x简谐振动(弹簧振子)

合集下载

弹簧振动与简谐运动

弹簧振动与简谐运动
简谐运动的实例
弹簧振子:弹簧振子是一种常见的简谐运动实例,当弹簧振子受到外力作用时,会进行简谐振动。
单摆:单摆是一种简单的简谐运动实例,当单摆受到重力作用时,会进行简谐振动。
弦振动:弦振动是一种常见的简谐运动实例,当弦受到外力作用时,会进行简谐振动。
电磁振荡:电磁振荡是一种常见的简谐运动实例,当电磁系统受到外力作用时,会进行简谐振动。
弹簧振动的谐振频率与振幅的关系
弹簧振动与简谐运动的理论研究
5
理论模型与公式推导
添加标题
添加标题
添加标题
添加标题
弹簧振动方程:描述弹簧振动的物理规律
胡克定律:描述弹簧的形变与弹力之间的关系
简谐运动方程:描述简谐运动的物理规律
公式推导:从胡克定律和弹簧振动方程推导出简谐运动方程
理论分析与计算方法
添加标题
差异:弹簧振动的振幅和频率与弹簧的刚度和质量有关,而简谐运动的振幅和频率与物体的质量和弹簧的刚度有关。
联系:弹簧振动是简谐运动的一种特殊情况,当弹簧的刚度和质量满足一定条件时,弹簧振动可以简化为简谐运动。
弹簧振动与简谐运动的关系在现实生活中的应用
钟摆:钟摆的摆动是简谐运动,其振动周期与弹簧的刚度和质量有关。
弹簧振动的能量守恒,即动能和势能相互转化,没有能量损失。
弹簧振动的应用
机械手表:利用弹簧振动来控制手表的走时精度
地震监测:利用弹簧振动来监测地震活动,提前预警
简谐运动的定义
2
简谐运动的描述
添加标题
添加标题
添加标题
添加标题
简谐运动的特点是位移、速度和加速度都与时间呈正弦或余弦关系
简谐运动是一种周期性、重复性的运动
弹簧的弹性系数:决定弹簧振动频率和振幅的重要参数

弹簧振子的简谐振动

弹簧振子的简谐振动

弹簧振子的简谐振动【实验目的】:1.测量弹簧振子的振动周期T2.求弹簧的劲度系数k 和有效质量m【实验器材】:气垫导轨、滑块、附加砝码、弹簧、秒表【实验原理】:1.弹簧振子的简谐运动方程质量为m 1的质点由两个弹簧拉着, 弹簧的劲度系数分别为k 当m 偏离平衡位置的距离为x 时, 它受弹簧作用力并用牛顿第二定律写出方程−kx = mx ¨方程的解为:x = A sin(ω0t + ϕ0) 即物体作简谐振动, 其中ω0 =kmω0是振动系统的固有角频率. m = m 1 + m 0 是振动系统的有效质量, m 0是弹簧的有效质量. A 是振幅, φ0是初相位, ω0有系统本身决定, A 和φ0由初始条件决定. 系统的振动周期: T =2πω0= 2π,mk=2πm 1 + m 0k在实验中改变质量,测出相应的T ,考虑T 与m 的关系,从而求出劲度系数与有效质量【实验过程】:1.将各装置装好并调到工作状态2.将滑块从平衡位置拉到某一合适位置,然后放手让滑块振动与此同时按下秒表,当振子振动10个周期时再按下秒表,记录下时间,重复测量10次得到每次的振动周期如下表所示: 次数 1 2 3 4 5 6 7 8 9 10 T/s 1.7531.7531.7531.7541.7431.7531.7561.7531.7501.7563.称量滑块质量为319.748g ,四个砝码的质量为67.862g ,六个砝码的质量为100.087g ,将四个砝码对称地放到滑块的两边,重复过程2,得到下表一的数据。

将六个砝码对称地放到滑块的两边,同样重复过程2,得到下表二的数据。

表一:次数 1 2 3 4 5 6 7 8 9 10T/s 1.922 1.932 1.934 1.934 1.919 1.925 1.925 1.918 1.928 1.929表二:次数 1 2 3 4 5 6 7 8 9 10T/s 2.004 2.019 1.984 2.000 1.996 1.994 1.997 1.994 1.985 1.9974.用逐差法处理上述数据得弹簧等效劲度系数k=4.39N/m弹簧等效质量m=0.218g丁朝阳2012301020025。

弹簧振子的基本性质与振动分析

弹簧振子的基本性质与振动分析

弹簧振子的基本性质与振动分析弹簧振子是物理学中的一个经典问题,它具有广泛的应用和研究价值。

本文将介绍弹簧振子的基本性质和振动分析。

首先,我们来了解一下弹簧振子的基本结构。

弹簧振子由一个质点和一个弹簧组成,质点可以看作是挂在弹簧上的物体。

当质点受到外力作用时,弹簧会发生变形,产生恢复力。

弹簧的恢复力与变形的大小成正比,且方向与变形方向相反。

这种恢复力使得质点在弹簧的作用下产生振动。

弹簧振子的振动可以分为简谐振动和非简谐振动。

简谐振动是指质点在弹簧的作用下,沿着一个确定的轨迹以相同的周期进行振动。

简谐振动的周期与质点的质量和弹簧的劲度系数有关,质量越大,劲度系数越小,周期越长。

非简谐振动是指质点在弹簧的作用下,振动的周期和振幅都会发生变化。

这种振动的特点是周期不固定,振幅随时间变化。

非简谐振动的产生原因主要是弹簧的变形不再满足胡克定律,即弹簧的恢复力不再与变形成正比。

弹簧振子的振动分析可以通过求解弹簧振子的运动方程来实现。

运动方程可以通过牛顿第二定律得到,即质点的加速度等于受力除以质量。

在弹簧振子中,质点受到弹簧的恢复力和外力的作用,因此运动方程可以表示为:m * a = -k * x + F(t)其中,m是质点的质量,a是质点的加速度,k是弹簧的劲度系数,x是质点的位移,F(t)是外力。

通过解这个运动方程,我们可以得到弹簧振子的运动规律。

对于简谐振动,解的形式为:x(t) = A * sin(ωt + φ)其中,A是振幅,ω是角频率,φ是初相位。

对于非简谐振动,解的形式比较复杂,需要借助数值方法或近似方法进行求解。

非简谐振动的研究对于理解振动系统的行为和性质具有重要意义。

除了振动分析,弹簧振子还有其他一些重要的性质。

例如,弹簧振子的能量守恒性质。

在振动过程中,弹簧振子的总能量保持不变,只是在动能和势能之间进行转换。

这个性质在工程和科学研究中有广泛的应用。

此外,弹簧振子还有共振现象。

当外力的频率与弹簧振子的固有频率相等或接近时,弹簧振子的振幅会显著增大,这就是共振现象。

[弹簧振子的简谐振动]简谐振动:简谐振动

[弹簧振子的简谐振动]简谐振动:简谐振动

[弹簧振子的简谐振动]简谐振动:简谐振动篇一: 简谐振动:简谐振动-简谐振动,简谐振动-说明简谐振动是振动的一种形式。

一个作直线振动的质点,如果取其平衡位置为原点,取其运动轨道沿`x`轴,那么当质点离开平衡位置的位移`x`随时间`t`变化的规律,遵从余弦函数或正弦函数时:`x=Acos`,这一直线振动便是简谐振动。

式中`A`表示质点离开平衡位置时``的最大位移绝对值,称“振辐”,`T`是简谐振动的周期,``角称为简谐振动的周相角或位相。

①物体在受到大小跟位移成正比,而方向恒相反的合外力作用下的运动,叫做简谐振动。

②物体的运动参量,随时间按正弦或余弦规律变化的振动,叫做简谐振动。

简谐振动_简谐振动-简谐振动以x表示位移,t表示时间,这种振动的数学表达式为:简谐振动简谐振动式中A为位移x的最大值,称为振幅,它表示振动的强度;ωn表示每秒中的振动的幅角增量,称为角频率,也称圆频率;称为初相位。

以f=ωn/2π表示每秒中振动的周数,称为频率;它的倒数,T=1/f,表示振动一星期所需的时间,称为周期。

振幅A、频率f、初相位,称为简谐振动三要素。

如图2所示,由线性弹簧联结的集中质量m构成简谐振子。

当振动位移自平衡位置算起时,其振动方程为:简谐振动简谐振动简谐振动但ωn只由系统本身的特征m和k决定,与外加的初始条件无关,故ωn亦称固有频率。

简谐振动对于简谐振子,其动能简谐振动和势能简谐振动之和为—常量,即系统的总机械能守恒。

在振动过程中,动能和势能不断相互转化。

简谐振动_简谐振动-说明①振动中最简单的就是简谐振动。

实际上,物体的运动参量随时间按正弦或余弦规律变化,是物体受到大小跟位移成正比,方向恒相反的合外力作用的必然结果。

②作简谐振动的物体,回复力和位移成正比这一点,是比较容易理解的,但是对于方向恒相反这一点,初学者并不容易理解,错误地认为在物体由平衡位置向最大位移处运动的过程中,位移是指向最大位移处,这和所受的作用力反向;由最大位移处向平衡位置运动的过程中,位移是指向平衡位置,这和所受的作用力同向;这样似乎外力和位移的方向时而相反,时而相同了。

弹簧振子运动

弹簧振子运动

弹簧振子运动弹簧振子是指由于弹簧的弹性特性而产生的往复振动的物理系统。

弹簧振子是物理学中重要的研究对象之一,对于理解振动现象、力学和能量转化等概念具有重要意义。

本文将介绍弹簧振子的基本原理、运动方程、能量转化以及一些实际应用。

弹簧振子的基本原理是建立在胡克定律的基础上的,即弹簧的伸长或压缩与其所受的力成正比。

在没有施加外力的情况下,弹簧处于平衡位置。

当外力作用于弹簧时,弹簧开始变形,并且由于弹性势能的存在,弹簧具有恢复力,试图将变形恢复到平衡位置。

这种恢复运动会导致弹簧振动。

弹簧振子的运动方程可以通过牛顿第二定律推导得到。

假设弹簧的伸长或压缩量为x,弹簧的弹性常数为k,振子的质量为m。

根据牛顿第二定律,可以得到以下方程:m * d^2x/dt^2 = -k * x其中,d^2x/dt^2表示x对时间t的二阶导数,即加速度。

可以看出,弹簧振子的运动方程是一个二阶线性常微分方程。

解这个方程可以得到弹簧振子的运动规律。

弹簧振子存在两种运动方式:简谐振动和非简谐振动。

简谐振动指的是振幅大小恒定、振动周期固定的振动,其运动方程的解为:x = A * cos(ωt + φ)其中,A表示振幅,ω表示角频率,t表示时间,φ表示相位差。

简谐振动的特点是振幅恒定且周期固定。

非简谐振动则是指振幅和周期会随着时间的变化而产生变化的振动。

这种振动通常是由于非线性的恢复力导致的。

非简谐振动的运动方程一般不能用简单的三角函数表示,需要使用数值方法或近似方法求解。

弹簧振子的能量转化也是一个重要的物理现象。

在弹簧振动的过程中,振子的动能和势能会不断转化。

当振子处于平衡位置时,动能为零、势能为最大。

当振子到达最大位移时,动能达到最大值、势能达到最小值。

在振子运动的过程中,动能和势能会不断相互转化,总能量保持不变。

除了在物理学研究中的重要性,弹簧振子在实际生活中也有各种应用。

例如,弹簧振子的特性被应用于钟摆的设计中,通过调节振动频率来控制钟摆的走时准确度。

简谐振动方程弹簧振子的振动理性化模型

简谐振动方程弹簧振子的振动理性化模型
动能势能相互转化3t能量二两个同方向同频率谐振动的合成若有两个同方向同频率的简谐振动两个振动的合位移合振动的振幅简谐运动复杂振动合成分解coscossinsintan两个同方向同频率简谐运动合成后仍为简谐运动振动减弱1相位差三受迫振动共振系统在周期性外力作用下所进行的振动叫受迫振动
1
常见的振动现象
合成
分解
复杂振动
若有两个同方向、同频率的简谐振动
x1 A t 1 ) 1 cos( x2 A2 cos(t 2 )
两个振动的合位移
x A cos(t )
合振动的振幅
A A A 2 A1 A2 cos( 2 1 )
2 1 2 2
x A cos(t )
2
x, v
简谐运动能量图
o
能量
x t
T
0 t x Acost v t v A sin t
1 E kA2 2 1 2 2 Ep kA cos t 2
o
T
T
3T
4
2
4
T
1 t Ek m 2 A2 sin 2 t 2
二、两个友 诉说了内心的忧虑.正在说话时,寺 院里的钟声响了,说来奇怪,磬也发 出了嗡嗡的响声.
共振的现象
和尚的朋友明白了原由,悄悄 用钢锉在磬上锉了几处. 从此之后, 磬再也不会无故发声了. 和尚以为 妖怪已被赶走,心事顿消,病也不 治而愈.
共振的原因
磬为什么会不敲自鸣呢?这是共振 引起的一种现象. 当一物体的振动频率 与另一物体的固有频率一致时,前者的 振动能引发后者的振动. 磬的频率偶然 地和钟的频率一样,因此每当钟响时, 磬也因共振而发出嗡嗡之声.
显然,和尚的朋友深通物理知识, 他不仅知道这是一种共振现象,而且知 道如何消除这种现象.他巧妙地在磬上锉 了几下,这就改变了磬的固有频率,使 磬与钟的频率不再一样,也就引 不起共鸣了.

简谐振动弹簧振子与单摆的运动规律

简谐振动弹簧振子与单摆的运动规律

简谐振动弹簧振子与单摆的运动规律简谐振动是指物体在一个恢复力作用下,以某一特定频率围绕平衡位置来回振动的现象。

其中,弹簧振子和单摆是两种常见的简谐振动体系。

本文将介绍弹簧振子和单摆的运动规律。

一、弹簧振子弹簧振子是通过连接弹性系数为k的弹簧和质量为m的物体来实现的。

弹簧振子的平衡位置是指物体静止时所处的位置,通常是将弹簧的伸长长度设为平衡位置。

1. 振动方程对于弹簧振子而言,其振动方程可以表示为:m * a + k * x = 0其中,m是物体的质量,a是物体的加速度,k是弹簧的劲度系数,x是物体距离平衡位置的位移。

2. 运动规律根据振动方程,我们可以推导出弹簧振子的运动规律。

假设物体在t=0时刻的位移为x_0,速度为v_0,则弹簧振子的位移可以表示为:x = A * cos(ωt + φ)其中,A是振幅,表示物体离开平衡位置的最大距离;ω是角频率,表示单位时间内物体的振动次数;φ是初相位,表示物体在t=0时刻的相位。

利用初条件,我们可以求解振幅和初始相位。

物体的速度可以表示为:v = -A * ω * sin(ωt +φ)由于速度和位移之间存在90°的相位差,我们可以得到速度的初相位:φ_v = φ + π/23. 简谐振动的特点弹簧振子的简谐振动具有以下特点:- 振动周期:T = 2π/ω,表示物体完成一个完整振动所需要的时间。

- 振动频率:f = 1/T,表示单位时间内物体的振动次数。

- 动能和势能:弹簧振子的动能和势能之和保持不变,即E =1/2mv^2 + 1/2kx^2 = 1/2kA^2,其中E为总能量。

二、单摆单摆由一个允许转动的杆和一个挂在杆末端的质点组成。

当质点被拉至一侧并释放时,它将在重力的作用下来回摆动。

1. 振动方程对于单摆而言,其振动方程可以表示为:m * a + mg * sinθ = 0其中,m是质点的质量,a是质点的加速度,g是重力加速度,θ是质点与竖直方向的夹角。

弹簧振子公式

弹簧振子公式

弹簧振子公式
弹簧振子公式是描述弹簧振动的数学公式,它可以用来计算弹簧振动的周期、频率和振幅等相关参数。

弹簧振子是一种简谐振动系统,它包括一个质量块和一个弹簧。

弹簧振子的公式可以通过牛顿第二定律推导得出。

根据该定律,质量块的加速度与受力成正比,且与质量块的质量成反比。

在弹簧振子中,质量块受到弹簧的弹力和重力的作用,因此可以得到以下的微分方程:
m * dx/dt = -k * x - mg
其中,m是质量块的质量,k是弹簧的劲度系数,x是质量块相对平衡位置的位移,t是时间,g是重力加速度。

为了求解这个微分方程,我们可以猜测解的形式为x = A *
cos(ωt + φ),其中A表示振幅,ω表示角频率,φ表示初始相位。

将这个形式的解代入微分方程,可以求出ω的值:
ω= √(k / m)
这个角频率决定了弹簧振子的频率和周期。

频率f与角频率的关系
为:
f = ω / (2π)
周期T则是频率的倒数:
T = 1 / f = 2π / ω
弹簧振子公式的拓展还可以包括考虑阻尼和外力作用的情况。

当弹簧振子受到阻尼时,振动会逐渐减弱直至停止,此时振动的角频率与无阻尼情况下有所不同。

当外力作用于弹簧振子时,振动的角频率和振幅也会受到外力的影响。

弹簧振子公式不仅在物理学中有广泛应用,还在其他领域如工程学、电子学等中有重要作用。

它为我们理解和分析各种弹性系统的振动行为提供了有力的工具。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
2
2Acos(2 2 1 (t 1 )
2
即: T 1
2 1
2 1
2 1
三.同频率 振动方向垂直
x A1 cos( t 1)
x A1

cos
t
cos1
sin

t sin
1
y A2 cos( t 2 )
y A2
cos
(2) t1 = 0.0025s = ¼ T t2 = 0.005s = ½ T
Δx1 = u t1 = ¼ λ
Δx2 = u t2 = ½ λ
dt 2
2
mv dv kx dx 0 dt dt
d2x k
dt 2
m
x0
谐振方程
§2. 阻尼振动 受迫振动 共振
一.阻尼振动 —— 能量逐渐减少的振动。
摩擦阻力
考虑耗散作用
x
辐射阻尼 x
振动曲线:
振幅减小,
周期比系 统的固有
t
t
周期变大。
若阻尼过大,则系统完不成一次振动,称过阻尼振 动。见图
次,也就是合振动将加强与减弱各(ν2-ν1)次。
这样的两个简谐振动合成时,由于周期的微小差别
而造成的合振幅时而加强时而减弱的现象称为拍,
合振动在单位时间内加强或减弱的次数称为拍频。
x1 2 1
曲线: o
t
x2
o
t
x1 +x2
o
t
定量讨论: 振幅相同,初相为零。
x1 Acos1t Acos 2 1t
5.关系式:
c
T
例 题 频率为3000Hz的声波以1560ms-1沿一波线
传播,经A点后再经0.13m到达B点。求B点振动比A
点落后的时间,相当于多少个波长,两点的位相差
为多少?
解: t x 0.13 1 s
c 1560 12000
c =1560 0.52m 3000
t=0 x A
2
3
v <0

3
A
φ
x
六. 单摆与复摆 单摆:
复摆
受力矩:
M = -mgh sinθ
o θL
oh θc
角加速度:
m
M mgh sin
P
I
I
PHale Waihona Puke 当θ角很小时,有: M mgh —— 谐振
单摆:I mL2 h = L I
I
g
三.描述波动的物理量 1.波速——波的传播速度。由介质决定。
液(气)体中: u B

体变模量 密度
固体: 横波: u G
切变模量
纵波:u Y

弹性模量
弹性模量Y:
S F
正应力: F S
实验表明:
L
ΔL
线性应变:
L
L
F Y L SL
切变模量 G:
r
F 切应力与切应变: F G r
u
x x0 处的振动方程。
2. t0
t时=刻t0各质点的y位 移Ac—os—波(t形0 图u。)
Δt = ? 周期
y t = t0 t = t0 + Δt
p 点的振动方向?
3. t 、x 均为变量。
o
各质点的振动方程。
p x
u
4.讨论: (1)振速与波速
振速:V y 波速:位相的传播速度。
0.13 1
0.52 4
t2
t1 t 2
t
2
§2.平面简谐波波动方程 (波函数)
一.作用:描述波动规律—各质点 t 时刻的振动规律。
二.导出
设:波源谐振,平面波、介质无限大、波速 u.
建立坐标 如图: x = 0
y
u
y0 = Acosωt 求 p 点的 y = ?
Ep

1k 2
A2
——能量守恒
势能曲线:
Ek = ½ k(A2 -x2)
E
经典粒子能否越过A处?
Ep Ek Ep
-A
Ax
微观粒子是可以越过势能曲线形成的障碍而进 入势能更大的区域,此称为隧道效应。
从能量的角度导出谐振方程:
E = ½ mv2 + ½ kx2 = 常量 d (1 mv2 1 kx2 ) 0
(2) 2 1
仍为谐振
y A2 x s A1
x
(3)
2
1


2
x2 A12

y2 A22
1
y
正椭圆。 转动方向?
x
(4)
2
1



2
椭圆,逆时针。
四.频率不同 振动垂直——利萨如图形
见图: P151 5.19
第五章 机械波
§1.机械波的产生与传播
一.产生条件 思考:什么是波? 例:声波、水波、 振动状态的传播。
t cos2
sin
t sin 2
消去 t

x2 A12

y2 A22

2xy A1 A2
cos(2 1) sin 2 (2 1)
一般为椭圆方程。 几个特例:
y s
(1) 2 1 0
y A2 x A1
x
s
x2 y2
A12

A22
cos(
t
)
——谐振 y
产生条件:波源、弹性介质。 二.纵波与横波 考虑振动方向与传播方向 纵波—— 振动方向∥传播方向 横波—— 振动方向⊥传播方向
三.几何描述
1.波阵面——位相(振动状态)相同的点组成的曲 面。形象描述波的传播情况。 例:点波源在各向均 匀介质传播。 波前——最前的波阵面。
2.波射线——波的传播方向。 各相同性的介质中,波线与波阵面垂直。
x2 Acos2t Acos 2 2t
x

x1

x2 (2Acos2
振幅

2
1
2
t)
cos2

2
1
2
t
2 1 2 `1
合振幅的频率:
振幅随时间作缓慢的周期性 变化。其值为0—2A
2Acos 2 2 1 t 2Acos(2 2 1 t )
)
v
2x
A
正弦或余
谐振曲线: 弦曲线。
A
四.谐振的振幅 周期 频率和相位
1.振幅
x Acos( t )
最大位移
2.周期
x Acos( t ) Acos( (t T ) )
T 2 1

T 2
2
ω 是由振动系统决定的,所以周期、频率也由系 统的性质决定。称为固有周期与固有频率。
SL
体变模量B:
体积缩小ΔV,压 p B V V V’
强增加Δp。
V
2.波长λ——相邻的两振动状态完全相同的点之间 的距离。 位相差 = ?
表现空间的周期性。 3.周期 T —— 波源传出一个完整的波形的时间或振 动状态传播一个波长的时间。与振动周期相等。
表现时间的周期性。
4.频率ν——单位时间内通过空间某点的完整的波 数。
定量分析:
设物体以不大的速率在粘性介质中运动,粘滞
阻力为
F v
γ为阻力系数,与物体形状、大小及介质有关。
由牛顿方程: kxv ma
d2x m dt2

dx dt
kx 0
令:
2 0

k m
2
m
得:
d2x dt 2

2
dx dt


2 0
x

0
当:
2<
t
(2)负向传播
y Acos (t x )
例题 求A、λ、ν、T;波形图;
u
y 0.02cos (5x 200t) 0.02cos 200 (t
x
)
解: (1) A = 0.02m ν= 100HZ T = 0.01s-1 40
u = 40ms-1 λ= uT = 0.4m
2.运动学方程
由:
f

-kx

m
d2 dt
x
2
有:
d2x dt 2

k m
有:
x0 d2x dt 2
2x

令: 2
0

k m
解此微分方程,可得
x Acos( t ) ——运动方程
v dx A sin( t )
dt
A
a

d2x dt 2

A 2
cos(t
p 比 o 滞后 Δt , t x
若 t 时刻 y0 = Acosωt
u
oxp x
则:y p

A cos
(
t x) u
波动方程
其它形式:y Acos 2 ( t x ) Acos 2 (x ut)
T

三.方程的物理意义.
1. x = x0
y Acos (t x0 )
L
2 g
L
T 2 L
g
复摆:
2 mgh
I
T 2 I
mgh
振动周期均取决于系统本身。
七.谐振的能量
Ek

1 mv2 2

1 m 2 A2 sin 2 (
相关文档
最新文档