2017年吉林市中考数学试题与答案
吉林省2017年中学考试数学考试卷和问题详解

省2017年中考数学真题试卷、答案一、单项选择题(每小题2分,共12分)1.计算(﹣1)2的正确结果是()A.1 B.2 C.﹣1 D.﹣22.如图是一个正六棱柱的茶叶盒,其俯视图为()A.B.C.D.3.下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(a2)3=a6D.(ab)2=ab24.不等式x+1≥2的解集在数轴上表示正确的是()A.B.C.D.5.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是()A.70°B.44°C.34°D.24°6.如图,直线l是⊙O的切线,A为切点,B为直线l上一点,连接OB交⊙O 于点C.若AB=12,OA=5,则BC的长为()A.5 B.6 C.7 D.8二、填空题(每小题3分,共24分)7.2016年我国资助各类家庭困难学生超过84 000 000人次.将84 000 000这个数用科学记数法表示为.8.苹果原价是每千克x元,按8折优惠出售,该苹果现价是每千克元(用含x的代数式表示).9.分解因式:a2+4a+4=.10.我们学过用直尺和三角尺画平行线的方法,如图所示,直线a∥b的根据是.11.如图,在矩形ABCD中,AB=5,AD=3.矩形ABCD绕着点A逆时针旋转一定角度得到矩形AB'C'D'.若点B的对应点B'落在边CD上,则B'C的长为.12.如图,数学活动小组为了测量学校旗杆AB的高度,使用长为2m的竹竿CD 作为测量工具.移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面O处重合,测得OD=4m,BD=14m,则旗杆AB的高为m.13.如图,分别以正五边形ABCDE 的顶点A ,D 为圆心,以AB 长为半径画BE ̂,CE ̂.若AB=1,则阴影部分图形的周长为 (结果保留π).14.我们规定:当k ,b 为常数,k ≠0,b ≠0,k ≠b 时,一次函数y=kx+b 与y=bx+k 互为交换函数.例如:y=4x+3的交换函数为y=3x+4.一次函数y=kx+2与它的交换函数图象的交点横坐标为 .三、解答题(每小题5分,共20分)15.某学生化简分式1x+1+2x −1出现了错误,解答过程如下: 原式=1(x+1)(x−1)+2(x+1)(x−1)(第一步)=1+2(x+1)(x−1)(第二步) =3x 2−1.(第三步) (1)该学生解答过程是从第 步开始出错的,其错误原因是 ; (2)请写出此题正确的解答过程.16.被誉为“最美高铁”的至城际铁路途经许多隧道和桥梁,其中隧道累计长度与桥梁累计长度之和为342km ,隧道累计长度的2倍比桥梁累计长度多36km .求隧道累计长度与桥梁累计长度.17.在一个不透明的盒子中装有三卡片,分别标有数字1,2,3,这些卡片除数字不同外其余均相同.小吉从盒子中随机抽取一卡片记下数字后放回,洗匀后再随机抽取一卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为奇数的概率.18.如图,点E 、F 在BC 上,BE=FC ,AB=DC ,∠B=∠C .求证:∠A=∠D .四、解答题(每小题7分,共28分)19.某商场甲、乙、丙三名业务员5个月的销售额(单位:万元)如下表:第1月第2月第3月第4月第5月月份销售额人员甲7.29.69.67.89.3乙 5.89.79.8 5.89.9丙4 6.28.59.99.9(1)根据上表中的数据,将下表补充完整:平均数(万元)中位数(万元)众数(万元)统计值数值人员甲9.39.6乙8.2 5.8丙7.78.5(2)甲、乙、丙三名业务员都说自己的销售业绩好,你赞同谁的说法?请说明理由.20.图①、图②、图③都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点.线段AB的端点在格点上.(1)在图①、图2中,以AB为边各画一个等腰三角形,且第三个顶点在格点上;(所画图形不全等)(2)在图③中,以AB为边画一个平行四边形,且另外两个顶点在格点上.21.如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C处测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.求A,B两点间的距离(结果精确到0.1km).(参考数据:sin34°=0.56,cos34°=0.83,tan34°=0.67.)22.如图,在平面直角坐标系中,直线AB与函数y=kx(x>0)的图象交于点A(m,2),B(2,n).过点A作AC平行于x轴交y轴于点C,在y轴负半轴上取一点D,使OD=12OC,且△ACD的面积是6,连接BC.(1)求m,k,n的值;(2)求△ABC的面积.五、解答题(每小题8分,共16分)23.如图①,BD是矩形ABCD的对角线,∠ABD=30°,AD=1.将△BCD沿射线BD方向平移到△B'C'D'的位置,使B'为BD中点,连接AB',C'D,AD',BC',如图②.(1)求证:四边形AB'C'D是菱形;(2)四边形ABC'D′的周长为;(3)将四边形ABC'D'沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出所有可能拼成的矩形周长.24.如图①,一个正方体铁块放置在圆柱形水槽,现以一定的速度往水槽中注水,28s时注满水槽.水槽水面的高度y(cm)与注水时间x(s)之间的函数图象如图②所示.(1)正方体的棱长为cm;(2)求线段AB对应的函数解析式,并写出自变量x的取值围;(3)如果将正方体铁块取出,又经过t(s)恰好将此水槽注满,直接写出t的值.六、解答题(每小题10分,共20分)25.如图,在Rt△ABC中,∠ACB=90°,∠A=45°,AB=4cm.点P从点A 出发,以2cm/s的速度沿边AB向终点B运动.过点P作PQ⊥AB交折线ACB 于点Q,D为PQ中点,以DQ为边向右侧作正方形DEFQ.设正方形DEFQ与△ABC重叠部分图形的面积是y(cm2),点P的运动时间为x(s).(1)当点Q在边AC上时,正方形DEFQ的边长为cm(用含x的代数式表示);(2)当点P不与点B重合时,求点F落在边BC上时x的值;(3)当0<x<2时,求y关于x的函数解析式;(4)直接写出边BC的中点落在正方形DEFQ部时x的取值围.26.《函数的图象与性质》拓展学习片段展示:【问题】如图①,在平面直角坐标系中,抛物线y=a(x﹣2)2﹣43经过原点O,与x轴的另一个交点为A,则a=.【操作】将图①中抛物线在x轴下方的部分沿x轴折叠到x轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G,如图②.直接写出图象G 对应的函数解析式.【探究】在图②中,过点B(0,1)作直线l平行于x轴,与图象G的交点从左至右依次为点C,D,E,F,如图③.求图象G在直线l上方的部分对应的函数y随x增大而增大时x的取值围.【应用】P是图③中图象G上一点,其横坐标为m,连接PD,PE.直接写出△PDE的面积不小于1时m的取值围.答案一、单项选择题(每小题2分,共12分)1.A.2.B.3.C4.A.5.解:∵AB=BD,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB﹣∠C=34°.6.D.二、填空题(每小题3分,共24分)7.8.4×107.8.0.8x.9.(a+2)2.10.同位角相等,两直线平行.11.解:由旋转的性质得到AB=AB′=5,在直角△AB′D中,∠D=90°,AD=3,AB′=AB=5,所以B′D=√AB′2−AD2=√52−32=4,所以B′C=5﹣B′D=1.故答案是:1.12.解:∵OD=4m ,BD=14m , ∴OB=OD+BD=18m ,由题意可知∠ODC=∠OBA ,且∠O 为公共角, ∴△OCD ∽△OAB ,∴OD OB =CD AB ,即418=2AB,解得AB=9, 即旗杆AB 的高为9m .13.解:∵五边形ABCDE 为正五边形,AB=1, ∴AB=BC=CD=DE=EA=1,∠A=∠D=108°,∴BÊ=CE ̂=108°180°•πAB=35π,∴C 阴影=BÊ+CE ̂+BC=65π+1. 14.1.三、解答题(每小题5分,共20分) 15.解:(1)一、分式的基本性质用错;(2)原式=x−1(x+1)(x−1)+2(x+1)(x−1)=x+1(x+1)(x−1) =1x−116.解:设隧道累计长度为xkm ,桥梁累计长度为yk , 根据题意得:{x +y =3422x =y +36,解得:{x =126y =216.答:隧道累计长度为126km ,桥梁累计长度为216km . 17.解:画树状图得:∵共有9种等可能的结果,两次抽取的卡片上数字之和是奇数的有4种情况,∴两次两次抽取的卡片上数字之和是奇数的概率为4 9.18.证明:∵BE=FC,∴BE+EF=CF+EF,即BF=CE;又∵AB=DC,∠B=∠C,∴△ABF≌△DCE;(SAS)∴∠A=∠D.四、解答题(每小题7分,共28分)19.解:(1)x甲=15(7.2+9.6+9.6+7.8+9.3)=8.7(万元)把乙按照从小到大依次排列,可得5.8,5.8,9.7,9.8,9.9;中位数为9.7万元.丙中出现次数最多的数为9.9万元.故答案为:8.7,9.7,9.9;(2)我赞同甲的说法.甲的平均销售额比乙、丙都高.20.解:(1)如图①、②所示,△ABC和△ABD即为所求;(2)如图③所示,▱ABCD即为所求.21.解:由题意可得:∠AOC=90°,OC=5km.在Rt △AOC 中,∵tan34°=OA OC ,∴OA=OC •tan34°=5×0.67=3.35km ,在Rt △BOC 中,∠BCO=45°,∴OB=OC=5km ,∴AB=5﹣3.35=1.65≈1.7km ,答:求A ,B 两点间的距离约为1.7km .22.解:(1)∵点A 的坐标为(m ,2),AC 平行于x 轴,∴OC=2,AC ⊥y 轴,∵OD=12OC , ∴OD=1,∴CD=3,∵△ACD 的面积为6,∴12CD •AC=6, ∴AC=4,即m=4,则点A 的坐标为(4,2),将其代入y=k x 可得k=8, ∵点B (2,n )在y=8x的图象上, ∴n=4;(2)如图,过点B 作BE ⊥AC 于点E ,则BE=2,∴S △ABC =12AC •BE=12×4×2=4,即△ABC的面积为4.五、解答题(每小题8分,共16分)23.解:(1)∵BD是矩形ABCD的对角线,∠ABD=30°,∴∠ADB=60°,由平移可得,B'C'=BC=AD,∠D'B'C'=∠DBC=∠ADB=60°,∴AD∥B'C'∴四边形AB'C'D是平行四边形,∵B'为BD中点,∴Rt△ABD中,AB'=12BD=DB',又∵∠ADB=60°,∴△ADB'是等边三角形,∴AD=AB',∴四边形AB'C'D是菱形;(2)由平移可得,AB=C'D',∠ABD'=∠C'D'B=30°,∴AB∥C'D',∴四边形ABC'D'是平行四边形,由(1)可得,AC'⊥B'D,∴四边形ABC'D'是菱形,∵AB=√3AD=√3,∴四边形ABC'D′的周长为4√3,(3)将四边形ABC'D'沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形如下:∴矩形周长为6+√3或2√3+3.24.解:(1)由题意可得:12秒时,水槽水面的高度为10cm ,12秒后水槽高度变化趋势改变,故正方体的棱长为10cm ;(2)设线段AB 对应的函数解析式为:y=kx+b ,∵图象过A (12,0),B (28,20),∴{12k +b =1028k +b =20, 解得:{k =58b =52, ∴线段AB 对应的解析式为:y=58x+52(12≤x ≤28);(3)∵28﹣12=16(cm ),∴没有立方体时,水面上升10cm ,所用时间为:16秒,∵前12秒由立方体的存在,导致水面上升速度加快了4秒,∴将正方体铁块取出,经过4秒恰好将此水槽注满.六、解答题(每小题10分,共20分)25.解:(1)∵∠ACB=90°,∠A=45°,PQ ⊥AB ,∴∠AQP=45°,∴PQ=AP=2x ,∵D 为PQ 中点,∴DQ=x ,故答案为:x ;(2)如图①,延长FE 交AB 于G ,由题意得AP=2x ,∵D 为PQ 中点,∴DQ=x ,∴GP=2x ,∴2x+x+2x=4,∴x=45; (3)如图②,当0<x ≤45时,y=S 正方形DEFQ =DQ 2=x 2, ∴y=x 2;如图③,当45<x ≤1时,过C 作CH ⊥AB 于H ,交FQ 于K ,则CH=12AB=2, ∵PQ=AP=2x ,CK=2﹣2x ,∴MQ=2CK=4﹣4x ,FM=x ﹣(4﹣4x )=5x ﹣4,∴y=S 正方形DEFQ ﹣S △MNF =DQ 2﹣12FM 2, ∴y=x 2﹣12(5x ﹣4)2=﹣232x 2+20x ﹣8, ∴y=﹣232x 2+20x ﹣8; 如图④,当1<x <2时,PQ=4﹣2x ,∴DQ=2﹣x ,∴y=S △DEQ =12DQ 2, ∴y=12(2﹣x )2, ∴y=12x 2﹣2x+2; (4)当Q 与C 重合时,E 为BC 的中点,即2x=2,∴x=1,当Q 为BC 的中点时,BQ=√2,PB=1,∴AP=3,∴2x=3,∴x=32, ∴边BC 的中点落在正方形DEFQ 部时x 的取值围为:1<x <32.26.解:【问题】∵抛物线y=a (x ﹣2)2﹣43经过原点O , ∴0=a (0﹣2)2﹣43, a=13, 故答案为:13;【操作】:如图①,抛物线:y=13(x ﹣2)2﹣43, 对称轴是:直线x=2,由对称性得:A (4,0),沿x 轴折叠后所得抛物线为:y=﹣13(x ﹣2)2+43 如图②,图象G 对应的函数解析式为:y={13(x −2)2−43(x ≤0或x ≥4)−13(x −2)2+43(0<x <4);【探究】:如图③,由题意得:当y=1时,13(x ﹣2)2﹣43=0, 解得:x 1=2+√7,x 2=2﹣√7,∴C (2﹣√7,1),F (2+√7,1),当y=1时,﹣13(x ﹣2)2+43=0, 解得:x 1=3,x 2=1,∴D (1,1),E (3,1),由图象得:图象G 在直线l 上方的部分,当1<x <2或x >2+√7时,函数y 随x 增大而增大;【应用】:∵D (1,1),E (3,1),∴DE=3﹣1=2,∵S △PDE =12DE •h ≥1, ∴h ≥1;①当P 在C 的左侧或F 的右侧部分时,设P[m ,13(m −2)2−43], ∴h=13(m ﹣2)2﹣43﹣1≥1, (m ﹣2)2≥10,m ﹣2≥√10或m ﹣2≤﹣√10,m ≥2+√10或m ≤2﹣√10,②如图③,作对称轴交抛物线G 于H ,交直线CD 于M ,交x 轴于N ,∵H (2,43), ∴HM=43﹣1=13<1, ∴当点P 不可能在DE 的上方;③∵MN=1,且O(0,0),a(4,0),∴P与O或A重合时,符合条件,∴m=0或m=4;综上所述,△PDE的面积不小于1时,m的取值围是:m=0或m=4或m≤2﹣√10或m≥2+√10.。
【真题】2017年吉林省中考数学试卷及答案(Word版)

所有可能拼成的矩形周长 . 24.如图①,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,
28s 时注满水槽.水
槽内水面的高度 y(cm) 与注水时间 x(s) 之间的函数图象如图②所示.
17. 在一个不透明的盒子中装有三张卡片 , 分别标有数字 1, 2,3 ,这些卡片除数字不同外其余均相同.小吉
从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片
. 用画树状图或列表的方法,求两
次抽取的卡片上数字之和为奇数的概率 .
18. 如图 , 点 E, F 在 BC 上 , BE CF , AB DC , B C . 求证: A D .
ABD 30o , AD 1. 将 BCD 沿射线 BD 方向平移到
B C D 的位置,使 B 为 BD 中点 , AB , C D , AD , BC , 如图② .
( 1)求证:四边形 AB C D 是菱形; ( 2)四边形 ABC D 的周长为 ___________; ( 3)将四边形 ABC D 沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出
D
. 24o
6. 如图, 直线 l 是 e O 的切线, A 为切点, B 为直线 l 上一点, 连接 OB 交 e O 于点 C .若 AB 12, OA 5,
则 BC 的长为( )
A. 5 B . 6 C.7 D
.8
二、填空题(每小题 3 分,共 24 分)
7.2016 年我国资助各类家庭困难学生超过
4. 不等式 x 1 2 的解集在数轴上表示正确的是(
)
D.
D . (ab)2 ab2
A.
B.
C.
D.
2017年吉林省中考数学试卷真题及答案解析

(2)请写出此题正确的解答过程.
16.被誉为 最美高铁”的长春至珲春城际铁路途经许多 隧道和桥梁,其中隧道累计长度与桥梁累计长度之和为342km,隧道累计长度的2倍比桥梁累计长度多36km.求 隧道累计长度与桥梁累计长度.
仃•在一个不透明的盒子中装有三张卡片,分别标有数 字1,2,3,这些卡片除数字不同外其余均相同.小吉从 盒子中随机抽取一张卡片记下数字后放回,洗匀后再随 机抽取一张卡片•用画树状图或列表的方法,求两次抽 取的卡片上数字之和为奇数的概率.
(1)当点Q在边AC上时,正方形DEFQ的边长为cm(用含x的代数式表示);
(2)当点P不与点B重合时,求点F落在边BC上时x的值;
(3)当Ovxv2时,求y关于x的函数解析式;
(4)直接写出边BC的中点落在正方形DEFQ内部时x的取值范围.
26.《函数的图象与性质》拓展学习片段展示:
【问题】如图①,在平面直角坐标系中,抛物线y=a(x-2)2-经过原点0,与x轴的另一个交点为A,则
(2)求厶ABC的面积.
五、解答题(每小题8分,共16分)
23.如图①,BD是矩形ABCD的对角线,/ABD=30,AD=1•将△BCD沿射线BD方向平移到△B'C'D'的位 置,使B'为BD中点,连接AB',C'D,AD',BC',如 图②.
(1)求证:四边形AB'C'D是菱形;
(2)四边形ABC'D的周长为;
(1) 正方体的棱长为cm;
(2)求线段AB对应的函数解析式,并写出自变量x的 取值范围;
(3)如果将正方体铁块取出,又经过t(s)恰好将此水 槽注满,直接写出t的值.
吉林省2017年中考 数学 试题( 附答案及评分标准).

20.解:(1)每画对一个得 2 分。答案不唯一,以下答案供参考。
B
B
B
B
A C
A
A
D
E
A F
(2)画对一个即可。答案不唯一,以下答案供参考。
B
B
B
A
NA
M
A
H
P
QA K
G
(4 分)
BL
(7 分)
21.解:由题意,得∠AOC=90°,OC=5 km.
在 Rt△AOC 中,
OA
∵ tan34°=
OC
平均数(万元) 中位数(万元) 众数(万元)
甲
1
2
9.3
9.6
乙
8.2
1
2
5.8
丙
7.7
8.5
1
2
(2)甲、乙、丙三名业务员都说自己的销售业绩好,你赞同谁的说法?请说明
理由。
20.图①、图②、图③都是由边长为 1 的小等边三角形构成的网格,每个小等边三角 形的顶点称为格点,线段 AB 的端点在格点上。 (1)在图①、图②中,以 AB 为边各画一个等腰三角形,且第三个顶点在格点上; (所画图形不全等) (2)在图③中,以 AB 为边画一个平行四边形,且另外两个顶点在格点上.
28 s 时注满水槽。水槽内水面的高度 y(cm)与注水时间 x(s)之间的函数图象如图
②所示。
(1)正方体的棱长为
cm;
(2)求线段 AB 对应的函数解析式,并写出自变量 x 的取值范围;
(3)如果将正方体铁块取出,又经过 t(s)恰好将此水槽注满,直接写出 t 的值.
y/cm
20
B
A 10
图①
吉林省2017年中考数学真题有解析

吉林省2017年中考数学真题(有解析)2017年吉林省中考数学试卷一、单项选择题(每小题2分,共12分)1.计算(﹣1)2的正确结果是()A.1B.2C.﹣1D.﹣2【答案】A.【解析】考点:有理数的乘方.2.如图是一个正六棱柱的茶叶盒,其俯视图为()A.B.C.D.【答案】B.【解析】试题解析:正六棱柱的俯视图为正六边形.故选B.考点:简单几何体的三视图.3.下列计算正确的是()A.a2+a3=a5B.a2a3=a6C.(a2)3=a6D.(ab)2=ab2 【答案】C.【解析】试题解析:A.a2与a3不是同类项,故A错误;B.原式=a5,故B错误;D.原式=a2b2,故D错误;故选C.考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.4.不等式x+1≥2的解集在数轴上表示正确的是()A.B.C.D.【答案】A.【解析】考点:解一元一次不等式;在数轴上表示不等式的解集.5.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是()A.70°B.44°C.34°D.24°【答案】C.【解析】试题解析:∵AB=BD,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB﹣∠C=34°.故选C.考点:三角形内角和定理.6.如图,直线l是⊙O的切线,A为切点,B为直线l上一点,连接OB交⊙O于点C.若AB=12,OA=5,则BC的长为()A.5B.6C.7D.8【答案】D.【解析】考点:切线的性质.二、填空题(每小题3分,共24分)7.2016年我国资助各类家庭困难学生超过84000000人次.将84000000这个数用科学记数法表示为.【答案】8.4×107【解析】试题解析:84000000=8.4×107考点:科学记数法—表示较大的数.8.苹果原价是每千克x元,按8折优惠出售,该苹果现价是每千克元(用含x的代数式表示).【答案】0.8x.【解析】试题解析:依题意得:该苹果现价是每千克80%x=0.8x.考点:列代数式.9.分解因式:a2+4a+4=.【答案】(a+2)2.【解析】试题解析:a2+4a+4=(a+2)2.考点:因式分解﹣运用公式法.10.我们学过用直尺和三角尺画平行线的方法,如图所示,直线a∥b的根据是.【答案】同位角相等,两直线平行.【解析】∵∠1=∠2,∴a∥b(同位角相等,两直线平行);考点:平行线的判定.11.如图,在矩形ABCD中,AB=5,AD=3.矩形ABCD绕着点A逆时针旋转一定角度得到矩形AB'C'D'.若点B的对应点B'落在边CD上,则B'C的长为.【答案】1.【解析】试题解析:由旋转的性质得到AB=AB′=5,在直角△AB′D中,∠D=90°,AD=3,AB′=AB=5,所以B′D==4,所以B′C=5﹣B′D=1.故答案是:1.考点:旋转的性质;矩形的性质.12.如图,数学活动小组为了测量学校旗杆AB的高度,使用长为2m的竹竿CD作为测量工具.移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面O处重合,测得OD=4m,BD=14m,则旗杆AB的高为m.【答案】9.【解析】即旗杆AB的高为9m.考点:相似三角形的应用.13.如图,分别以正五边形ABCDE的顶点A,D为圆心,以AB长为半径画,.若AB=1,则阴影部分图形的周长为(结果保留π).【答案】π+1.【解析】试题解析:∵五边形ABCDE为正五边形,AB=1,∴AB=BC=CD=DE=EA=1,∠A=∠D=108°,∴==,∴C阴影=++BC=π+1.考点:正多边形和圆.14.我们规定:当k,b为常数,k≠0,b≠0,k≠b时,一次函数y=kx+b与y=bx+k互为交换函数.例如:y=4x+3的交换函数为y=3x+4.一次函数y=kx+2与它的交换函数图象的交点横坐标为.【答案】1.【解析】考点:两条直线相交或平行问题.三、解答题(每小题5分,共20分)15.某学生化简分式出现了错误,解答过程如下:原式=(第一步)=(第二步)=.(第三步)(1)该学生解答过程是从第步开始出错的,其错误原因是;(2)请写出此题正确的解答过程.【答案】(1)一、分式的基本性质用错;(2)过程见解析.【解析】试题分析:根据分式的运算法则即可求出答案.试题解析:(1)一、分式的基本性质用错;(2)原式===.考点:分式的加减法.16.被誉为“最美高铁”的长春至珲春城际铁路途经许多隧道和桥梁,其中隧道累计长度与桥梁累计长度之和为342km,隧道累计长度的2倍比桥梁累计长度多36km.求隧道累计长度与桥梁累计长度.【答案】隧道累计长度为126km,桥梁累计长度为216km.【解析】解得:.答:隧道累计长度为126km,桥梁累计长度为216km.考点:二元一次方程组的应用.17.在一个不透明的盒子中装有三张卡片,分别标有数字1,2,3,这些卡片除数字不同外其余均相同.小吉从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为奇数的概率.【答案】.【解析】试题分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽取的卡片上数字之和是奇数的情况,再利用概率公式即可求得答案即可.试题解析:画树状图得:∵共有9种等可能的结果,两次抽取的卡片上数字之和是奇数的有4种情况,∴两次两次抽取的卡片上数字之和是奇数的概率为.考点:列表法与树状图法.18.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.【答案】证明见解析.【解析】考点:全等三角形的判定与性质.四、解答题(每小题7分,共28分)19.某商场甲、乙、丙三名业务员5个月的销售额(单位:万元)如下表:月份销售额人员第1月第2月第3月第4月第5月甲7.29.69.67.89.3乙5.89.79.85.89.9丙46.28.59.99.9(1)根据上表中的数据,将下表补充完整:统计值数值人员平均数(万元)中位数(万元)众数(万元)甲9.39.6乙8.25.8丙7.78.5(2)甲、乙、丙三名业务员都说自己的销售业绩好,你赞同谁的说法?请说明理由.【答案】(1)8.7,9.7,9.9;(2)甲,理由见解析. 【解析】(2)我赞同甲的说法.甲的平均销售额比乙、丙都高.考点:众数;加权平均数;中位数.20.图①、图②、图③都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点.线段AB的端点在格点上.(1)在图①、图2中,以AB为边各画一个等腰三角形,且第三个顶点在格点上;(所画图形不全等)(2)在图③中,以AB为边画一个平行四边形,且另外两个顶点在格点上.【答案】(1)作图见解析;(2)作图见解析.【解析】(2)如图③所示,▱ABCD即为所求.考点:等腰三角形的判定;等边三角形的性质;平行四边形的判定.21.如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C处测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.求A,B两点间的距离(结果精确到0.1km).参考数据:sin34°=0.56,cos34°=0.83,tan34°=0.67.)【答案】求A,B两点间的距离约为1.7km.【解析】∴OA=OCtan34°=5×0.67=3.35km,在Rt△BOC中,∠BCO=45°,∴OB=OC=5km,∴AB=5﹣3.35=1.65≈1.7km,答:求A,B两点间的距离约为1.7km.考点:解直角三角形的应用﹣仰角俯角问题.22.如图,在平面直角坐标系中,直线AB与函数y=(x>0)的图象交于点A(m,2),B(2,n).过点A作AC 平行于x轴交y轴于点C,在y轴负半轴上取一点D,使OD=OC,且△ACD的面积是6,连接BC.(1)求m,k,n的值;(2)求△ABC的面积.【答案】(1)4;8;4;(2)4.3【解析】∴OC=2,AC⊥y轴,∵OD=OC,∴OD=1,∴CD=3,∵△ACD的面积为6,∴CDAC=6,∴AC=4,即m=4,则点A的坐标为(4,2),将其代入y=可得k=8,∵点B(2,n)在y=的图象上,∴n=4;(2)如图,过点B作BE⊥AC于点E,则BE=2,∴S△ABC=ACBE=×4×2=4,即△ABC的面积为4.考点:反比例函数与一次函数的交点问题.五、解答题(每小题8分,共16分)23.如图①,BD是矩形ABCD的对角线,∠ABD=30°,AD=1.将△BCD沿射线BD方向平移到△B'C'D'的位置,使B'为BD中点,连接AB',C'D,AD',BC',如图②.(1)求证:四边形AB'C'D是菱形;(2)四边形ABC'D′的周长为;(3)将四边形ABC'D'沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出所有可能拼成的矩形周长.【答案】(1)证明见解析;(2)4;(3)6+或2+3.【解析】∴∠ADB=60°,由平移可得,B'C'=BC=AD,∠D'B'C'=∠DBC=∠ADB=60°,∴AD∥B'C'∴四边形AB'C'D是平行四边形,∵B'为BD中点,∴Rt△ABD中,AB'=BD=DB',又∵∠ADB=60°,∴△ADB'是等边三角形,∴AD=AB',∴四边形AB'C'D是菱形;(2)由平移可得,AB=C'D',∠ABD'=∠C'D'B=30°,∴AB∥C'D',∴四边形ABC'D'是平行四边形,由(1)可得,AC'⊥B'D,∴四边形ABC'D'是菱形,∵AB=AD=,∴四边形ABC'D′的周长为4,∴矩形周长为6+或2+3.考点:菱形的判定与性质;矩形的性质;图形的剪拼;平移的性质.24.如图①,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28s时注满水槽.水槽内水面的高度y(cm)与注水时间x(s)之间的函数图象如图②所示.(1)正方体的棱长为cm;(2)求线段AB对应的函数解析式,并写出自变量x的取值范围;(3)如果将正方体铁块取出,又经过t(s)恰好将此水槽注满,直接写出t的值.【答案】(1)10;(2)y=x+(12≤x≤28);(3)4秒【解析】(2)设线段AB对应的函数解析式为:y=kx+b,∵图象过A(12,0),B(28,20),∴,解得:,∴线段AB对应的解析式为:y=x+(12≤x≤28);(3)∵28﹣12=16(cm),∴没有立方体时,水面上升10cm,所用时间为:16秒,∵前12秒由立方体的存在,导致水面上升速度加快了4秒,∴将正方体铁块取出,经过4秒恰好将此水槽注满.考点:一次函数的应用.六、解答题(每小题10分,共20分)25.如图,在Rt△ABC中,∠ACB=90°,∠A=45°,AB=4cm.点P从点A出发,以2cm/s的速度沿边AB向终点B运动.过点P作PQ⊥AB交折线ACB于点Q,D为PQ 中点,以DQ为边向右侧作正方形DEFQ.设正方形DEFQ 与△ABC重叠部分图形的面积是y(cm2),点P的运动时间为x(s).(1)当点Q在边AC上时,正方形DEFQ的边长为cm(用含x的代数式表示);(2)当点P不与点B重合时,求点F落在边BC上时x 的值;(3)当0<x<2时,求y关于x的函数解析式;(4)直接写出边BC的中点落在正方形DEFQ内部时x的取值范围.【答案】(1)x;(2)x=;(3)见解析;(4)1<x<.【解析】(3)如图②,当0<x≤时,根据正方形的面积公式得到y=x2;如图③,当<x≤1时,过C作CH⊥AB于H,交FQ 于K,则CH=AB=2,根据正方形和三角形面积公式得到y=﹣x2+20x﹣8;如图④,当1<x<2时,PQ=4﹣2x,根据三角形的面积公式得到结论;(4)当Q与C重合时,E为BC的中点,得到x=1,当Q 为BC的中点时,BQ=,得到x=,于是得到结论.试题解析:(1)∵∠ACB=90°,∠A=45°,PQ⊥AB,∴∠AQP=45°,∴PQ=AP=2x,∵D为PQ中点,∴DQ=x,∵D为PQ中点,∴DQ=x,∴GP=2x,∴2x+x+2x=4,∴x=;(3)如图②,当0<x≤时,y=S正方形DEFQ=DQ2=x2,∴y=x2;如图③,当<x≤1时,过C作CH⊥AB于H,交FQ于K,则CH=AB=2,∵PQ=AP=2x,CK=2﹣2x,∴MQ=2CK=4﹣4x,FM=x﹣(4﹣4x)=5x﹣4,∴y=S正方形DEFQ﹣S△MNF=DQ2﹣FM2,∴y=x2﹣(5x﹣4)2=﹣x2+20x﹣8,∴y=﹣x2+20x﹣8;∴DQ=2﹣x,∴y=S△DEQ=DQ2,∴y=(2﹣x)2,∴y=x2﹣2x+2;(4)当Q与C重合时,E为BC的中点,即2x=2,∴x=1,当Q为BC的中点时,BQ=,PB=1,∴AP=3,∴2x=3,∴x=,∴边BC的中点落在正方形DEFQ内部时x的取值范围为:1<x<.考点:四边形综合题.26.《函数的图象与性质》拓展学习片段展示:【问题】如图①,在平面直角坐标系中,抛物线y=a(x﹣2)2﹣经过原点O,与x轴的另一个交点为A,则a=.【操作】将图①中抛物线在x轴下方的部分沿x轴折叠到x轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G,如图②.直接写出图象G对应的函数解析式.【探究】在图②中,过点B(0,1)作直线l平行于x轴,与图象G的交点从左至右依次为点C,D,E,F,如图③.求图象G在直线l上方的部分对应的函数y随x增大而增大时x的取值范围.【应用】P是图③中图象G上一点,其横坐标为m,连接PD,PE.直接写出△PDE的面积不小于1时m的取值范围.【答案】【问题】:a=;【操作】:y=;【探究】:当1<x<2或x>2+时,函数y随x增大而增大;【应用】:m=0或m=4或m≤2﹣或m≥2+.【解析】试题分析:【问题】:把(0,0)代入可求得a的值;【操作】:先写出沿x轴折叠后所得抛物线的解析式,根据图象可得对应取值的解析式;【探究】:令y=0,分别代入两个抛物线的解析式,分别求出四个点CDEF的坐标,根据图象呈上升趋势的部分,即y随x增大而增大,写出x的取值;【应用】:先求DE的长,根据三角形面积求高的取值h≥1;分三部分进行讨论:①当P在C的左侧或F的右侧部分时,设P[m,],根据h≥1,列不等式解出即可;②如图③,作对称轴由最大面积小于1可知:点P不可能在DE的上方;③P与O或A重合时,符合条件,m=0或m=4.试题解析:【问题】∵抛物线y=a(x﹣2)2﹣经过原点O,∴0=a(0﹣2)2﹣,a=;【操作】:如图①,抛物线:y=(x﹣2)2﹣,对称轴是:直线x=2,由对称性得:A(4,0),沿x轴折叠后所得抛物线为:y=﹣(x﹣2)2+如图②,图象G对应的函数解析式为:y=;解得:x1=3,x2=1,∴D(1,1),E(3,1),由图象得:图象G在直线l上方的部分,当1<x<2或x >2+时,函数y随x增大而增大;【应用】:∵D(1,1),E(3,1),∴DE=3﹣1=2,∵S△PDE=DEh≥1,∴h≥1;②如图③,作对称轴交抛物线G于H,交直线CD于M,交x轴于N,∵H(2,),∴HM=﹣1=<1,∴当点P不可能在DE的上方;③∵MN=1,且O(0,0),a(4,0),∴P与O或A重合时,符合条件,∴m=0或m=4;综上所述,△PDE的面积不小于1时,m的取值范围是:m=0或m=4或m≤2﹣或m≥2+.考点:二次函数综合题.。
2017年吉林省中考数学试卷(含详细答案)

数学试卷 第1页(共32页) 数学试卷 第2页(共32页)绝密★启用前吉林省2017年初中毕业生学业水平考试数 学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共12分)一、选择题(本大题共6小题,每小题2分,共12分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算2(1)-的正确结果是( ) A .1B .2C .1-D .2- 2.下图是一个正六棱柱的茶叶盒,其俯视图为( )AB C D 3.下列计算正确的是( )A .235a a a +=B .236a a a =C .236()a a =D .22()ab ab = 4.不等式12x +≥的解集在数轴上表示正确的是( )A B CD5.如图,在ABC △中,以点B 为圆心,以BA 长为半径画弧交边BC 于点D ,连接AD .若40,36B C ==∠∠,则DAC ∠的度数是( ) A .70B .44C .34 D .24 6.如图,直线l 是O 的切线,A 为切点,B 为直线l 上一点,连接OB 交O 于点C .若12,5AB OA ==,则BC 的长为( ) A .5B .6C .7D .8第Ⅱ卷(非选择题 共108分)二、填空题(本大题共8小题,每小题3分,共24分.请把答案填在题中的横线上) 7.2016年我国资助各类家庭困难学生超过84000000人次.将84000000这个数用科学记数法表示为 .8.苹果原价是每千克x 元,按8折优惠出售,该苹果现价是每千克 元(用含x 的代数式表示).9.分解因式:244a a ++= .10.我们学过用直尺和三角尺画平行线的方法,如图所示,直线a b ∥的根据是 .11.如图,在矩形ABCD 中,5,3AB AD ==.矩形ABCD 绕着点A 逆时针旋转一定角度得到矩形AB C D '''.若点B 的对应点B '落在边CD 上,则B C '的长为 .12.如图,数学活动小组为了测量学校旗杆AB 的高度,使用长为2m 的竹竿CD 作为测量工具.移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面O 处重合,测得4m ,14m O D B D ==,则旗杆AB 的高为 m .13.如图,分别以正五边形ABCDE 的顶点,A D 为圆心,以AB 长为半径画,BE CE .若1AB =,则阴影部分图形的周长为(结果保留π).14.我们规定:当,k b 为常数,0,0,k b k b ≠≠≠时,一次函数y kx b =+与y bx k =+互为交换函数.例如:43y x =+的交换函数为34y x =+.一次函数2y kx =+与它的交换函数图象的交点横坐标为 . 三、解答题(本大题共12小题,共84分.解答应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分5分) 某学生化简分式21211x x ++-出现了错误,解答过程如下: 原式12(1)(1)(1)(1)x x x x =++-+- (第一步) 12(1)(1)x x +=+-(第二步)毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共32页) 数学试卷 第4页(共32页)23.1x =- (第三步)(1)该学生解答过程是从第 步开始出错的,其错误原因是 ; (2)请写出此题正确的解答过程.16.(本小题满分5分)被誉为“最美高铁”的长春至珲春城际铁路途经许多隧道和桥梁,其中隧道累计长度与桥梁累计长度之和为342km ,隧道累计长度的2倍比桥梁累计长度多36km .求隧道累计长度与桥梁累计长度.17.(本小题满分5分)在一个不透明的盒子中装有三张卡片,分别标有数字1,2,3,这些卡片除数字不同外其余均相同.小吉从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为奇数的概率.18.(本小题满分5分)如图,点,E F 在BC 上,,,BE CF AB DC B C ===∠∠. 求证:A D =∠∠.19.(本小题满分7分)某商场甲、乙、丙三名业务员5个月的销售额(单位:万元)如下表:20.(本小题满分7分)图1、图2、图3都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点.线段AB 的端点在格点上.(1)在图1、图2中,以AB 为边各画一个等腰三角形,且第三个顶点在格点上;(所画图形不全等)(2)在图3中,以AB 为边画一个平行四边形,且另外两个顶点在格点上.21.(本小题满分7分)如图,一枚运载火箭从距雷达站C 处5km 的地面O 处发射,当火箭到达点,A B 时,在雷达站C 处测得点,A B 的仰角分别为34,45,其中点,,O A B 在同一条直线上,求,A B 两点间的距离(结果精确到0.1km ).(参考数据:sin340.56,cos340.83,tan340.67===)22.(本小题满分7分)如图,在平面直角坐标系中,直线AB 与函数(0)ky x x=>的图象交于点,2,()(2),A m B n .过点A 作AC 平行于x 轴交y 轴于点C ,在y 轴负半轴上取一点D ,使12OD OC =,且ACD △的面积是6,连接BC .(1)求,,m k n 的值; (2)求ABC △的面积.数学试卷 第5页(共32页) 数学试卷 第6页(共32页)23.(本小题满分8分)如图1,BD 是矩形ABCD 的对角线,30,1ABD AD ==∠.将BCD △沿射线BD 方向平移到B C D '''△的位置,使B '为BD 中点,连接,,,AB C D AD BC '''',如图2.(1)求证:四边形AB C D ''是菱形; (2)四边形ABC D ''的周长为 ;(3)将四边形ABC D ''沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出所有可能拼成的矩形周长.24.(本小题满分8分)如图1,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28s 时注满水槽.水槽内水面的高度()cm y 与注水时间()s x 之间的函数图象如图2所示.(1)正方体的棱长为 cm ;(2)求线段AB 对应的函数解析式,并写出自变量x 的取值范围;(3)如果将正方体铁块取出,又经过()s t 恰好将此水槽注满,直接写出t 的值.25.(本小题满分10分)如图,在Rt ABC △中,90,45,4cm ACB A AB ===∠∠.点P 从点A 出发,以2cm/s 的速度沿边AB 向终点B 运动.过点P 作PQ AB ⊥交折线ACB 于点,Q D 为PQ 中点,以DQ 为边向右侧作正方形DEFQ .设正方形DEFQ 与ABC △重叠部分图形的面积是2()cm y ,点P 的运动时间为()s x .(1)当点Q 在边AC 上时,正方形DEFQ 的边长为 cm (用含x 的代数式表示);(2)当点P 不与点B 重合时,求点F 落在边BC 上时x 的值; (3)当02x <<时,求y 关于x 的函数解析式;(4)直接写出边BC 的中点落在正方形DEFQ 内部时x 的取值范围.26.(本小题满分10分)《函数的图象与性质》拓展学习片段展示:【问题】如图1,在平面直角坐标系中,抛物线224()3y a x =--经过原点O ,与x 轴的另一个交点为A ,则a = .【操作】将图1中抛物线在x 轴下方的部分沿x 轴折叠到x 轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G ,如图2.直接写出图象G 对应的函数解析式.【探究】在图2中,过点()0,1B 作直线l 平行于x 轴,与图象G 的交点从左至右依次为点,,,C D E F ,如图3.求图象G 在直线l 上方的部分对应的函数y 随x 增大而增大时x 的取值范围. 【应用】P 是图3中图象G 上一点,其横坐标为m ,连接,PD PE .直接写出PDE △的面积不小于1时m 的取值范围.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第7页(共32页)数学试卷第8页(共32页)吉林省2017年初中毕业生学业水平考试数学答案解析第Ⅰ卷与不是同类项,故错误;数学试卷第11页(共32页)数学试卷第12页(共32页)为整数的值时,要看把原数变时,小数点移动了多少位,的绝对值与小数点移动的位数相同时,是正数;时,是负数和是同位角;∵为:同位角相等,两直线平行.和是同位角;由平行线的判定方法即可得出结论故答案是:1.的高为.、的长度,再根据周长的定义,即可求出阴影部分图形的周长7 / 16根据题意得:解得:17.【答案】画树状图得:.【解析】解:画树状图得:.数学试卷第15页(共32页)数学试卷第16页(共32页)20.【答案】(1)作图如下,答案不唯一,以下供参考9 / 16【解析】解:(1)答案不唯一,以下供参考;(2)答案不唯一,以下供参考.的垂直平分线,垂直平分线经过的格点即为等腰三角形的第三个顶点;以点为圆的长为半径画弧,弧线经过的格点即为等腰三角形的第三个顶点沿任意方向平移到另一格点处,然后将点也按相同的方法平移,最后连结点、及点、的对应点即可数学试卷第19页(共32页)数学试卷第20页(共32页)中,,两点间的距离约为、,即可解决问题的坐标为轴,∴的坐标为(2)如图,过点作于点,则,的纵坐标为的坐标代入函数解析式求得,将点坐标代入函数解析式求得;23.【答案】(1)证明见解析(2)的对角线,由平移可得,为中,(3)将四边形沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形如下:24.【答案】(1)10对应的函数解析式为:对应的解析式为:的取值范围;的值25.【答案】(1)(2)为;交于,由题意得为作,交,则,与重合时,为为的取值范围为:为交于,为作,交,则与重合时,为为,∴;轴折叠后所得抛物线为:对应的函数解析式为:在直线上随增大而增大;在的左侧或的右侧部分时,,于,交,交轴于,∵不可能在不可能在(除点)(除点)与重合时,符合条件,∴的取值范围是:的值;轴折叠后所得抛物线的解析式,根据图像可得对应取值的解析式;随增大而增大,写出的取值;在的左侧或的右侧部分时,设不可能在与或重合时,符合条件,。
2017年吉林省中考数学试卷-答案

吉林省2017年初中毕业生学业水平考试数学答案解析第Ⅰ卷故选:D.【提示】根据勾股定理,可得OB 的长,根据线段的和差,可得答案. 【考点】圆的切线的性质,勾股定理第Ⅱ卷二、填空题 7.【答案】78.410⨯【解析】解:7840000008.410=⨯,故答案为:78.410⨯【提示】科学记数法的表示形式为10n a ⨯的形式,其中1|10|a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数 【考点】科学计数法 8.【答案】0.8x【解析】解:依题意得:该苹果现价是每千克80%0.8x x =. 故答案是:0.8x .【提示】按8折优惠出售,就是按照原价的80%进行销售. 【考点】代数式的实际运用 9.【答案】2(2)a +【解析】解:2244(2)a a a ++=+故答案为:2(2)a +【提示】利用完全平方公式直接分解即可求得答案. 【考点】完全平方公式10.【答案】同位角相等,两直线平行 【解析】解:如图所示:根据题意得出:12∠=∠;1∠和2∠是同位角;∵12∠=∠,∴a b ∥(同位角相等,两直线平行);故答案为:同位角相等,两直线平行.故答案是:1.3ππ5AB ︒︒=17.【答案】画树状图得:4【解析】解:画树状图得:20.【答案】(1)作图如下,答案不唯一,以下供参考【解析】解:(1)答案不唯一,以下供参考;(2)答案不唯一,以下供参考.【提示】(1)作线段AB的垂直平分线,垂直平分线经过的格点即为等腰三角形的第三个顶点;以点A为圆心,以AB的长为半径画弧,弧线经过的格点即为等腰三角形的第三个顶点.(2)将点A沿任意方向平移到另一格点处,然后将点B也按相同的方法平移,最后连结点A、B及点B、A的对应点即可.【考点】格点做等腰三角形,平行21.【答案】1.7kmtan345OC ︒=,在Rt BOC △22.【答案】(1) 8k =4n =6CD AC =,∴(2)如图,过点B 作BE AC ⊥于点E ,则2BE =,1142AC BE =⨯23.【答案】(1)证明见解析(2)(3)将四边形ABC D ''沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形如下:24.【答案】(1)10 (2)55,(1228)82y x x =+≤≤ (3)4【解析】解:(1)由题意可得:12秒时,水槽内水面的高度为10cm ,12秒后水槽内高度变化趋势改变,故正方体的棱长为10cm ; 故答案为:10;(2)设线段AB 对应的函数解析式为:y kx b =+,∵图像过(12,10)A ,(28,20)B ,∴12102820k b k b +=⎧⎨+=⎩,解得:25.【答案】(1)(2)45x =(3)2122y x x -=+221DE h ≥,∴21(2)3m =-。
吉林省2017年中考数学真题试题(含扫描答案)【真题卷】

吉林省长春市2017年中考数学试题一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.3的相反数是 ( )A .3−B .13−C .13D .3 2. 据统计,2016年长春市接待旅游人数约67000000人次,67000000这个数用科学记数法表示为( )A .66710⨯B .56.710⨯C .76.710⨯D .86.710⨯3.下列图形中,可以是正方形表面展开图的是( )A .B .C .D .4. 不等式组10251x x −≤⎧⎨−<⎩的解集为( ) A .2x <− B .1x ≤− C.1x ≤ D .3x < 5.如图,在ABC ∆中,点D 在AB 上,点E 在AC 上,DE BC ,若62,54A AED ∠=∠=,则B ∠的大小为 ( )A .54B .62 C.64 D .746.如图,将边长为3a 的正方形沿虚线剪成两块正方形和两块长方形,若拿掉边长2b 的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为 ( )A .32a b +B .34a b + C. 62a b + D .64a b +7. 如图,点,,A B C 在O 上,29ABC ∠=,过点C 作O 的切线交OA 的延长线于点D ,则D ∠的大小为( )A .29B .32 C.42 D .588.如图,在平面直角坐标系中,平行四边形OABC 的顶点A 的坐标为()4,0−,顶点B 在第二象限,60,BAO BC ∠=交y 轴于点,:3:1D DB DC =若,函数()0,0k y k x x =>>的图象,经过点C ,则k 的值为 ( )A .3B .3 C.23 D .3 二、填空题(每题3分,满分18分,将答案填在答题纸上)9.计算:23⨯= .10.若关于x 的一元二次方程240x x a ++=有两个相等的实数根,则a 的值是 .11.如图,直线a b c ,直线12,l l 与这三条平分线分别交于点,,C A B 和点,,D E F ,若:1:2,3AB BC DE ==,则EF 的长为 .12.如图,则ABC ∆中,100,4BAC AB AC ∠===,以点B 为圆心,BA 长为半径作圆弧,交BC 于点D ,则AD 的长为 .(结果保留π)13.如图①,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.此图案案的示意图如图②,其中四边形ABCD 和四边形EFGH 都是正方形,ABF ∆ 、BCG ∆、CDH ∆、DAE ∆是四个全等的直角三角形,若2,8EF DE ==,则AB 的长为 .图1 图2 14. 如图,在平面直角坐标系中,ABC ∆的顶点A 在第一象限,点,B C 的坐标为()()2,1,6,1,90,BAC AB AC ∠==,直线AB 交x 轴于点P ,若ABC ∆与'''A B C ∆关于点P 成中心对称,则点'A 的坐标为 .三、解答题 (本大题共10小题,共78分.解答应写出文字说明、证明过程或演算步骤.)15. 先化简,再求值:()223(21)21a a a a ++−+,其中2a = . 16. 一个不透明的口袋中有一个小球,上面分别标有字母,,a b c ,每个小球除字母不同外其余均相同,小园同学从口袋中随机摸出一个小球,记下字母后放回且搅匀,再从可口袋中随机摸出一个小球记下字母,用画树状图(或列表)的方法,求小园同学两次摸出的小球上的字母相同的概率.17. 如图,某商店营业大厅自动扶梯AB 的倾斜角为31AB ,的长为12米,求大厅的距离HC 的长.(结果精确到0.1米)(参考数据:sin310.515,cos310.857,tan310.60===)18. 某校为了丰富学生的课外体育活动,购买了排球和跳绳,已知排球的单价是跳绳的单价的3倍,购买跳绳共花费750元,购买排球共花费900元,购买跳绳的数量比购买排球的数量多30个,求跳绳的单价.19.如图,在菱形ABCD 中,110A ∠=,点E 是菱形ABCD 内一点,连结CE 绕点C 顺时针旋转110,得到线段CF ,连结,BE DF ,若86E ∠= ,求F ∠的度数.20.某校八年级学生会为了解本年级600名学生的睡眠情况,将同学们某天的睡眠时长t (小时)分为(),,,,:924;:89;:78;:67;:06A B C D E A t B t C t D t E t ≤≤≤≤≤≤≤≤≤≤五个选项,进行了一次问卷调查 ,随机抽取n 名同学的调查问卷并进行了整理,绘制成如下条形统计图,根据统计图提供的信息解答下列问题:(1)求n 的值;(2)根据统计图结果,估计该年级600名学生中睡眠时长不足7小时的人数.21.甲、乙两车间同时开始加工—批服装.从幵始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y (件).甲车间加工的时间为x (时),y 与x 之间的函数图象如图所示.(1)甲车间每小时加工服装件数为 件;这批服装的总件数为 件.(2)求乙车间维修设备后,乙车间加工服装数量y 与x 之间的函数关系式;(3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.22. 【再现】如图①,在ABC ∆中,点,D E 分别是,AB AC 的中点,可以得到:DE BC ,且12DE BC = .(不需要证明) 【探究】如图②,在四边形ABCD 中,点,,,E F G H 分别是,,,AB BC CD DA 的中点,判断四边形EFGH 的形状,并加以证明.【应用】在(1)【探究】的条件下,四边形ABCD 中,满足什么条件时,四边形EFGH 是菱形?你添加的条件是: .(只添加一个条件)(2)如图③,在四边形ABCD 中,点,,,E F G H 分别是,,,AB BC CD DA 的中点,对角线,AC BD 相交于点O .若AO OC =,四边形ABCD 面积为5,则阴影部分图形的面积和为 .23. 如图①,在Rt ABC ∆中,90,10,6C AB BC ∠===,点P 从点A 出发,沿折线AB BC −向终点C 运动,在AB 上以每秒5个单位长度的速度运动,在BC 上以每秒3个单位长度的速度运动,点Q 从点C 出发,沿CA 方向以每秒43个单位长度的速度运动,,P Q两点同时出发,当点P 停止时,点Q 也随之停止.设点P 运动的时间为t 秒.(1)求线段AQ 的长;(用含t 的代数式表示)(2)连结PQ ,当PQ 与ABC ∆的一边平行时,求t 的值;(3)如图②,过点P 作PE AC ⊥于点E ,以,PE EQ 为邻边作矩形PEQF ,点D 为AC 的中点,连结DF .设矩形PEQF 与 ABC ∆重叠部分图形的面积为S .①当点Q 在线段CD 上运动时,求S 与t 之间的函数关系式;②直接写出DF 将矩形PEQF 分成两部分的面积比为1:2时t 的值.24.定义:对于给定的两个函数,任取自变量x 的一个值,当0x <时,它们对应的函数值互为相反数;当0x ≥时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数1y x =−,它们的相关函数为()()1010x x y x x −+<⎧⎪=⎨−≥⎪⎩. (1)已知点()5,8A − 在一次函数3y ax =−的相关函数的图象上,求a 的值;(2)已知二次函数2142y x x =−+−. ①当点3,2B m ⎛⎫ ⎪⎝⎭在这个函数的相关函数的图象上时,求m 的值;②当33x −≤≤时,求函数2142y x x =−+−的相关函数的最大值和最小值; (3)在平面直角坐标系中,点,M N 的坐标分别为19,1,,122⎛⎫⎛⎫− ⎪ ⎪⎝⎭⎝⎭,连结MN .直接写出线段MN 与二次函数24y x x n =−++ 的相关函数的图象有两个公共点时n 的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年吉林市中考数学试题与答案
(试卷满分120分,考试时间120分钟)
一、单项选择题(每小题2分,共12分)
1. 计算2
(1)-的正确结果是( )
A .1
B .2
C .-1
D .-2 2. 下图是一个正六棱柱的茶叶盒,其俯视图为( )
3. 下列计算正确的是( )
A .235a a a +=
B .236
a a a = C .23
6
()a a = D .2
2
()ab ab =
4. 不等式12x +≥的解集在数轴上表示正确的是( )
5. 如图,在ABC ∆中,以点B 为圆心,以BA 长为半径画弧交边BC 于点D ,连接AD .若40B ∠=,
36C ∠=,则DAC ∠的度数是( )
A .70
B .44 C. 34 D .24
6. 如图,直线l 是O 的切线,A 为切点,B 为直线l 上一点,连接OB 交O 于点C .若
12,5AB OA ==,则BC 的长为( )
A .5
B .6 C.7 D .8
二、填空题(每小题3分,共24分)
7. 2016年我国资助各类家庭困难学生超过84 000 000人次.将84 000 000这个数用科学记数法表示为 .
8. 苹果原价是每千克x 元,按8折优惠出售,该苹果现价是每千克 元(用含x 的代数式表示).
9. 分解因式:2
44a a ++= .
10. 我们学过用直尺和三角尺画平行线的方法,如图所示,直线//a b 的根据是 .
11. 如图,在矩形ABCD 中,5,3AB AD ==.矩形ABCD 绕着点A 逆时针旋转一定角度得到矩
形AB C D '''.若点B 的对应点B '落在边CD 上,则B C '的长为 .
12. 如图,数学活动小组为了测量学校旗杆AB 的高度,使用长为2m 的竹竿CD 作为测量工具.移
动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面O 处重合, 测得4,14OD m BD m ==,
则旗杆AB 的高为 m .
13. 如图,分别以正五边形ABCDE 的顶点,A D 为圆心,以AB 长为半径画弧BE ,弧CE .若
1AB =,则阴影部分图形的周长和为 (结果保留π)
.
14. 我们规定:当,k b 为常数,0,0,k b k b ≠≠≠时,一次函数y kx b =+与y bx k =+互为交换函数.例如:43y x =+的交换函数为34y x =+.―次函数2y kx =+与它的交换函数图象的交点横坐标为 .
三、解答题 (每小题5分,共20分)
15.某学生化简分式2
12
11
x x ++-出现了错误,解答过程如下: 原式12
(1)(1)(1)(1)
x x x x =
++-+- (第一步)
12
(1)(1)
x x +=
+- (第二步)
23
1
x =
-. (第三步) (1)该学生解答过程是从第________步开始出错的,其错误原因是________; (2)请写出此题正确的解答过程.
16. 被誉为“最美高铁”的长春至珲春城际铁路途经许多隧道和桥梁,其中隧道累计长度与桥梁累计长度之和为342km ,隧道累计长度的2倍比桥梁累计长度多36km .求隧道累计长度与桥梁累计长度.
17. 在一个不透明的盒子中装有三张卡片,分别标有数字1,2,3,这些卡片除数字不同外其余均相同.小吉从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为奇数的概率.
18.如图,点,E F 在BC 上, ,,BE CF AB DC B C ==∠=∠.求证:A D ∠=∠.
四、解答题(每小题7分,共28分)
19. 某商场甲、乙、丙三名业务员5个月的销售额(单位:万元)如下表:
(1)根据上表中的数据,将下表补充完整:
(2)甲、乙、丙三名业务员都说自己的销售业绩好,你赞同谁的说法?请说明理由. 20. 图①、图②、图③都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点.线段AB 的端点在格点上.
(1)在图①、图2中,以AB 为边各画一个等腰三角形,且第三个顶点在格点上;(所画图形不
全等.)
(2)在图③中,以AB 为边画一个平行四边形,且另外两个顶点在格点上.
21. 如图,一枚运载火箭从距雷达站C 处5km 的地面O 处发射,当火箭到达点,A B 时,在雷达站C 处测得点,A B 的仰角分别为34,45,其中点,,O A B 在同一条直线上.求,A B 两点间的距离(结果精确到0.1km ). (参考数据:sin 340.56,cos340.83,tan 340.67===.)
22. 如图,在平面直角坐标系中,直线AB 与函数(0)k
y x x
=>的图象交于点(,2),(2,)A m B n .过点A 作AC 平行于x 轴交y 轴于点C ,在y 轴负半轴上取一点D ,使1
2
OD OC =,且ACD ∆的面
积是6,连接BC . (1)求,,m k n 的值; (2)求ABC ∆的面积.
五、解答题(每小题8分,共16分)
23.如图①,BD 是矩形ABCD 的对角线, 30,1ABD AD ∠==.将BCD ∆沿射线BD 方向平移到B C D '''∆的位置,使B '为BD 中点, ,,,AB C D AD BC '''',如图②.
(1)求证:四边形AB C D ''是菱形; (2)四边形ABC D ''的周长为___________;
(3)将四边形ABC D ''沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直
接写出所有可能拼成的矩形周长.
24.如图①,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28s 时注满水槽.水槽内水面的高度()y cm 与注水时间()x s 之间的函数图象如图②所示.
(1)正方体的棱长为__________cm ;
(2)求线段AB 对应的函数解析式,并写出自变量x 的取值范围;
(3)如果将正方体铁块取出,又经过()t s 恰好将此水槽注满,直接写出t 的值.
六、解答题(每小题10分,共20分)
25.如图,在Rt ABC ∆中,90,45,4ACB A AB cm ∠=∠==.点P 从点A 出发,以2/cm s 的速度沿边AB 向终点B 运动.过点P 作PQ AB ⊥交折线ACB 于点Q ,D 为PQ 中点,以DQ 为边向右侧作正方形DEFQ .设正方形DEFQ 与ABC ∆重叠部分图形的面积是2
()y cm ,点P 的运动时间为()x s .
(1)当点Q 在边AC 上时,正方形DEFQ 的边长为___________cm (用含x 的代数式表示); (2)当点P 不与点B 重合时,求点F 落在边BC 上时x 的值; (3)当02x <<时,求y 关于x 的函数解析式;
(4)直接写出边BC 的中点落在正方形DEFQ 内部时x 的取值范围. 26.《函数的图象与性质》拓展学习片段展示:
【问题】如图①,在平面直角坐标系中,抛物线2
4
(2)3
y a x =--经过原点O ,与x 轴的另一个交点为A ,则a =_________________.
【操作】将图①中抛物线在x 轴下方的部分沿x 轴折叠到x 轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G ,如图②.直接写出图象G 对应的函数解析式. 【探究】在图2中,过点(0,1)B 作直线l 平行于x 轴,与图象G 的交点从左至右依次为点
,,,C D E F ,如图③.求图象G 在直线l 上方的部分对应的函数y 随x 增大而增大时x 的取值范围.
【应用】P 是图③中图象G 上―点,其横坐标为m ,连接,PD PE .直接写出PDE ∆的面积不小于1时m 的取值范围.
参考答案
一、单项选择题(每小题2分,共12分) 1.A 2.B 3.C 4.A 5.C 6.D 二、填空题(每小题3分,共24分)
7. 8.4×10
2
8. 0.8x 9. (a+2)
2
10. 同位角相等,两直线平行
11. 1 12. 9 13. 5
6+1 14. 1
11。