由于K至少包含M中每条边 的一个端点,所以 |M|≤| K |。 特别地,若M*是最大匹配,且 K 是最小覆盖,则
| M * | K
定理3 设M是匹配,K是覆盖,若|M|=|K|,则M是最大匹配, 且K是最小覆盖。
~ 是最小覆盖,则, 证明 设M*是最大匹配 , K
又因N(S)中每个顶点v 均由一个M*交错路连接于u,故v∈Z, 从而v∈T, 这表明N(S ) T , 于是有T = N(S )。
由| T |= |S |-1 和T =N(S )推出
|N(S )| = | T |= |S |-1< |S |
这与假定(2.1)式矛盾。 所以M*饱和X的所有顶点。 推论 若G是k正则偶图(k>0),则G有完美匹配。 证明 G是具有二分类(X, Y)的k正则偶(k>0)。 由于G是k正则的,所以k|X|=|E(G)|=k|Y|,所以|X| = |Y| 。 任取X的一个子集S ,令 E1={e | e∈E, 并且 e 与 S 中的顶点关联} E2={e | e∈E, 并且 e 与 N(S) 中的顶点关联}。
|M|≤|M*|≤|
~ |≤|K|。 K
~ | = |K|。 由于|M|=|K |,所以 |M| = |M*|, | K
定理4(Kǒnig, 1931) 在偶图中,最大匹配的边数等于最小 覆盖的顶点数。 证明 设G 是具有二分类(X, Y)的偶图,M*是G的最大 匹配,用U 表示 X 中的 M* 非饱和顶点的集,用 Z 表示 由 M*交错路连接到 U 中顶点的所有顶点的集。
H 的每个顶点在H中具有的度是1或2,因为它最多只 能和M的一条边以及 M′的一条边相关联。 因此 H 的每个分支或是由M和M′中的边交错组成的偶 圈,或是由M和M′中的边交错组成的路。 由于 M′包含的边多于M的边,因而H中必定有的一条 路P,其边始于M′且终止于M′,因此P的起点和终点在 H中被M′所饱和,在图G中就是M非饱和的。
关系:
(1) 完美匹配必是最大匹配,而最大匹 配不一定是完美匹配。 (2) 一个图的最大匹配必存在,但完美 匹配不一定存在。 (3) 图G 存在完美匹配的一个必要条件 是 G 的点数为偶。
设M 为图G的一个匹配 M 交错路:G 中由M中的边与非M 中的边交替组成的路。 M 可扩路:起点与终点均为M 非饱和点的M交错路。
置S =Z∩X ,T= Z∩Y。
类似于Hall定理的证明,可知T中的每个顶点都是M*饱和 的,并且N(S)=T。 S
定义 K ( X \ S ) T。
U X \S
T=N (S)
~ 中,因为否则就存在 则G的每条边必然至少有一个端点在 K 一条边,其一个端点在S中,而另一个端点在Y\T中,这与 N(S)=T相矛盾。
因与 S 中的顶点关联的边必与 N(S) 中的顶点关联,所以 我们可以推出E1 E2。 因此
k N S E2 E1 k S
由此可知
N S S
再根据Hall定理,可知G有一个饱和X的每个顶点的匹配M,
由于|X| = |Y|,所以M是完美匹配。
图G的一个覆盖: 指V(G)的一个子集 K,使得G的每条边都至 少有一个端点在 K 中。 G的最小覆盖: G中点数最少的覆盖。 例
于是P是G的一条M可扩路。
§5.2 偶图的匹配与覆盖
取图 G 的一个顶点子集S,令 N (S) = { v | 存在 u∈S,且v与u 相邻} 称 N (S) 为 S 的邻集。
v1
例如在右图中
v8
v7
v6
v2
v3
v4
v5
取 S = {v1, v2},则 N (S) = {v8, v3, v1, v2}
定理2(Hall,1935) 设G为具有二分类(X, Y)的偶图,则 G包含饱和X的每个顶点的匹配当且仅当 |N(S)|≥|S| (2.1) 对所有 S X 成立. 证明 假设G包含匹配M,它饱和X的每个顶点,并设S是X 的子集。由于S的顶点在 M 下和N(S)中的相异顶点配对, 显然有 |N(S)|≥|S| 。 反之,假设G是满足(2.1)式的偶图, M*是G的最大匹配。 假定M*不饱和X的所有顶点。 设 u 是X的一个M* 非饱和点,并设
Z={ v | v∈V,且v通过M*交错路与u连接 }。
S
置S = Z∩X 和 T = Z∩Y。
u
T=N (S)
由于M*是最大匹配,从Berge定理可知:u为Z中唯一的M*非 饱和点(否则将含 M * 可扩路)。且任意一对配对点v和w, 若v∈S,则必w∈T,反之亦然。
因此,| T |= |S |-1 而且 T N(S ) 。
例1 设图G 为: G的匹配有: M1 = {v1v8}
v1
v8
v7
v6
v2
v3
v4
v5
M2 = {v1v3,v8v4,v7v5} M3 = {v1v2,v8v3,v7v4,v6v5} 等等 对 M2,点v1是的饱和点,点v2是非饱和点。
M1 和M2既不是最