初二数学平行线难题训练

合集下载

2019-2020初中数学八年级上册《平行线》专项测试(含答案) (531).pdf

2019-2020初中数学八年级上册《平行线》专项测试(含答案) (531).pdf

13.25°
14.EF∥CD,DE∥BC
15.7
16.70°
17.70°
18.70°
19.65°
20.(1)AB,CD;(2)AD,BC;(3)A.B,CD;(4)AB,CD;(5)BC,AD
21.AB;CD;同位角相等,两直线平行;AE;CF;内错角相等,两直线平行
评卷人 得分
三、解答题
22.∵AB∥EF,∠EFB=120°,∴∠ABF=180°-120°=60° ∵AB∥CD.∠C=70°,∴∠A8C=∠C=70°. ∴∠FBC∠ABC-∠ABF=70°-60°=10° 23.∵CD⊥AB,EF⊥AB,∴CD∥EF,∴∠2=∠3.
30.(7 分)如图,OP 平分∠MON,点 A.B 分别在 OP、OM 上,∠BOA =∠BAO,AB∥ ON
吗?为什么?
【参考答案】***试卷处理标记,请不要删除
评卷人 得分
一、选择题
1.D 2.D
3.B 4.B 5.D 6.B 7.A 8.C 9.B 10.C 11.B
评卷人
得分
二、填空题
12.60°
A.①②
B.③④
C.②③
D.①④
10.(2 分)如图所示,∠l 和∠2 是( )
A.同位角
B.同旁内角
C.内错角
D.以上结论都不对
11.(2 分) 如图,两条直线被第三条直线所截,可具体说成( )
A.直线 l1 , l2 被直线 l3 所截
B.直线 l2 , l3 被直线 l1 所截
C.直线 l1 , l3 被直线 l2 所截
D.以上都不对
评卷人 得分
二、填空题
12.(2 分)如图,AB∥CD,EG 平分∠BEF.∠2 = 60°, 则∠1= .

2019-2020初中数学八年级上册《平行线》专项测试(含答案) (614).pdf

2019-2020初中数学八年级上册《平行线》专项测试(含答案) (614).pdf

22.(7分)如下图所示,∠1 = 75°,∠2 = 105°,试说明 AB∥CD.
以下给出了本题的几种解法,你判断它们是否正确,如果正确,请说明它们分别运用了平 行线哪种判定方法;如果不正确,请给予纠正. 解法一:由平角的定义可知,∠1 +∠3 = 180°. 因为∠1 = 75°,所以∠3 = 105°. 又因为∠2= lO5°,所以∠2 = ∠3. 所以 AB∥CD. 解法二:由平角的定义可知,∠2 + ∠4 = 180°. 已知∠2= 105°,则∠4= 75°. 又因为∠1 = 75°,所以∠1 = ∠4. 所以 AB∥CD. 法三:由对顶角相等可知,∠5= ∠2 = 105°. 因为∠1 = 75°,所以∠1 + ∠5 = 180°.
D.120°
6.(2 分)如图所示,下列判断正确的是( )
A.若∠1 =∠2,则 l1 ∥ l2 B.若∠1 =∠4,则 l3 ∥ l4 C.若∠2=∠3,则 l1 ∥ l2 D.若∠2=∠4,则 l1 ∥ l2
7.(2 分)如图,有下列说法:①∠1 与∠C 是内错角;②∠2 与∠B 是同旁内角;③∠1 与
CD,试完成下列填空.
解:∵ ∠BAM = 75°,∠BGE= 75°( ),
∴∠BAM=∠BGE,
∴ ∥ ( ).
又∵∠AGH=∠BGE(
),
∴∠AGH=75°,
∴∠AGH+∠CHG=75°+105°=l80°,
∴ ∥ ( ).
18.(2 分)如图,当∠1 与∠3 满足


时, l1 ∥ l3 ;当 l2 ∥ l3 时,∠2 与∠3 满足的关系式
浙教版初中数学试卷
2019-2020 年八年级数学上册《平行线》测试卷

初二数学平行线的性质试题

初二数学平行线的性质试题

初二数学平行线的性质试题1.下列说法中,不正确的是()A.同位角相等,两直线平行;B.两直线平行,内错角相等;C.两直线被第三条直线所截,同旁内角互补;D.同旁内角互补,两直线平行【答案】C【解析】平行线的判定定理有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;平行线的性质定理有:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;根据平行线的判定和性质定理依次判断各项即可。

A.同位角相等,两直线平行,本选项正确;B.两直线平行,内错角相等,本选项正确;C.两直线被第三条直线所截,同旁内角互补,缺少平行线的前提,故本选项错误;D.同旁内角互补,两直线平行,本选项正确;故选C.【考点】本题考查的是平行线的判定和性质点评:解答本题的关键是掌握好平行线的判定和性质.2.如图,若AB∥CD,直线EF分别与AB、CD相交,则()A.∠3+∠2-∠1=180° B.∠1=∠3-∠2C.∠1+∠2+∠3=180° D.∠1-∠2+∠3=180°【答案】A【解析】先根据平行线的性质得出∠3=∠4,根据∠4+∠5=180°可得出∠3+∠5=180°,由三角形内角与外角的关系即可得出结论.如图所示:∵AB∥CD,∴∠3=∠4,∵∠4+∠5=180°,∴∠3+∠5=180°…①,∵∠1+∠5=∠2…②,∴∠5=∠2-∠1…③,把③代入①得,∠3+∠2-∠1=180°.故选A.【考点】本题考查的是三角形内角与外角的关系及平行线的性质点评:解答本题的关键是熟知以下知识:①两直线平行,同位角相等;②三角形的一个外角等于与之不相邻的两个内角的和.3.如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.1个B.2个C.3个D.4个【答案】C【解析】由AC⊥BC可得∠ACB=90°,则∠CAB+∠ABC=90°,再根据两直线平行,内错角相等,对顶角相等,即可得到与∠CAB互余的角的个数。

初二数学平行线强化提高试卷

初二数学平行线强化提高试卷

初二数学平行线强化提高训练11月5日作业1.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.小明的思路是:过P作PE∥AB,通过平行线性质来求∠APC.(1)按小明的思路,易求得∠APC的度数为度;(2)问题迁移:如图2,AB∥CD,点P在射线OM上运动,记∠PAB=α,∠PCD=β,当点P在B、D两点之间运动时,问∠APC与α、β之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P在B、D两点外侧运动时(点P与点O、B、D三点不重合),请直接写出∠APC与α、β之间的数量关系.2.(1)已知:如图1,AE∥CF,易知∠APC=∠A+∠C,请补充完整证明过程:证明:过点P作MN∥AE∵MN∥AE(已作)∴∠APM=(),又∵AE∥CF,MN∥AE∴MN∥CF∴∠MPC=∠()∴∠APM+∠CPM=∠A+∠C即∠APC=∠A+∠C(2)变式:如图2﹣﹣图4,AE∥CF,P1,P2是直线EF上的两点,猜想∠A,∠AP1P2,∠P1P2C,∠C这四个角之间的关系,并直接写出以下三种情况下这四个角之间的关系.3.如图1,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.(1)探究猜想:①∠A=30°,∠D=40°,则∠AED等于多少度?②若∠A=20°,∠D=60°,则∠AED等于多少度?③猜想图1中∠AED、∠EAB、∠EDC的关系并说明理由.(2)拓展应用,如图2,线段FE与长方形ABCD的边AB交于点E,与边CD 交于点F.图2中①②分别是被线段FE隔开的2个区域(不含边界),P是位于以上两个区域内的一点,猜想∠PEB,∠PFC,∠EPF的关系(不要求说明理由)4.如图,已知直线AC∥BD,直线AB,CD不平行,点P在直线AB上,且和点A、B不重合.(1)如图①,当点P在线段AB上时,若∠PCA=20°,∠PDB=30°,求∠CPD的度数;(2)当点P在A、B两点之间运动时,∠PCA,∠PDB,∠CPD 之间满足什么样的等量关系?(直接写出答案)(3)如图②,当点P在线段AB延长线上运动时,∠PCA,∠PDB,∠CPD 之间满足什么样的等量关系?并说明理由.(4)当点P在线段BA延长线上运动时,∠PCA,∠PDB,∠CPD 之间满足什么样的等量关系?(直接写出答案)5.如图,直线l1∥l2,直线l与l1、l2分别交于A、B两点,点M、N分别在l1、l2上,点M、N、P均在l的同侧(点P不在l1、l2上),若∠PAM=α,∠PBN=β.(1)当点P在l1与l2之间时.①求∠APB的大小(用含α、β的代数式表示);②若∠APM的平分线与∠PBN的平分线交于点P1,∠P1AM的平分线与∠P1BN的平分线交于点P2,…,∠P n﹣1AM的平分线与∠P n﹣1BN的平分线交于点P n,则∠AP1B=,∠AP n B=.(用含α、β的代数式表示,其中n为正整数)(2)当点P不在l1与l2之间时.若∠PAM的平分线与∠PBN的平分线交于点P,∠P1AM的平分线与∠P1BN的平分线交于点P2,…,∠P n﹣1AM的平分线与∠P n﹣1BN的平分线交于点P n,请直接写出∠AP n B的大小.(用含α、β的代数式表示,其中n为正整数)6.如图,已知直线AB、CD相交于点O,OE平分∠AOC,若∠AOD=30°,求∠BOE的度数.。

2019-2020初中数学八年级上册《平行线》专项测试(含答案) (586).pdf

2019-2020初中数学八年级上册《平行线》专项测试(含答案) (586).pdf

19.(7 分)如图,已知直线 a 和线段 b,求作一条直线 c,使 c∥a,且与直线 a 的距离于 b.
20.(7 分)已知:如图,A,B,C,D 在同一条直线上,AB=CD,AE∥BF,且 AE=BF, 则 CE∥DF,试说明理由.
21.(7 分)如图,AB∥CD,∠ABE=135°,∠EDC=30°,求∠BED 的度数.
16.AB,CD,AC,内错
17.AD,BC,BD,内错
评卷人 得分
三、解答题
18.AB∥CD. 理由:设∠l 的度数为 x,则 x=5×(180°-x),解得 x=150°.
同理,∠2 的度数为 30° ∵∠l+∠2=150°+30°=180°,∴AB∥CD
19.略 20.略 21.75°
22.证明:∵AB∥DE,∴∠B=∠DEF. ∵AC∥DF,∴∠F=∠ACB . ∵BE=CF,∴BE+EC= CF + EC 即 BC=EF. ∴△ABC≌△DEF,∴AB=DE. 23.平行,说明∠CDF+∠3=180° 24.115° 25.∠l=∠2,理由略 26.110° 27.说明∠A=∠D 或∠B=∠C 28.DE∥AB(同位角相等,两直线平行) 29.(1)60°;(2)120° 30.无同位角;内错角有∠D 与∠ABD;同旁内角有∠D 与∠DBE
25.(7 分)如图,AB∥CD,AD∥BC,判断∠1 与∠2 是否相等,并说明理由.
26.(7 分)如图,在直线 a,b,c,d 构成的角中,已知∠1 =∠3,∠2=110°,求∠4 的度 数.
27.(7 分)如图,∠B = 40°,∠AQB = 98°,∠D = 42°,则 AB∥CD,请说明理由..
C.同位角相等

(压轴题)初中数学八年级数学上册第七单元《平行线的证明》测试题(含答案解析)(4)

(压轴题)初中数学八年级数学上册第七单元《平行线的证明》测试题(含答案解析)(4)

一、选择题∠的大小是()1.如图,将直尺与30角的三角尺叠放在一起,若270,则1A.45︒B.50︒C.55︒D.40︒2.如图,BE,CF都是△ABC的角平分线,且∠BDC=110°,则∠A的度数为()A.40°B.50°C.60°D.70°3.下列命题是真命题的个数为()①两条直线被第三条直线所截,内错角相等.②三角形的内角和是180°.③在同一平面内平行于同一条直线的两条直线平行.④相等的角是对顶角.⑤两点之间,线段最短.A.2 B.3 C.4 D.54.下列命题中真命题有()①周长相等的两个三角形是全等三角形;②一组数据中,出现次数最多的数据为这组数据的众数;③同位角相等;④方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大.A.1个B.2个C.3个D.4个5.下面命题中是真命题的有()①相等的角是对顶角②直角三角形两锐角互余③三角形内角和等于180°④两直线平行内错角相等A.1个B.2个C.3个D.4个6.如图,//AB CD ,一副三角尺按如图所示放置,18AEG ∠=︒,则HFD ∠为( )A .23B .33C .36D .387.如图所示,下列推理及括号中所注明的推理依据错误的是( )A .∵∠1=∠3,∴AB ∥CD (内错角相等,两直线平行)B .∵AB ∥CD ,∴∠1=∠3(两直线平行,内错角相等)C .∵AD ∥BC ,∴∠BAD+∠ABC =180°(两直线平行,同旁内角互补)D .∵∠DAM =∠CBM ,∴AB ∥CD (两直线平行,同位角相等)8.下列命题中,假命题是( )A .负数没有平方根B .两条平行直线被第三条直线所截,同位角相等C .对顶角相等D .内错角相等 9.如图,//AB EF ,C 点在EF 上,EAC ECA ∠=∠,BC 平分DCF ∠,且AC BC ⊥.下列结论:①AC 平分DCE ∠;②//AE CD ;③190B ∠+∠=︒;④BDC 21∠=∠.其中结论正确的个数有( )A .1个B .2个C .3个D .4个 10.下列命题是真命题的是( )A .相等的角是对顶角B .内错角相等C .任何非负数的算术平方根是非负数D .直线外一点到这条直线的垂线段叫做点到直线的距离11.如图,//AB CD ,BE 交CD 于点F ,48B ∠=︒,20E ∠=︒,则D ∠的度数为( ).A .28B .20C .48D .68 12.下列说法正确的是( )A .同位角相等B .相等的角是对顶角C .内错角相等,两直线平行D .互补的两个角一定有一个锐角二、填空题13.下列命题,①对顶角相等;②两直线平行,同位角相等;③全等三角形的对应角相等.其中逆命题是真命题的命题共有_________个.14.命题“等边三角形的每个内角都等于60°”的逆命题是_____命题.(填“真”或“假”) 15.如图,请你添加一个条件....使得AD ∥BC ,所添的条件是__________.16.如图,A B C D E F G ∠+∠+∠+∠+∠+∠+∠=_______.17.命题“面积相等的三角形全等”的逆命题是__________.18.已知直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为___________.19.用反证法证明:在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等,证明时,可以先假设:_____________________________.20.如图,在ABC 中,AD 是BC 边上的高,AE 是BAC ∠的平分线,15EAD ∠=︒,40B ∠=︒,则C ∠=_________︒.三、解答题21.在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫做格点,点A 、B 、P 均在格点上.(请利用网格作图,画出的线用铅笔描粗描黑)(1)过点P 画直线AB 的平行线;(2)连接PA 、PB ,则三角形PAB 的面积= ;(3)若三角形QAB 面积与三角形PAB 的面积相等,且格点Q 与P 不重合,则格点Q 有 个.22.如图,在ABC ∆中,48,A CE ∠=︒是ACB ∠的平分线, B C D 、、在同一直线上,,40.BEC BFD D ∠=∠∠=︒(1)求BCE ∠的度数;(2)求B 的度数.23.如图,已知直线//AB CD ,直线EF 分别交直线AB ,CD 于点E ,F ,BEF ∠的平分线与DFE ∠的平分线相交于一点P .试说明:90P ∠=︒.24.如图,点B 、E 分别在直线AC 和DF 上,若AGB EHF ∠=∠,C D ∠=∠,可以得到A F ∠=∠.请完成下面说理过程中的各项“填空”理由:∵AGB EHF ∠=∠(已知)AGB ∠= (对顶角相等) ∴EHF DGF ∠=∠(理由 )∴ //EC (理由: )∴ DBA =∠(两直线平行,同位角相同)又∵C D ∠=∠,∴DBA ∠= (等量代换)∴//DF (内错角相等,两直线平行)∴A F ∠=∠(理由: )25.补全下面的证明过程和理由:如图,AB 和CD 相交于点O ,//EF AB ,C COA ∠=∠,D BOD ∠=∠.求证:A F ∠=∠证明:C COA ∠=∠,D BOD ∠=∠,又COA BOD ∠=∠(________),C ∴∠=________(________).//AC DF ∴(________).A ∴∠=________(________). //EF AB ,F ∴∠=________(________).A F ∴∠=∠.26.推理填空:如图,已知12∠=∠,B C ∠=∠,可推得//AB CD ,理由如下:解:因为12∠=∠(已知)又14∠=∠( )所以24∠∠=(等量代换),所以//CE BF (同位角相等,两直线平行)所以3C ∠=∠( )又因为B C ∠=∠(已知)所以3B ∠=∠(等量代换)所以//AB CD ( )【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据平角的定义和平行线的性质即可得到结论.【详解】解:如图:由题意得:∠4=180°−90°−30°=60°,∵AB ∥CD ,∴∠3=∠2=70°,∴∠1=180°−∠3-∠4=180°−70°−60°=50°.故选:B .【点睛】本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键.2.A解析:A【分析】根据三角形的内角和定理以及角平分线的定义,列出算式计算即可.【详解】解:∵BE、CF都是△ABC的角平分线,∴∠A=180°-(∠ABC+∠ACB),=180°-2(∠DBC+∠BCD)∵∠BDC=180°-(∠DBC+∠BCD),∴∠A=180°-2(180°-∠BDC)∴∠BDC=90°+1∠A,2∴∠A=2(110°-90°)=40°.故答案为:A.【点睛】本题考查的是三角形内角和定理和角平分线的定义,用已知角表示出所求的角是解题的关键.3.B解析:B【分析】首先判断所给命题的真假,再选出正确的选项.【详解】解:∵两条直线被第三条直线所截,两直线平行,内错角相等,∴①错误;∵三角形的内角和是180°,∴②正确;∵在同一平面内平行于同一条直线的两条直线平行,∴③正确;∵相等的角可以是对顶角,也可以是内错角、同位角等等,∴④错误;∵连接两点的所有连线中,线段最短,∴⑤正确;∴真命题为②③⑤,故选B .【点睛】本题考查命题的真假判断,根据所学知识判断一个命题条件成立的情况下,结论是否一定成立来判断命题是真命题还是假命题是解题关键.4.A解析:A【分析】根据题意对四个命题作出判断即可求解.【详解】解:①周长相等的两个三角形是全等三角形,是假命题;②一组数据中,出现次数最多的数据为这组数据的众数,是真命题;③同位角相等,是假命题;④方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大,是假命题.真命题有1个.故选:A【点睛】本题考查全等三角形的判定,众数,方差等知识,熟知相关知识是解题关键.5.C解析:C【分析】利用平行线的性质、三角形的内角和、直角三角形的性质、对顶角的性质分别判断后即可确定正确的选项.【详解】解:①相等的角不一定是对顶角,故不符合题意;②直角三角形两锐角互余,故符合题意;③三角形内角和等于180°,故符合题意;④两直线平行内错角相等,故符合题意;故选:C.【点睛】此题考查了命题与定理,解题的关键是了解平行线的性质、对顶角的定义、直角三角形的性质及三角形的内角和等知识,难度不大.6.B解析:B【分析】过点G作AB平行线交EF于P,根据平行线的性质求出∠EGP,求出∠PGF,根据平行线的性质、平角的概念计算即可.【详解】解:过点G作AB平行线交EF于P,由题意易知,AB∥GP∥CD,∴∠EGP=∠AEG=18°,∴∠PGF=72°,∴∠GFC=∠PGF=72°,∴∠HFD=180°-∠GFC-∠GFP-∠EFH=33°.故选:B .【点睛】本题考查的是平行线的性质、三角形内角和定理的应用,掌握两直线平行、内错角相等是解题的关键.7.D解析:D【解析】因为∠DAM 和∠CBM 是直线AD 和BC 被直线AB 的同位角,因为∠DAM =∠CBM 根据同位角相等,两直线平行可得AD ∥BC ,所以D 选项错误,故选D.8.D解析:D【分析】根据平方根的概念、平行线的性质、对顶角相等判断即可.【详解】A 、负数没有平方根,本选项说法是真命题;B 、两条平行直线被第三条直线所截,同位角相等,本选项说法是真命题;C 、对顶角相等,本选项说法是真命题;D 、两直线平行,内错角相等,本选项说法是假命题;故选:D .【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.D解析:D【分析】根据平行线的性质及角度的计算,等腰三角形的性质即可进行一一求解判断.【详解】根据//AB EF , BC 平分DCF ∠,且AC BC ⊥可得∠1+∠BCD=90°,∠BCD=12∠DCF , 又∠DCF+∠ECD=180°,∴∠1=12∠ECD ,故AC 平分DCE ∠,①正确; ∵AC 平分DCE ∠,∴∠1=∠ECA,∵EAC ECA ∠=∠∴EAC ∠=∠1,∴//AE CD ,②正确;∵EF ∥AB ,∴∠FCB=∠B ,∴∠B=∠DCB ,∵∠1+∠DCB=90°,∴190B ∠+∠=︒,③正确;∵EF ∥AB ,∴∠ECA=∠CAD ,∵∠1=∠ECA∴∠1=∠CAD∵∠CDB 是△ACD 的一个外角,∴∠CAD=∠1+∠CAD=2∠1,④正确;故选D【点睛】此题主要考查平行线的角度计算,解题的关键是根据图像的特点进行求解.10.C解析:C【分析】根据对顶角的性质、平行线的性质、算术平方根的定义、点到直线距离的定义逐一分析即可.【详解】解:A . 对顶角相等,但是相等的角不一定是对顶角,该项为假命题;B .两直线平行,内错角相等,该项为假命题;C . 任何非负数的算术平方根是非负数,该项为真命题;D . 直线外一点到这条直线的垂线段的长度叫做点到直线的距离,该项为假命题; 故选:C .【点睛】本题考查判断命题的真假,掌握对顶角的性质、平行线的性质、算术平方根的定义、点到直线距离的定义是解题的关键.11.A解析:A【分析】由//AB CD 和48B ∠=︒,可得到CFB ∠;再由对顶角相等和三角形内角和性质,从而完成求解.【详解】∵//AB CD∴180********CFB B ∠=-∠=-=∴132EFD CFB ∠=∠=∴1801801322028D EFD E ∠=-∠-∠=--=故选:A .【点睛】本题考察了平行线和三角形内角和的知识;求解的关键是熟练掌握三角形内角和、平行线的性质,从而完成求解.12.C解析:C【分析】直接利用平行线的性质、判定以及对顶角的定义、补角的特征分别判断得出答案.【详解】A 、两直线平行,同位才能角相等,此项错误;B 、相等的角不一定是对顶角,此项错误;C、内错角相等,两直线平行,此项正确;D、互补的两个角不一定有一个锐角,有可能是两个直角,此项错误;故选:C.【点睛】本题考查了平行线的性质、判定以及对顶角的定义等,掌握平行线与相交线的相关知识是解题关键.二、填空题13.1【分析】根据逆命题对顶角平行线全等三角形的性质对各个选项逐个分析即可得到答案【详解】对顶角相等的逆命题为:相等的角是对顶角故①错误;两直线平行同位角相等的逆命题为:同位角相等两直线平行故②正确;全解析:1【分析】根据逆命题、对顶角、平行线、全等三角形的性质,对各个选项逐个分析,即可得到答案.【详解】对顶角相等的逆命题为:相等的角是对顶角,故①错误;两直线平行,同位角相等的逆命题为:同位角相等,两直线平行,故②正确;全等三角形的对应角相等的逆命题为:对应角相等的三角形为全等三角形,故③错误;逆命题是真命题的命题共有:1个故答案为:1.【点睛】本题考查了逆命题、对顶角、平行线、全等三角形的知识;解题的关键是熟练掌握对顶角、平行线、全等三角形的性质,从而完成求解.14.真【分析】逆命题就是原命题的假设和结论互换找到原命题的题设为等边三角形结论为每个内角都是60°互换即可判断命题是真是假;【详解】∵原命题为:等边三角形的每个内角都是60°∴逆命题为:三个内角都是60解析:真【分析】逆命题就是原命题的假设和结论互换,找到原命题的题设为等边三角形,结论为每个内角都是60°,互换即可判断命题是真是假;【详解】∵原命题为:等边三角形的每个内角都是60°,∴逆命题为:三个内角都是60°的三角形是等边三角形∴逆命题为真命题;故答案为:真.【点睛】本题考查了命题的真假,正确掌握原命题与逆命题之间的关系是解题的关键;15.∠EAD=∠B或∠DAC=∠C【解析】当∠EAD=∠B时根据同位角相等两直线平行可得AD//BC;当∠DAC=∠C时根据内错角相等两直线平行可得AD//BC;当∠DAB+∠B=180°时根据同旁内角解析:∠EAD=∠B或∠DAC=∠C【解析】当∠EAD=∠B时,根据“同位角相等,两直线平行”可得AD//BC;当∠DAC=∠C时,根据“内错角相等,两直线平行”可得AD//BC;当∠DAB+∠B=180°时,根据“同旁内角互补,两直线平行”可得AD//BC,故答案是:∠EAD=∠B或∠DAC=∠C或∠DAB+∠B=180°(答案不唯一).16.【分析】利用三角形的外角性质以及三角形内角和定理即可求解【详解】如图:∠1是△ADH的一个外角∴∠1=∠A+∠D同理:∠2=∠B+∠E∠3=∠C+∠G∠4=∠2+∠F∵∠1+∠3+∠4=∠A+∠D+解析:180︒【分析】利用三角形的外角性质以及三角形内角和定理即可求解.【详解】如图:∠1是△ADH的一个外角,∴∠1=∠A+∠D,同理:∠2=∠B+∠E,∠3=∠C+∠G,∠4=∠2+∠F,∵∠1+∠3+∠4=∠A+∠D+∠C+∠G+∠2+∠F=∠A+∠D+∠C+∠G+∠B+∠E +∠F=180︒,∴∠A+∠B +∠C +∠D +∠E +∠F+∠G=180︒.故答案为:180︒.【点睛】本题考查了三角形的外角性质以及三角形内角和定理,正确的识别图形是解题的关键.17.全等三角形的面积相等【分析】将原命题的条件与结论互换即可得到其逆命题【详解】解:∵原命题的条件是:三角形的面积相等结论是:该三角形是全等三角形∴其逆命题是:全等三角形的面积相等故答案为:全等三角形的解析:全等三角形的面积相等【分析】将原命题的条件与结论互换即可得到其逆命题.【详解】解:∵原命题的条件是:三角形的面积相等,结论是:该三角形是全等三角形.∴其逆命题是:全等三角形的面积相等.故答案为:全等三角形的面积相等.【点睛】本题考查了命题与定理的知识,解题的关键是了解如何写出一个命题的逆命题.18.40°【分析】如图过E作EF∥AB则AB∥EF∥CD根据平行线的性质和三角形的内角和定理即可求得答案【详解】解:如图过E作EF∥AB则AB∥EF∥CD∴∠1=∠3∠2=∠4∵∠3+∠4=180°-9解析:40°【分析】如图,过E作EF∥AB,则AB∥EF∥CD,根据平行线的性质和三角形的内角和定理即可求得答案.【详解】解:如图,过E作EF∥AB,则AB∥EF∥CD,∴∠1=∠3,∠2=∠4,∵∠3+∠4=180°-90°-30°=60°,∴∠1+∠2=60°,∵∠1=20°,∴∠2=40°.故答案为:40°.【点睛】本题以三角板为载体,主要考查了平行线的性质和三角形的内角和定理,正确添加辅助线、熟练掌握平行线的性质是解题的关键.19.这两个角所对的边相等【分析】反证法的步骤中第一步是假设结论不成立反面成立可据此进行判断【详解】解:反证法证明:在一个三角形中如果两个角不相等那么这两个角所对的边也不相等证明时可以先假设这两个角所对的解析:这两个角所对的边相等【分析】反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断.【详解】解:反证法证明:在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等.证明时,可以先假设这两个角所对的边相等,故答案为:这两个角所对的边相等.【点睛】本题考查的是反证法,在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.20.70【分析】根据三角形的内角和定理求出∠BAD求出∠BAE根据角平分线的定义求出∠BAC即可求出答案【详解】解:∵AD⊥BC∴∠ADC=∠ADB=90°∵∠B=40°∴∠BAD=90°-40°=50解析:70【分析】根据三角形的内角和定理求出∠BAD,求出∠BAE,根据角平分线的定义求出∠BAC,即可求出答案.【详解】解:∵AD⊥BC,∴∠ADC=∠ADB=90°,∵∠B=40°,∴∠BAD=90°-40°=50°,∵∠EAD=15°,∴∠BAE=50°-15°=35°,∵AE平分∠BAC,∠BAC=35°,∴∠CAE=∠BAE=12∴∠BAC=70°,∴∠C=180°-∠BAC-∠B=180°-70°-40°=70°;故答案为:70.【点睛】本题考查了三角形的内角和定理,能灵活运用定理进行计算是解此题的关键.三、解答题21.(1)见解析;(2)6.5;(3)3【分析】(1)连结AP,过点P作∠APQ=∠PAB,利用内错角相等,两直线平行可得PQ∥AB即可;(2)连PB,割补法利用网格正方形面积减去三个三角形面积即可;(3)由三角形QAB面积与三角形PAB的面积相等,在AB的平行线PQ上,截取PQ=AB 或PQ1=AB,连结AQ,延长QA,在QA的延长线上截取AQ2=AQ即可.【详解】(1)连结AP ,过点P 作∠APQ=∠PAB ,∴PQ ∥AB ,则PQ 为所求;(2)连PB ,S △PAB =4×4-12×4×3-12×1×3-12×4×1=16-6-1.5-2=6.5, 故答案为:6.5;(3)三角形QAB 面积与三角形PAB 的面积相等,在AB 的平行线PQ 上,截取PQ=AB 或PQ 1=AB ,连结AQ ,延长QA ,在QA 的延长线上截取AQ 2=AQ ,则Q 、Q 1、Q 2三点为所求,则格点Q 有3个,故答案为:3.【点睛】本题考查平行线的作法,网格三角形面积,面积相等的三角形格点问题,掌握平行线的作法,网格三角形面积求法,面积相等的三角形格点确定方法是解题关键.22.(1)40∠=︒ECB ;(2)52B ︒∠=【分析】(1)根据同位角相等,两直线平行判定//DF CE ,然后再根据平行线的性质求解; (2)根据角平分线的定义求得80ACB ︒∠=,然后利用三角形内角和求解.【详解】解:(1)BEC BFD ∠=∠,//DF CE ∴,ECB D ∴∠=∠.40D ︒∠=,40ECB ∴∠=︒.(2)CE 是ACB ∠的平分线.40ECB ACE ︒∴∠=∠=,80ACB ︒∴∠=.180A B ACB ︒∠+∠+∠=,180180488052B A ACB ︒︒︒︒︒∴∠=-∠-∠=--=.【点睛】本题考查平行线的判定和性质以及三角形内角和,掌握相关性质定理正确推理计算是解题关键.23.证明见解析【分析】由AB ∥CD ,可知∠BEF 与∠DFE 互补,由角平分线的性质可得∠PEF+∠PFE=90°,由三角形内角和定理可得出结论.【详解】∵AB ∥CD ,∴∠BEF+∠DFE=180°.又∵∠BEF 的平分线与∠DFE 的平分线相交于点P ,∴∠PEF=12∠BEF ,∠PFE=12∠DFE , ∴∠PEF+∠PFE=12(∠BEF+∠DFE)=90°. ∵∠PEF+∠PFE+∠P=180°,∴∠P=90°.【点睛】 本题主要考查了平行线的性质、角平分线的定义、三角形内角和等知识,解题时注意:两直线平行,同旁内角互补.24.∠DGF ;等量代换;BD ;同位角相等,两直线平行;∠D ;AC ;两直线平行,内错角相等.【分析】先根据已知条件结合对顶角相等得出∠EHF=∠DGF ,由平行线判定知BD ∥EC ,由判定得∠D=∠DBA ,再由等量代换知∠DBA=∠C ,根据平行线判定知DF ∥AC ,利用平行线的性质即可得证.【详解】∵∠AGB=∠EHF (已知)∠AGB=∠DGF (对顶角相等)∴∠EHF=∠DGF (理由:等量代换)∴BD ∥EC (理由:同位角相等,两直线平行)∴∠C=∠DBA (两直线平行,同位角相等)又∵∠C=∠D ,∴∠DBA=∠D (等量代换)∴DF ∥AC (内错角相等,两直线平行)∴∠A=∠F (理由:两直线平行,内错角相等),故答案为:∠DGF ;等量代换;BD ;同位角相等,两直线平行;∠D ;AC ;两直线平行,内错角相等.【点睛】本题主要考查了平行线的性质与判定的综合应用,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系. 25.对顶角相等;D ∠,等量代换;内错角相等,两直线平行;ABD ∠,两直线平行,内错角相等;ABD ∠,两直线平行,同位角相等.【分析】证出∠C=∠D ,得出AC ∥DF ,由平行线的性质得出∠A=∠ABD ,∠F=∠ABD ,即可得出结论.【详解】证明:C COA ∠=∠,D BOD ∠=∠,又COA BOD ∠=∠(对顶角相等), C D ∴∠=∠(等量代换).//AC DF ∴(内错角相等,两直线平行).A ABD ∴∠=∠(两直线平行,内错角相等).//EF AB ,F ABD ∴∠=∠(两直线平行,内错角相等).A F ∴∠=∠.故答案为:对顶角相等;D ∠,等量代换;内错角相等,两直线平行;ABD ∠,两直线平行,内错角相等;ABD ∠,两直线平行,同位角相等.【点睛】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质是解题的关键. 26.对顶角相等;两直线平行,同位角相等;内错角相等,两直线平行【分析】根据图像可知∠1=∠4是对顶角,那么第一个空:通过//CE BF 得到3C ∠=∠,是利用平行线的性质,故第二个空填:两直线平行,同位角相等;由3B ∠=∠,得//AB CD ,是利用了平行线的判定,故第三个空填:内错角相等,两直线平行.【详解】解:∵∠1=∠2(已知),且∠1=∠4(对顶角相等)∴∠2=∠4 (等量代换)∴CE ∥BF (同位角相等,两直线平行)∴∠C=∠3(两直线平行,同位角相等)又∵∠B=∠C(已知),∴∠3=∠B(等量代换)∴AB∥CD (内错角相等,两直线平行);故答案为:对顶角相等;两直线平行,同位角相等;内错角相等,两直线平行.【点睛】本题主要考查了平行线的判定与性质.注意数形结合思想的应用是解答此题的关键.。

专题训练 平行线培优习题

专题训练   平行线培优习题
A. 7பைடு நூலகம்° B. 60°
C. 45° D. 30°
5、如图8所示,AB∥CD,AD与BC交于点E,EF是∠BED的平分线,若∠1=30°,∠2=40°,则∠BEF=度。
6、如图,l∥m,等边△ABC的顶点A在直线m上,则∠α=_________.
7、(2015•绵阳)如图,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=130°,则∠F=.
14


15、如图5,ABCD是正方形,点G是BC上的任意一点, 于E, ,交AG于F.
求证: .
16.如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;…∠A2012BC和∠A2012CD的平分线交于点A2013,则∠A2013=度。
专题训练平行线培优习题
一、基础过关
1、(2011四川泸州)如图,∠1与∠2互补,∠3=135°,则∠4 的度数是( )
A.4 5°B.55°C.65°D.75°
2、如图,直线l1∥l2,∠1=55°,∠2=65°则∠3 = _______________.
3、下列四个图形中 大于 的是( )
4、将一副三角板按图中的方式叠放,则∠ 等于
17、如图,在等腰梯形ABCD中,AD∥BC,AB=CD=AD,∠B=60°,DE⊥AC于点E,已知该梯形的高为 .(1)求证: ∠ACD=30°;(2)DE的长度.
18、如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC∥EF.
(C)若∠MON=90°,则MN与⊙O相切
(D)l1和l2的距离为2

平行线常考经典较难题、压轴题例题和巩固练习

平行线常考经典较难题、压轴题例题和巩固练习

平行线例1 翻折1、如图,把一张长方形纸带沿着直线GF 折叠,∠CGF=30°,则∠1的度数是.2、如图,生活中将一个宽度相等的纸条按图所示折叠一下,如果∠2=100°,那么∠1的度数为 .例2 旋转1、将一副直角三角尺ABC 和CDE 按如图方式放置,其中直角顶点C 重合,∠D=45°,∠A=30°.将三角形CDE 绕点C 旋转,若DE ∥BC,则直线AB 与直线CE 的较大的夹角∠1的大小为 度.1A EDBC例3 平行线的性质1、已知,直线AB ∥DC ,点P 为平面上一点,连接AP 与CP .(1)如图1,点P 在直线AB 、CD 之间,当∠BAP=60°,∠DCP=20°时,求∠APC .(2)如图2,点P 在直线AB 、CD 之间,∠BAP 与∠DCP 的角平分线相交于点K ,写出∠AKC 与∠APC 之间的数量关系,并说明理由.(3)如图3,点P 落在CD 外,∠BAP 与∠DCP 的角平分线相交于点K ,∠AKC 与∠APC 有何数量关系?并说明理由.2、如图,两直线AB、CD平行,则∠1+∠2+∠3+∠4+∠5= .3、已知直线AB∥CD.(1)如图1,直接写出∠BME、∠E、∠END的数量关系为;(2)如图2,∠BME与∠CNE的角平分线所在的直线相交于点P,试探究∠P与∠E之间的数量关系,并证明你的结论;(3)如图3,∠ABM=∠MBE,∠CDN=∠NDE,直线MB、ND交于点F,则= .例4 平移1、如图1所示,已知BC∥OA,∠B=∠A=120°(1)说明OB∥AC成立的理由.(2)如图2所示,若点E,F在BC上,且∠FOC=∠AOC,OE平分∠BOF,求∠EOC的度数.(3)在(2)的条件下,若左右平移AC,如图3所示,那么∠OCB:∠OFB的比值是否随之发生变化?若变化,请说明理由;若不变,请求出这个比值.(4)在(3)的条件下,当∠OEB=∠OCA时,求∠OCA的度数.2、如图,已知AM∥BN,∠A=60°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)求∠CBD的度数;(2)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.(3)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是.例5 作图—应用1、(1)如图1,一个牧童从P点出发,赶着羊群去河边喝水,则应当怎样选择饮水路线,才能使羊群走的路程最短?请在图中画出最短路线.(2)如图2,在一条河的两岸有A,B 两个村庄,现在要在河上建一座小桥,桥的方向与河岸方向垂直,桥在图中用一条线段CD表示.试问:桥CD建在何处,才能使A到B的路程最短呢?请在图中画出桥CD的位置.图2图1BA2、如图,平面上有直线a及直线a外的三点A、B、P.(1)过点P画一条直线m,使得m∥a;(2)过B作BH⊥直线m,并延长BH至B′,使得BB′为直线a、m之间的距离;(3)若直线a、m表示一条河的两岸,现要在这条河上建一座桥(桥与河岸垂直),使得从村庄A经桥过河到村庄B的路程最短,试问桥应建在何处?画出示意图.【巩固练习】1、如图,AB∥DE,∠ABC的角平分线BP和∠CDE的角平分线DK的反向延长线交于点P且∠P﹣2∠C=57°,则∠C等于( )A.24° B.34° C.26° D.22°第1题图第2题图2、如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K ﹣∠H=27°,则∠K=()A.76° B.78° C.80° D.82°3、在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()A.平行 B.垂直C.平行或垂直 D.无法确定4、如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M,N分别是BA,CD延长线上的点,∠EAM和∠EDN的平分线交于点F.下列结论:①AB∥CD;②∠AEB+∠ADC=180°;③DE平分∠ADC;④∠F为定值,其中结论正确的有()A.1个 B.2个C.3个 D.4个第4题图第5题图5、如图所示,AB∥CD,则∠A+∠E+∠F+∠C等于( )A.180° B.360° C.540° D.720°6、如图所示,AB∥EF,∠B=35°,∠E=25°,则∠C+∠D的值为.第7题图第8题图第9题图7、如图所示,AB∥CD,∠E=35°,∠C=20°,则∠EAB的度数为.8、如图,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B﹣∠D=24°,则∠GEF= .9、已知D是△ABC的边BC所在直线上的一点,与B,C不重合,过D分别作DF∥AC交AB所在直接于F,DE ∥AB交AC所在直线于E.若∠A=80°,则∠FDE的度数是.10、如图1,MN∥PQ,直线AD与MN、PQ分别交于点A、D,点B在直线PQ上,过点B作BG⊥AD,垂足为点G.(1)求证:∠MAG+∠PBG=90°;(2)若点C在线段AD上(不与A、D、G重合),连接BC,∠MAG和∠PBC的平分线交于点H,请在图2中补全图形,猜想并证明∠CBG与∠AHB的数量关系;(3)若直线AD的位置如图3所示,(2)中的结论是否成立?若成立,请证明;若不成立,请直接写出∠CBG 与∠AHB的数量关系.11、已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.12、如图1,AB∥CD,E是AB、CD之间的一点.(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并证明你的结论;(2)如图2,若∠BAE、∠CDE的两条平分线交于点F.写出∠AFD与∠AED之间的数量关系;(3)将图2中的射线DC沿DE翻折交AF于点G得图3,若∠AGD的余角等于2∠E的补角,求∠BAE的大小.13、已知:如图,BC∥OA,∠B=∠A=100°,试回答下列问题:(1)如图①所示,求证:OB∥AC.(注意证明过程要写依据)(2)如图②,若点E、F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.(ⅰ)求∠EOC的度数; (ⅱ)求∠OCB:∠OFB的比值;(ⅲ)如图③,若∠OEB=∠OCA.此时∠OCA度数等于.(在横线上填上答案即可)14、已知直线AB∥CD.(1)如图1,直接写出∠ABE,∠CDE和∠BED之间的数量关系是.(2)如图2,BF,DF分别平分∠ABE,∠CDE,那么∠BFD和∠BED有怎样的数量关系?请说明理由.(3)如图3,点E在直线BD的右侧,BF,DF仍平分∠ABE,∠CDE,请直接写出∠BFD和∠BED的数量关系.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学平行线难题训练一.选择题(共1小题)1.(2014春•山西校级期中)如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是()A.42°、138°B.都是10°C.42°、138°或42°、10°D.以上都不对二.解答题(共28小题)2.(2015•六盘水)如图,已知,l1∥l2,C1在l1上,并且C1A⊥l2,A为垂足,C2,C3是l1上任意两点,点B在l2上.设△ABC1的面积为S1,△ABC2的面积为S2,△ABC3的面积为S3,小颖认为S1=S2=S3,请帮小颖说明理由.3.(2014春•宜昌校级期中)如图,直线EF∥GH,点B、A分别在直线EF、GH上,连接AB,在AB左侧作三角形ABC,其中∠ACB=90°,且∠DAB=∠BAC,直线BD平分∠FBC 交直线GH于D.(1)若点C恰在EF上,如图1,则∠DBA=______.(2)将A点向左移动,其它条件不变,如图2,设∠BAD=α.①试求∠EBC和∠PBC的大小(用α表示).②问∠DBA的大小是否发生改变?若不变,求∠DBA的值;若变化,说明理由.(3)若将题目条件“∠ACB=90°”,改为:“∠ACB=β”,其它条件不变,那么∠DBA=______.(直接写出结果,不必证明)4.(2014春•雁塔区校级期中)如图,点D、点E分别在△ABC边AB,AC上,∠CBD=∠CDB,DE∥BC,∠CDE的平分线交AC于F点.(1)求证:∠DBF+∠DFB=90°;(2)如图②,如果∠ACD的平分线与AB交于G点,∠BGC=50°,求∠DEC的度数.(3)如图③,如果H点是BC边上的一个动点(不与B、C重合),AH交DC于M点,∠CAH的平分线AI交DF于N点,当H点在BC上运动时,的值是否发生变化?如果变化,说明理由;如果不变,试求出其值.5.如图所示,直线AE∥BD,点C在BD上,若AE=7,BD=3,△ABD的面积为12,求△ACE的面积.6.(1)如图①,如果直线l1∥l2,那么三角形ABC与三角形A′BC面积相等吗?为什么?(2)如图②,平行四边形ABCD与平行四边形AB′C′D有一条公共边AD,BC和B′C′在同一直线上,这两个平行四边形的面积相等吗?为什么?7.(2016春•平定县期末)如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P 在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明.8.(2016春•滑县期中)如图所示,已知AB∥CD,分别探究下面图形中∠APC,∠PAB,∠PCD的关系,请你从四个图形中任选一个,说明你所探究的结论的正确性.①结论:(1)______(2)______(3)______(4)______②选择结论______,说明理由.9.(2016春•威海期中)如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为______;(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.10.(2015秋•渠县期末)如图,AB∥CD,∠CDE=121°,GF交∠DEB的平分线EF于点F,∠AGF=140°,求∠F的度数.11.(2015春•武安市期末)探索:小明和小亮在研究一个数学问题:已知AB∥CD,AB 和CD都不经过点P,探索∠P与∠A,∠C的数量关系.发现:在图1中,小明和小亮都发现:∠APC=∠A+∠C;小明是这样证明的:过点P作PQ∥AB∴∠APQ=∠A(______)∵PQ∥AB,AB∥CD.∴PQ∥CD(______)∴∠CPQ=∠C∴∠APQ+∠CPQ=∠A+∠C即∠APC=∠A+∠C小亮是这样证明的:过点作PQ∥AB∥CD.∴∠APQ=∠A,∠CPQ=∠C∴∠APQ+∠CPQ=∠A+∠C即∠APC=∠A+∠C请在上面证明过程的过程的横线上,填写依据;两人的证明过程中,完全正确的是______.应用:在图2中,若∠A=120°,∠C=140°,则∠P的度数为______;在图3中,若∠A=30°,∠C=70°,则∠P的度数为______;拓展:在图4中,探索∠P与∠A,∠C的数量关系,并说明理由.12.(2015春•江西校级期中)已知AD∥BC,AB∥CD,E为射线BC上一点,AE平分∠BAD.(1)如图1,当点E在线段BC上时,求证:∠BAE=∠BEA.(2)如图2,当点E在线段BC延长线上时,连接DE,若∠ADE=3∠CDE,∠AED=60°.①求证:∠ABC=∠ADC;②求∠CED的度数.13.(2015秋•连云港校级月考)探究题:(1)如图1,若AB∥CD,则∠B+∠D=∠E,你能说明理由吗?(2)反之,若∠B+∠D=∠E,直线AB与直线CD有什么位置关系?简要说明理由.(3)若将点E移至图2的位置,此时∠B、∠D、∠E之间有什么关系?直接写出结论.(4)若将点E移至图3的位置,此时∠B、∠D、∠E之间有什么关系?直接写出结论.(5)在图4中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?直接写出结论.14.(2015秋•连云港校级月考)如图,已知OA∥BE,OB平分∠AOE,∠4=∠5,∠2与∠3互余;那么DE和CD有怎样的位置关系?为什么?15.(2015秋•连云港校级月考)(1)根据下列叙述填依据:已知:如图①,AB∥CD,∠B+∠BFE=180°,求∠B+∠BFD+∠D的度数.解:因为∠B+∠BFE=180°所以AB∥EF(______ )因为AB∥CD(______ )所以CD∥EF(______ )所以∠CDF+∠DFE=180°(______ )所以∠B+∠BFD+∠D=∠B+∠BFE+∠EFD+∠D=360°(2)根据以上解答进行探索,如图②,AB∥EF,∠BDF与∠B、∠F有何数量关系(3)你能探索处图③、图④两个图形中,∠BDF与∠B、∠F的数量关系吗?请写出来.16.(2014春•路北区期末)已知直线AB∥CD,(1)如图1,点E在直线BD上的左侧,直接写出∠ABE,∠CDE和∠BED之间的数量关系是______.(2)如图2,点E在直线BD的左侧,BF,DF分别平分∠ABE,∠CDE,直接写出∠BFD 和∠BED的数量关系是______.(3)如图3,点E在直线BD的右侧BF,DF仍平分∠ABE,∠CDE,那么∠BFD和∠BED 有怎样的数量关系?请说明理由.17.(2014春•滨湖区期末)如图1,已知MN∥PQ,B在MN上,C在PQ上,A在B的左侧,D在C的右侧,DE平分∠ADC,BE平分∠ABC,直线DE、BE交于点E,∠CBN=100°.(1)若∠ADQ=130°,求∠BED的度数;(2)将线段AD沿DC方向平移,使得点D在点C的左侧,其他条件不变,若∠ADQ=n°,求∠BED的度数(用含n的代数式表示).18.(2014春•龙岗区校级期中)如图:已知AB∥DE,若∠ABC=60°,∠CDE=140°,求∠BCD的度数.19.(2013春•萧山区期末)如图,射线OA∥射线CB,∠C=∠OAB=100°.点D、E在线段CB上,且∠DOB=∠BOA,OE平分∠DOC.(1)试说明AB∥OC的理由;(2)试求∠BOE的度数;(3)平移线段AB;①试问∠OBC:∠ODC的值是否会发生变化?若不会,请求出这个比值;若会,请找出相应变化规律.②若在平移过程中存在某种情况使得∠OEC=∠OBA,试求此时∠OEC的度数.20.(2012春•泸州期中)如图,AB∥CD,点M是线段EF上一点,若点N是直线CD上的一个动点(点N不与F重合)(1)当点N在射线FC上运动时,求证:∠FMN+∠FNM=∠AEF;(2)当点N在射线FD上运动时,猜想∠FMN+∠FNM 与∠AEF有什么关系?并说明理由.21.(2012春•北塘区校级期中)如图,DH交BF于点E,CH交BF于点G,∠1=∠2,∠3=∠4,∠B=∠5.试判断CH和DF的位置关系并说明理由.22.(2011秋•泉港区期末)如图,点A、B分别在直线CM、DN上,CM∥DN.(1)如图1,连接AB,则∠CAB+∠ABD=______;(2)如图2,点P1是直线CM、DN内部的一个点,连接AP1、BP1.求证:∠CAP1+∠AP1B+∠P1BD=360°;(3)如图3,点P1、P2是直线CM、DN内部的一个点,连接AP1、P1P2、P2B.试求∠CAP1+∠AP1P2+∠P1P2B+∠P2BD的度数;(4)若按以上规律,猜想并直接写出∠CAP1+∠AP1P2+…∠P5BD的度数(不必写出过程).23.(2011春•灌阳县期中)如图:AE平分∠DAC,∠DAC=120°,∠C=60°,AE与BC平行吗?为什么?24.(2011春•芗城区校级期中)根据图形及题意填空,并在括号里写上理由.已知:如图,AD∥BC,AD平分∠EAC.试说明:∠B=∠C解:∵AD平分∠EAC(已知)∴∠1=∠2(角平分线的定义)∵AD∥BC(已知)∴∠______=∠______(______)∠______=∠______(______)∴∠B=∠C.25.(2009春•鄂州校级期中)如图∠EFC+∠BDC=180°,∠AED=∠ACB,则∠DEF=∠B,为什么?26.如图,六边形ABCDEF中,∠A=∠D,∠B=∠E,∠C=∠F.求证:AF∥CD,AB∥DE,BC∥EF.27.已知,如图,直线AB∥CD,直线EF⊥AB,点M在CD上,MP平分∠GMC,PN平分∠EGM,且∠CMG+∠MGF=90°.(1)若∠MGN=75°,∠CMG=60°,求∠MPN的度数;(2)若∠MGF=30°,∠CMG=60°,求∠MPN的度数;(3)若点M在直线CD轴上移动,∠MPN的大小是否发生变化?如果保持不变,请给出证明;如果发生变化,请求出变化范围.28.如图1,AB∥CD,在AB、CD内有一条折线EPF.(1)求证:∠AEP+∠CFP=∠EPF.(2)如图2,已知∠BEP的平分线与∠DFP的平分线相交于点Q,试探索∠EPF与∠EQF之间的关系.(3)如图3,已知∠BEQ=∠BEP,∠DFQ=∠DFP,则∠P与∠Q有什么关系,说明理由.(4)已知∠BEQ=∠BEP,∠DFQ=∠DFP,有∠P与∠Q的关系为______.(直接写结论)29.已知:直线EF分别与直线AB,CD相交于点F,E,EM平∠FED,AB∥CD,H,P分别为直线AB和线段EF上的点.(1)如图1,HM平分∠BHP,若HP⊥EF,求∠M的度数.(2)如图2,EN平分∠HEF交AB于点N,NQ⊥EM于点Q,当H在直线AB上运动(不与点F重合)时,探究∠FHE与∠ENQ的关系,并证明你的结论.初二数学平行线难题训练参考答案与试题解析一.选择题(共1小题)1.(2014春•山西校级期中)如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是()A.42°、138°B.都是10°C.42°、138°或42°、10°D.以上都不对【分析】根据两边分别平行的两个角相等或互补列方程求解.【解答】解:设另一个角为x,则这一个角为4x﹣30°,(1)两个角相等,则x=4x﹣30°,解得x=10°,4x﹣30°=4×10°﹣30°=10°;(2)两个角互补,则x+(4x﹣30°)=180°,解得x=42°,4x﹣30°=4×42°﹣30°=138°.所以这两个角是42°、138°或10°、10°.以上答案都不对.故选D.【点评】本题主要运用两边分别平行的两个角相等或互补,学生容易忽视互补的情况而导致出错.二.解答题(共28小题)2.(2015•六盘水)如图,已知,l1∥l2,C1在l1上,并且C1A⊥l2,A为垂足,C2,C3是l1上任意两点,点B在l2上.设△ABC1的面积为S1,△ABC2的面积为S2,△ABC3的面积为S3,小颖认为S1=S2=S3,请帮小颖说明理由.【分析】根据两平行线间的距离相等,即可解答.【解答】解:∵直线l1∥l2,∴△ABC1,△ABC2,△ABC3的底边AB上的高相等,∴△ABC1,△ABC2,△ABC3这3个三角形同底,等高,∴△ABC1,△ABC2,△ABC3这些三角形的面积相等.即S1=S2=S3.【点评】本题考查了平行线之间的距离,解集本题本题的关键是明确两平行线间的距离相等.3.(2014春•宜昌校级期中)如图,直线EF∥GH,点B、A分别在直线EF、GH上,连接AB,在AB左侧作三角形ABC,其中∠ACB=90°,且∠DAB=∠BAC,直线BD平分∠FBC 交直线GH于D.(1)若点C恰在EF上,如图1,则∠DBA= 45°.(2)将A点向左移动,其它条件不变,如图2,设∠BAD=α.①试求∠EBC和∠PBC的大小(用α表示).②问∠DBA的大小是否发生改变?若不变,求∠DBA的值;若变化,说明理由.(3)若将题目条件“∠ACB=90°”,改为:“∠ACB=β”,其它条件不变,那么∠DBA= β.(直接写出结果,不必证明)【分析】(1)根据两直线平行,同旁内角互补求出∠CAD=90°,然后求出∠BAC=45°,从而得到∠ABC=45°,再根据BD平分∠FBC求出∠DBC=90°,然后求解即可;(2)①EF∥GH,得出∠2=∠3,进一步得出∠1=∠3,利用三角形的内角和得出∠EBC,利用平角的意义得出∠PBC;②根据两直线平行,内错角相等可得∠2=∠3,再根据三角形的内角和定理表示出∠4,然后表示∠5,再利用平角等于180°列式表示出∠DBA整理即可得解.(3)根据(2)的结论计算即可得解.【解答】解:(1)∵EF∥GH,∴∠CAD=180°﹣∠ACB=180°﹣90°=90°,∵∠DAB=∠BAC,∴∠BAC=45°,∴∠ABC=45°,∵BD平分∠FBC,∴∠DBC=×180°=90°,∴∠DBA=90°﹣45°=45°;(2)如图,①∵EF∥GH,∴∠2=∠3,∵∠1=∠2=α,∴∠1=∠3=α,∵∠ACB=90°,∴∠EBC=90°﹣∠1﹣∠3=90°﹣2α,∠PBC=(180°﹣∠EBC)=45°+α;②设∠DAB=∠BAC=x,即∠1=∠2=x,∵EF∥GH,∴∠2=∠3,在△ABC内,∠4=180°﹣∠ACB﹣∠1﹣∠3=180°﹣∠ACB﹣2x,∵直线BD平分∠FBC,∴∠5=(180°﹣∠4)=(180°﹣180°+∠ACB+2x)=∠ACB+x,∴∠DBA=180°﹣∠3﹣∠4﹣∠5,=180°﹣x﹣(180°﹣∠ACB﹣2x)﹣(∠ACB+x),=180°﹣x﹣180°+∠ACB+2x﹣∠ACB﹣x,=∠ACB,=×90°,=45°;(3)由(2)可知,设∠DAB=∠BAC=x,即∠1=∠2=x,∵EF∥GH,∴∠2=∠3,在△ABC内,∠4=180°﹣∠ACB﹣∠1﹣∠3=180°﹣∠ACB﹣2x,∵直线BD平分∠FBC,∴∠5=(180°﹣∠4)=(180°﹣180°+∠ACB+2x)=∠ACB+x,∴∠DBA=180°﹣∠3﹣∠4﹣∠5,=180°﹣x﹣(180°﹣∠ACB﹣2x)﹣(∠ACB+x),=180°﹣x﹣180°+∠ACB+2x﹣∠ACB﹣x,=∠ACB,∠ACB=β时,∠DBA=β.【点评】本题考查了平行线的性质,角平分线的定义,三角形的内角和定理,熟记性质并理清图中各角度之间的关系是解题的关键.4.(2014春•雁塔区校级期中)如图,点D、点E分别在△ABC边AB,AC上,∠CBD=∠CDB,DE∥BC,∠CDE的平分线交AC于F点.(1)求证:∠DBF+∠DFB=90°;(2)如图②,如果∠ACD的平分线与AB交于G点,∠BGC=50°,求∠DEC的度数.(3)如图③,如果H点是BC边上的一个动点(不与B、C重合),AH交DC于M点,∠CAH的平分线AI交DF于N点,当H点在BC上运动时,的值是否发生变化?如果变化,说明理由;如果不变,试求出其值.【分析】(1)根据DE∥BC,得到∠EDB+∠DBC=180°,再利用角平分线的性质,即可解答;(2)根据FD⊥AB,∠BGC=50°,得到∠DHG=40°,利用外角的性质得到∠FDC+∠HCD=50°,再根据DF平分∠EDC,CG平分∠ACD,得到∠EDC=2∠FDC,∠ACD=2∠HCD,得到∠EDC+∠ACD=2(∠FDC+∠HCD)=100°,利用三角形内角和为180°,∠DEC=180°﹣(∠EDC+∠ACD)=180°﹣100°=80°.(3)不变,根据∠DMH+∠DEC=2(∠ADF+∠DAN),∠ANF=∠ADF+∠DAN,即可解答.【解答】解:(1)如图1,∵DE∥BC,∴∠EDB+∠DBC=180°,∴∠EDF+∠FDC+∠CDB+∠DBC=180°,∵∠CDB=∠DBC,∠EDF=∠FDC,∴2∠FDC+2∠CDB=180°,∴∠FDC+∠CDB=90°,∴FD⊥BD,∴∠DBF+DFB=90°.(2)如图2,∵∠BGC=50°,FD⊥BD,∴∠DHG=40°,∴∠FDC+∠HCD=40°,∵DF平分∠EDC,CG平分∠ACD,∴∠EDC=2∠FDC,∠ACD=2∠HCD,∴∠EDC+∠ACD=2(∠FDC+∠HCD)=80°,∴∠DEC=180°﹣(∠EDC+∠ACD)=180°﹣80°=100°.(3)不变,如图3,∵∠DMH+∠DEC=2(∠ADF+∠DAN),∠ANF=∠ADF+∠DAN,∴==2.【点评】本题考查了平行线的性质、三角形角平分线、外角的性质、三角形内角和定理,解决本题的关键是利用三角形的角平分线、外角得到角之间的关系.5.如图所示,直线AE∥BD,点C在BD上,若AE=7,BD=3,△ABD的面积为12,求△ACE的面积.【分析】根据两平行线间的距离相等,可知两个三角形的高相等,所以根据△ABD的面积可求出高,然后求△ACE的面积即可.【解答】解:在△ABD中,当BD为底时,设高为h,在△AEC中,当AE为底时,设高为h′,∵AE∥BD,∴h=h′,∵△ABD的面积为12,BD=3,∴h=8,∴△ACE的面积为:=28.【点评】本题考查了两平行线之间的距离,解决本题的关键是根据两平行线间的距离相等求出高.6.(1)如图①,如果直线l1∥l2,那么三角形ABC与三角形A′BC面积相等吗?为什么?(2)如图②,平行四边形ABCD与平行四边形AB′C′D有一条公共边AD,BC和B′C′在同一直线上,这两个平行四边形的面积相等吗?为什么?【分析】(1)△ABC和△A′BC的底边都为BC,由于平行线间的距离处处相等,所以△ABC 和△A′BC的BC边上的高相等,所以△ABC和△DBC的面积相等.(2)平行四边形ABCD与平行四边形AB′C′D有一条公共边AD,四边形ABCD为平行四边形,所以AD∥BC,由于平行线间的距离处处相等,所以平行四边形ABCD与平行四边形AB′C′D的高相等,即可解答.【解答】解:(1)相等;∵L1∥L2,∴L1,L2之间的距离是固定的,∴△ABC和△A′BC的BC边上的高相等,∴△ABC和△A′BC的面积相等;(2)∵四边形ABCD为平行四边形,∴AD∥BC,∴AD和BC之间的距离是固定的,∵BC和B′C′在同一直线上,∴平行四边形ABCD与平行四边形AB′C′D公共边AD边上的高相等,∴平行四边形ABCD与平行四边形AB′C′D面积相等.【点评】此题主要考查了平行线间的距离.解决本题的关键是明确平行线间的距离处处相等.7.(2016春•平定县期末)如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P 在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明.【分析】此题三个小题的解题思路是一致的,过P作直线l1、l2的平行线,利用平行线的性质得到和∠1、∠2相等的角,然后结合这些等角和∠3的位置关系,来得出∠1、∠2、∠3的数量关系.【解答】证明:(1)过P作PQ∥l1∥l2,由两直线平行,内错角相等,可得:∠1=∠QPE、∠2=∠QPF;∵∠3=∠QPE+∠QPF,∴∠3=∠1+∠2.(2)关系:∠3=∠2﹣∠1;过P作直线PQ∥l1∥l2,则:∠1=∠QPE、∠2=∠QPF;∵∠3=∠QPF﹣∠QPE,∴∠3=∠2﹣∠1.(3)关系:∠3=360°﹣∠1﹣∠2.过P作PQ∥l1∥l2;同(1)可证得:∠3=∠CEP+∠DFP;∵∠CEP+∠1=180°,∠DFP+∠2=180°,∴∠CEP+∠DFP+∠1+∠2=360°,即∠3=360°﹣∠1﹣∠2.【点评】此题主要考查的是平行线的性质,能够正确地作出辅助线,是解决问题的关键.8.(2016春•滑县期中)如图所示,已知AB∥CD,分别探究下面图形中∠APC,∠PAB,∠PCD的关系,请你从四个图形中任选一个,说明你所探究的结论的正确性.①结论:(1)∠APC+∠PAB+∠PCD=360°(2)∠APC=∠PAB+∠PCD(3)∠PCD=∠APC+∠PAB(4)∠PAB=∠APC+∠PCD②选择结论(1),说明理由.【分析】①(1)过点P作PE∥AB,则AB∥PE∥CD,再根据两直线平行同旁内角互补即可解答;(2)过点P作l∥AB,则AB∥CD∥l,再根据两直线内错角相等即可解答;(3)根据AB∥CD,可得出∠PEB=∠PCD,再根据三角形外角的性质进行解答;(4)根据AB∥CD,可得出∠PAB=∠PFD,再根据∠PFD是△CPF的外角,由三角形外角的性质进行解答;②选择①中任意一个进行证明即可.【解答】解:①(1)过点P作PE∥AB,则AB∥PE∥CD,∴∠1+∠PAB=180°,∠2+∠PCD=180°,∴∠APC+∠PAB+∠PCD=360°;(2)过点P作直线l∥AB,∵AB∥CD,∴AB∥PE∥CD,∴∠PAB=∠3,∠PCD=∠4,∴∠APC=∠PAB+∠PCD;(3)∵AB∥CD,∴∠PEB=∠PCD,∵∠PEB是△APE的外角,∴∠PEB=∠PAB+∠APC,∴∠PCD=∠APC+∠PAB;(4)∵AB∥CD,∴∠PAB=∠PFD,∵∠PFD是△CPF的外角,∴∠PCD+∠APC=∠PFD,∴∠PAB=∠APC+∠PCD.②选择结论(1),证明同上.【点评】本题考查的是平行线的性质及三角形外角的性质,能根据题意作出辅助线,再利用平行线的性质进行解答是解答此题的关键.9.(2016春•威海期中)如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为∠PFD+∠AEM=90°;(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.【分析】(1)由平行线的性质得出∠PFD=∠1,∠2=∠AEM,即可得出结果;(2)由平行线的性质得出∠PFD+∠1=180°,再由角的互余关系即可得出结果;(3)由角的互余关系求出∠PHE,再由平行线的性质得出∠PFC的度数,然后由三角形的外角性质即可得出结论.【解答】解:(1)作PG∥AB,如图①所示:则PG∥CD,∴∠PFD=∠1,∠2=∠AEM,∵∠1+∠2=∠P=90°,∴∠PFD+∠AEM=∠1+∠2=90°,故答案为:∠PFD+∠AEM;(2)证明:如图②所示:∵AB∥CD,∴∠PFD+∠BHF=180°,∵∠P=90°,∴∠BHF+∠2=90°,∵∠2=∠AEM,∴∠BHF=∠PHE=90°﹣∠AEM,∴∠PFD+90°﹣∠AEM=180°,∴∠PFD﹣∠AEM=90°;(3)如图③所示:∵∠P=90°,∴∠PHE=90°﹣∠FEB=90°﹣15°=75°,∵AB∥CD,∴∠PFC=∠PHE=75°,∵∠PFC=∠N+∠DON,∴∠N=75°﹣30°=45°.【点评】本题考查了平行线的性质、角的互余关系;熟练掌握平行线的性质,弄清角之间的数量关系是解决问题的关键.10.(2015秋•渠县期末)如图,AB∥CD,∠CDE=121°,GF交∠DEB的平分线EF于点F,∠AGF=140°,求∠F的度数.【分析】先根据平行线的性质求出∠AED与∠DEB的度数,再由角平分线的性质求出∠DEF 的度数,进而可得出∠GEF的度数,再根据三角形外角的性质即可得出结论.【解答】解:∵AB∥CD,∠CDE=121°,∴∠AED=180°﹣121°=59°,∠DEB=121°.∵GF交∠DEB的平分线EF于点F,∴∠DEF=×121°=60.5°,∴∠GEF=59°+60.5°=119.5°.∵∠AGF=140°,∴∠F=∠AGF﹣∠GEF=140°﹣119.5°=20.5°.【点评】本题考查的是平行线的性质、角平分线的定义、三角形的外角性质;熟记两直线平行,同旁内角互补,内错角相等是解决问题的关键.11.(2015春•武安市期末)探索:小明和小亮在研究一个数学问题:已知AB∥CD,AB 和CD都不经过点P,探索∠P与∠A,∠C的数量关系.发现:在图1中,小明和小亮都发现:∠APC=∠A+∠C;小明是这样证明的:过点P作PQ∥AB∴∠APQ=∠A(两直线平行,内错角相等)∵PQ∥AB,AB∥CD.∴PQ∥CD(平行于同一直线的两直线平行)∴∠CPQ=∠C∴∠APQ+∠CPQ=∠A+∠C即∠APC=∠A+∠C小亮是这样证明的:过点作PQ∥AB∥CD.∴∠APQ=∠A,∠CPQ=∠C∴∠APQ+∠CPQ=∠A+∠C即∠APC=∠A+∠C请在上面证明过程的过程的横线上,填写依据;两人的证明过程中,完全正确的是小明的证法.应用:在图2中,若∠A=120°,∠C=140°,则∠P的度数为100°;在图3中,若∠A=30°,∠C=70°,则∠P的度数为40°;拓展:在图4中,探索∠P与∠A,∠C的数量关系,并说明理由.【分析】过点P作AB的平行线,用相似的证明方法运用平行线的性质进行证明即可.【解答】解:如图1,过点P作PQ∥AB,∴∠APQ=∠A(两直线平行,内错角相等)∵PQ∥AB,AB∥CD.∴PQ∥CD(平行于同一直线的两直线平行)∴∠CPQ=∠C∴∠APQ+∠CPQ=∠A+∠C即∠APC=∠A+∠C,故两人的证明过程中,完全正确的是小明的证法;如图2,过点P作PE∥AB,∴∠APE+∠A=180°,∠A=120°,∴∠APE=60°,∵PE∥AB,AB∥CD.∴PE∥CD(平行于同一直线的两直线平行)∴∠CPE+∠C=180°,∠C=140°,∴∠CPE=40°,∴∠APC=∠APE+∠CPE=100°;如图3,过点P作PF∥AB,∴∠APF=∠A,∵PF∥AB,AB∥CD.∴PF∥CD,∴∠CPF=∠C∴∠CPF﹣∠APF=∠C﹣∠A即∠APC=∠C﹣∠A=40°;如图4,过点P作PG∥AB,∴∠APG+∠A=180°,∴∠APG=180°﹣∠A∵PG∥AB,AB∥CD,∴PG∥CD,(平行于同一直线的两直线平行)∴∠CPG+∠C=180°,∴∠CPG=180°﹣∠C∴∠APC=∠CPG﹣∠APG=∠A﹣∠C.【点评】本题考查的是平行线的性质,掌握平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行同旁内角互补是解题的关键.12.(2015春•江西校级期中)已知AD∥BC,AB∥CD,E为射线BC上一点,AE平分∠BAD.(1)如图1,当点E在线段BC上时,求证:∠BAE=∠BEA.(2)如图2,当点E在线段BC延长线上时,连接DE,若∠ADE=3∠CDE,∠AED=60°.①求证:∠ABC=∠ADC;②求∠CED的度数.【分析】(1)根据角平分线的性质可得∠BAE=∠EAD,根据平行线的性质可得∠AEB=∠EAD,等量代换即可求解;(2)①先证明四边形ABCD是平行四边形,再根据平行四边形的性质即可求解;②根据∠ADE=3∠CDE,设∠CDE=x°,∠ADE=3x°,∠ADC=2x°,根据平行线的性质得出方程90﹣x+60+3x=180,求出x即可.【解答】(1)证明:∵AE平分∠BAD,∴∠BAE=∠EAD,∵AD∥BC,∴∠AEB=∠EAD,∴∠BAE=∠BEA;(2)①证明:∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∴∠ABC=∠ADC;②解:∵∠ADE=3∠CDE,设∠CDE=x°,∴∠ADE=3x°,∠ADC=2x°,∵AB∥CD,∴∠BAD+∠ADC=180°,∴∠DAB=180°﹣2x°,∵∠DAE=∠BAE=∠BEA=90°﹣x°,又∵AD∥BC,∴∠BED+∠ADE=180°,∵∠AED=60°,即90﹣x+60+3x=180,∴∠CDE=x°=15°,∠ADE=45°,∵AD∥BC,∴∠CED=180°﹣∠ADE=135°.【点评】本题考查了平行线的性质和判定的应用,用了方程的思想,能运用平行线的性质和判定进行推理是解此题的关键.13.(2015秋•连云港校级月考)探究题:(1)如图1,若AB∥CD,则∠B+∠D=∠E,你能说明理由吗?(2)反之,若∠B+∠D=∠E,直线AB与直线CD有什么位置关系?简要说明理由.(3)若将点E移至图2的位置,此时∠B、∠D、∠E之间有什么关系?直接写出结论.(4)若将点E移至图3的位置,此时∠B、∠D、∠E之间有什么关系?直接写出结论.(5)在图4中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?直接写出结论.【分析】(1)首先作EF∥AB,根据AB∥CD,可得EF∥CD,据此分别判断出∠B=∠1,∠D=∠2,即可判断出∠B+∠D=∠E,据此解答即可.(2)首先作EF∥AB,即可判断出∠B=∠1;然后根据∠E=∠1+∠2=∠B+∠D,可得∠D=∠2,据此判断出EF∥CD,再根据EF∥AB,可得AB∥CD,据此判断即可.(3)首先过E作EF∥AB,即可判断出∠BEF+∠B=180°,然后根据EF∥CD,可得∠D+∠DEF=180°,据此判断出∠E+∠B+∠D=360°即可.(4)首先根据AB∥CD,可得∠B=∠BFD;然后根据∠D+∠E=∠BFD,可得∠D+∠E=∠B,据此解答即可.(5)首先作EM∥AB,FN∥AB,GP∥AB,根据AB∥CD,可得∠B=∠1,∠2=∠3,∠4=∠5,∠6=∠D,所以∠1+∠2+∠5+∠6=∠B+∠3+∠4+∠D;然后根据∠1+∠2=∠E,∠5+∠6=∠G,∠3+∠4=∠F,可得∠E+∠G=∠B+∠F+∠D,据此判断即可.【解答】解:(1)如图1,作EF∥AB,,∵AB∥CD,∴∠B=∠1,∵AB∥CD,EF∥AB,∴EF∥CD,∴∠D=∠2,∴∠B+∠D=∠1+∠2,又∵∠1+∠2=∠E,∴∠B+∠D=∠E.(2)如图2,作EF∥AB,,∵EF∥AB,∴∠B=∠1,∵∠E=∠1+∠2=∠B+∠D,∴∠D=∠2,∴EF∥CD,又∵EF∥AB,∴AB∥CD.(3)如图3,过E作EF∥AB,,∵EF∥AB,∴∠BEF+∠B=180°,∵EF∥CD,∴∠D+∠DEF=180°,∵∠BEF+∠DEF=∠E,∴∠E+∠B+∠D=180°+180°=360°.(4)如图4,,∵AB∥CD,∴∠B=∠BFD,∵∠D+∠E=∠BFD,∴∠D+∠E=∠B.(5)如图5,作EM∥AB,FN∥AB,GP∥AB,,又∵AB∥CD,∴∠B=∠1,∠2=∠3,∠4=∠5,∠6=∠D,∴∠1+∠2+∠5+∠6=∠B+∠3+∠4+∠D;∵∠1+∠2=∠E,∠5+∠6=∠G,∠3+∠4=∠F,∴∠E+∠G=∠B+∠F+∠D.【点评】此题主要考查了平行线的性质和应用,要熟练掌握,解答此题的关键是要明确:(1)定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.(2)定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.(3)定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.14.(2015秋•连云港校级月考)如图,已知OA∥BE,OB平分∠AOE,∠4=∠5,∠2与∠3互余;那么DE和CD有怎样的位置关系?为什么?【分析】猜想到DE⊥CD,只须证明∠6=90°即可.利用平行线的性质、角平分线的性质以及等量代换可以证得∠2=∠5;然后根据外角定理可以求得∠6=∠2+∠3=90°,即DE⊥CD.【解答】解:DE⊥CD,理由如下:∵OA∥BE(已知),∴∠1=∠4(两直线平行,内错角相等);又∵OB平分∠AOE,∴∠1=∠2;又∵∠4=∠5,∴∠2=∠5(等量代换);∴DE∥OB(已知),∴∠6=∠2+∠3(外角定理);又∵∠2+∠3=90°,∴∠6=90°,∴DE⊥CD.【点评】本题考查了垂线、平行线的判定与性质.解答此题的关键是注意平行线的性质和判定定理的综合运用.15.(2015秋•连云港校级月考)(1)根据下列叙述填依据:已知:如图①,AB∥CD,∠B+∠BFE=180°,求∠B+∠BFD+∠D的度数.解:因为∠B+∠BFE=180°所以AB∥EF(同旁内角互补,两直线平行)因为AB∥CD(已知)所以CD∥EF(如果两条直线都与第三条直线平行,那么这两条直线也平行)所以∠CDF+∠DFE=180°(两直线平行,同旁内角互补)所以∠B+∠BFD+∠D=∠B+∠BFE+∠EFD+∠D=360°(2)根据以上解答进行探索,如图②,AB∥EF,∠BDF与∠B、∠F有何数量关系(3)你能探索处图③、图④两个图形中,∠BDF与∠B、∠F的数量关系吗?请写出来.【分析】(1)根据平行线的性质和判定填空即可;(2)过点D作AB的平行线DC,根据两直线平行,内错角相等证明即可;(3)与(2)的证明方法类似,可以求出∠BDF与∠B、∠F的数量关系.【解答】解:因为∠B+∠BFE=180°,所以AB∥EF(同旁内角互补,两直线平行),因为AB∥CD(已知),所以CD∥EF(如果两条直线都与第三条直线平行,那么这两条直线也平行),所以∠CDF+∠DFE=180°(两直线平行,同旁内角互补),所以∠B+∠BFD+∠D=∠B+∠BFE+∠EFD+∠D=360°;(2)过点D作AB的平行线DC,因为AB∥EF,所以∠B=∠BDC,因为AB∥EF,所以CD∥EF,所以∠F=∠FDC,所以∠BDF=∠B+∠F(3)过点D作AB的平行线DC,根据平行线的性质可以证明图③∠BDF+∠B=∠F;图④∠BDF+∠B=∠F.【点评】本题考查的是平行线的性质和判定,正确作出辅助线是解题的关键.解答本题时,注意类比思想的运用.16.(2014春•路北区期末)已知直线AB∥CD,(1)如图1,点E在直线BD上的左侧,直接写出∠ABE,∠CDE和∠BED之间的数量关系是∠ABE+∠CDE=∠BED .(2)如图2,点E在直线BD的左侧,BF,DF分别平分∠ABE,∠CDE,直接写出∠BFD 和∠BED的数量关系是∠BFD=∠BED .(3)如图3,点E在直线BD的右侧BF,DF仍平分∠ABE,∠CDE,那么∠BFD和∠BED 有怎样的数量关系?请说明理由.【分析】(1)首先作EF∥AB,根据直线AB∥CD,可得EF∥CD,所以∠ABE=∠1,∠CDE=∠2,据此推得∠ABE+∠CDE=∠BED即可.(2)首先根据BF,DF分别平分∠ABE,∠CDE,推得∠ABF+∠CFD=(∠ABE+∠CDE);然后由(1),可得∠BFD=∠ABF+∠CFD,∠BED=∠ABE+∠CDE,据此推得∠BFD=∠BED.(3)首先过点E作EG∥CD,再根据AB∥CD,EG∥CD,推得AB∥CD∥EG,所以∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,据此推得∠ABE+∠CDE+∠BED=360°;然后根据∠BFD=∠ABF+∠CDF,以及BF,DF分别平分∠ABE,∠CDE,推得2∠BFD+∠BED=360°即可.【解答】解:(1)如图1,作EF∥AB,,∵直线AB∥CD,∴EF∥CD,∴∠ABE=∠1,∠CDE=∠2,∴∠ABE+∠CDE=∠1+∠2=∠BED,即∠ABE+∠CDE=∠BED.(2)如图2,,∵BF,DF分别平分∠ABE,∠CDE,∴∠ABF=∠ABE,∠CFD=∠CDE,∴∠ABF+∠CFD=∠ABE+∠CDE=(∠ABE+∠CDE)由(1),可得∠BFD=∠ABF+∠CFD=(∠ABE+∠CDE)∠BED=∠ABE+∠CDE,∴∠BFD=∠BED.(3)如图3,过点E作EG∥CD,,∵AB∥CD,EG∥CD,∴AB∥CD∥EG,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠CDE+∠BED=360°,由(1)知,∠BFD=∠ABF+∠CDF,又∵BF,DF分别平分∠ABE,∠CDE,∴∠ABF=∠ABE,∠CDF=∠CDE,∴∠BFD=(∠ABE+∠CDE),∴2∠BFD+∠BED=360°.故答案为:∠ABE+∠CDE=∠BED、∠BFD=∠BED.【点评】此题主要考查了平行线的性质和应用,要熟练掌握,解答此题的关键是要明确:①定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.②定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.③定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.17.(2014春•滨湖区期末)如图1,已知MN∥PQ,B在MN上,C在PQ上,A在B的左侧,D在C的右侧,DE平分∠ADC,BE平分∠ABC,直线DE、BE交于点E,∠CBN=100°.(1)若∠ADQ=130°,求∠BED的度数;(2)将线段AD沿DC方向平移,使得点D在点C的左侧,其他条件不变,若∠ADQ=n°,求∠BED的度数(用含n的代数式表示).【分析】(1)过点E作EF∥PQ,由平行线的性质及角平分线求得∠DEF和∠FEB,即可求出∠BED的度数,(2)过点E作EF∥PQ,由平行线的性质及角平分线求得∠DEF和∠FEB,即可求出∠BED 的度数,【解答】解:(1)如图1,过点E作EF∥PQ,∵∠CBN=100°,∠ADQ=130°,∴∠CBM=80°,∠ADP=50°,∵DE平分∠ADC,BE平分∠ABC,∴∠EBM=∠CBM=40°,∠EDP=∠ADP=25°,∵EF∥PQ,∴∠DEF=∠EDP=25°,∵EF∥PQ,MN∥PQ,∴EF∥MN.∴∠FEB=∠EBM=40°∴∠BED=25°+40°=65°;(2)如图2,过点E作EF∥PQ,∵∠CBN=100°,∴∠CBM=80°,∵DE平分∠ADC,BE平分∠ABC,∴∠EBM=∠CBM=40°,∠EDQ=∠ADQ=n°,∵EF∥PQ,∴∠DEF=180°﹣∠EDQ=180°﹣n°,∵EF∥PQ,MN∥PQ,∴EF∥MN,∴∠FEB=∠EBM=40°,∴∠BED=180°﹣n°+40°=220°﹣n°.【点评】本题主要考查了平行线的性质,运用角平分线与平行线的性质相结合来求∠BED解题的关键.18.(2014春•龙岗区校级期中)如图:已知AB∥DE,若∠ABC=60°,∠CDE=140°,求∠BCD的度数.【分析】根据两直线平行,内错角相等以及三角形外角和定理即可解答.【解答】解:反向延长DE交BC于M,∵AB∥DE,∴∠BMD=∠ABC=60°,∴∠CMD=180°﹣∠BMD=120°;又∵∠CDE=∠CMD+∠C,∴∠BCD=∠CDE﹣∠CMD=140°﹣120°=20°.【点评】本题考查了平行线的性质,注意此题要构造辅助线,运用了平行线的性质、邻补角的关系、三角形的一个外角等于和它不相邻的两个内角和.19.(2013春•萧山区期末)如图,射线OA∥射线CB,∠C=∠OAB=100°.点D、E在线段CB上,且∠DOB=∠BOA,OE平分∠DOC.(1)试说明AB∥OC的理由;(2)试求∠BOE的度数;(3)平移线段AB;①试问∠OBC:∠ODC的值是否会发生变化?若不会,请求出这个比值;若会,请找出相应变化规律.②若在平移过程中存在某种情况使得∠OEC=∠OBA,试求此时∠OEC的度数.【分析】(1)根据OA∥CB,得到∠OAB+∠ABC=180°,根据已知证明∠C+∠ABC=180°,证明结论;(2)根据两直线平行,同旁内角互补求出∠AOC,然后求出∠EOB=∠AOC,计算即可得解;(3)根据两直线平行,内错角相等可得∠AOB=∠OBC,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠OFC=2∠OBC,从而得解;根据三角形的内角和定理求出∠COE=∠AOB,从而得到OB、OE、OF是∠AOC的四等分线,再利用三角形的内角和定理列式计算即可得解.【解答】解:(1)∵OA∥CB,∴∠OAB+∠ABC=180°,∵∠C=∠OAB=100°,∴∠C+∠ABC=180°,∴AB∥OC(2)∵CB∥OA,∴∠AOC=180°﹣∠C=180°﹣100°=80°,∵OE平分∠COF,∴∠COE=∠EOF,。

相关文档
最新文档