反比例函数与几何图形的综合
中考反比例函数与几何综合

Oy xBAABxy O反比例函数与几何综合基本图形及常见结论 (1) 反比例函数)0(≠=k xky 图象上任一点,向两坐标轴作垂线,垂线与坐标轴;所围k S =矩形(2)反比例函数)0(≠=k xky 图象上任一点,向两坐标轴作垂线,垂线与坐标轴及原点连线;所围2k S =三角形(3)反比例函数与正比例函数图像交于A ,B 两点,AM 与x 轴垂直; 则:①A ,B 两点关于原点对称;②k S ABM =△(4)过反比例函数xk y 11=图像上任一点向坐标轴做垂线,与反比例函数)(2122k k xk y >=交于两点; 则:①BNBP AM AP =,即AB ∥MN②21k k S APNH -=矩形③)(△2121k k S OAP -=一次函数)0(≠+=kb b kx y 和反比例函数)0(≠=m xmy 图像交于A 、B 两点,AE ⊥x 轴,BF ⊥y 轴,则:①OAE OBF S S △△= ② OAB ABFE S S △梯形=③AC BD =④BFAEOE OF AE OE BF OF =⇒⋅=⋅ ⑤OACOBD S S △△=(一)巧用k 的几何意义解题y x ABO CDy xDC F EO B A例1.函数y=和y=在第一象限内的图象如图,点P 是y=的图象上一动点,PC ⊥x 轴于点C ,交y=的图象于点B .给出如下结论:①△ODB 与△OCA 的面积相等;②PA 与PB 始终相等;③四边形PAOB 的面积大小不会发生变化;④CA=AP .其中所有正确结论的序号是________。
迁移练习1(1).如图,双曲线)0x (k>=xy 经过Rt △OAB 斜边OB 的中点D ,与AB 交于点C .若△OBC 面积为3,则k =_______迁移练习1(2)..双曲线)0x (k>=xy 经过矩形OABC 边AB 的中点F ,交BC 于点E ; 若梯形OEBA 的面积为9,则k=________。
反比例函数的图像和性质的综合应用

解析
根据题意,将点 A(-2 ,3)和点 B(3,-2 )分别代入两个函数中 ,得到关于 m、k、b 的方程组,解方程组求 得 m、k、b 的值,即 可得到两个函数的解析
式。
05
反比例函数在几何图形中应用
相似三角形判定定理推广
预备定理
平行于三角形的一边,并且和 其他两边相交的线段,所截得 的三角形的三边与原三角形三 边对应成比例。
反比例函数图像在平面直角坐标系中 ,沿y轴方向平移,函数表达式不变, 图像沿y轴平移。
伸缩变换规律
01
当k>0时,图像分别位于第一、三象限,每一个象限内,从 左往右,y随x的增大而减小;
02
当k<0时,图像分别位于第二、四象限,每一个象限内,从 左往右,y随x的增大而增大。
03
k>0时,函数在x<0上同为减函数、在x>0上同为减函数; k<0时,函数在x<0上为增函数、在x>0上同为增函数。
3
平行四边形面积问题
通过已知相邻两边及其夹角求解面积,或已知面 积和一边长度及夹角求解另一边长度,应用反比 例函数进行求解。
速度、时间、距离关系分析
匀速直线运动问题
通过已知速度和时间求解距离,或已 知距离和时间求解速度,利用反比例 关系建立方程。
变速直线运动问题
曲线运动问题
通过已知速度和方向的变化规律,求 解某时刻的速度或某段时间内的平均 速度及运动轨迹,结合反比例函数进 行综合分析。
解析
根据题意,将点(-2, -1)代入两个函数中, 得到关于 k、m、n 的 方程组,解方程组求得 k、m、n 的值,即可 得到两个函数的解析式 。再将 x = 3 代入两个 函数中,得到关于 k、 m、n 的另一个方程, 与前面的方程组联立求 解,即可得到最终的解
专题21反比例函数的图象与性质(3个知识点5种题型2种中考考法)(原卷版-初中数学北师大版9年级上册

专题21反比例函数的图象与性质(3个知识点5种题型2种中考考法)【目录】倍速学习四种方法【方法一】脉络梳理法知识点1.反比例函数图象的画法(重点)知识点2.反比例函数的图象与性质(重点)知识点3.反比例函数表达式中比例系数k 的几何意义(难点)【方法二】实例探索法题型1.反比例函数的图象与性质的应用题型2.反比例函数与图形面积问题题型3.利用反比例函数图象的对称性解题题型4.创新题题型5.反比例函数与几何图形的综合【方法三】仿真实战法考法1.反比例函数的比例系数k 的几何意义考法2.利用反比例函数的性质比较函数值大小【方法四】成果评定法【学习目标】1.能画出反比例函数的图象,知道反比例函数的图象是双曲线。
2.理解反比例函数的性质,并能运用其性质解决相关的问题。
3.理解反比例函数)0(≠=k xky 中的比例系数k 的几何意义,并能运用其意义求与反比例函数图象有关的图形面积问题。
【知识导图】【倍速学习四种方法】【方法一】脉络梳理法知识点1.反比例函数图象的画法(重点)(1)列表:自变量的取值应以0为中心,在0的两侧取三对(或三对以上)互为相反数的值,填写y 值时,只需计算右侧的函数值,相应左侧的函数值是与之对应的相反数;(2)描点:描出一侧的点后,另一侧可根据中心对称去描点;(3)连线:按照从左到右的顺序连接各点并延伸,连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线.注意双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不与坐标轴相交;(4)反比例函数图象的分布是由k 的符号决定的:当0k >时,两支曲线分别位于第一、三象限内,当0k <时,两支曲线分别位于第二、四象限内.知识点2.反比例函数的图象与性质(重点)1、反比例函数的图象特征:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限;反比例函数的图象关于原点对称,永远不会与x 轴、y 轴相交,只是无限靠近两坐标轴.注意:(1)若点(a b ,)在反比例函数ky x=的图象上,则点(a b --,)也在此图象上,所以反比例函数的图象关于原点对称;(2)在反比例函数(k 为常数,0k ≠)中,由于,所以两个分支都无限接近但永远不能达到x 轴和y 轴.2.反比例函数的性质(1)如图1,当0k >时,双曲线的两个分支分别位于第一、三象限,在每个象限内,y 值随x 值的增大而减小;(2)如图2,当0k <时,双曲线的两个分支分别位于第二、四象限,在每个象限内,y 值随x 值的增大而增大;注意:(1)反比例函数的增减性不是连续的,它的增减性都是在各自的象限内的增减情况,反比例函数的增减性都是由反比例系数k 的符号决定的;反过来,由双曲线所在的位置和函数的增减性,也可以推断出k 的符号.(2)反比例的图像关于原点的对称【例2】(2022秋•南华县期末)反比例函数与一次函数y =kx +1在同一坐标系的图象可能是()A .B .C.D.【变式】(2022秋•大渡口区校级期末)在同一坐标系中,函数和y=kx﹣2的图象大致是()A.B.C.D.【例3】(2023•瑞安市开学)对于反比例函数,当﹣1<y≤2,且y≠0时,自变量x的取值范围是()A.x≥1或x<﹣2B.x≥1或x≤﹣2C.0<x≤1或x<﹣2D.﹣2<x<0或x≥1【变式】(2023•西湖区校级开学)若点A(x1,y1),B(x2,y2),C(x3,y3),都在反比例函数(k为常数,k>0)的图象上,其中y2<0<y1<y3,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x3<x1C.x1<x3<x2D.x2<x1<x3知识点3.反比例函数表达式中比例系数k的几何意义(难点)通过反比例函数上一点向一条坐标轴作垂线,这个点与垂足和原点所构成的三角形面积为12k,与两条坐标轴围成矩形面积为k,注意加绝对值时,有正负两个答案.【例4】(2023•和平区校级三模)如图,点A在双曲线上,AB ⊥x 轴于B ,且△AOB 的面积S △AOB =2,则k 的值为()A .2B .4C .﹣2D .﹣4【变式】如图,矩形ABCD 的边CD 在x 轴上,顶点A 在双曲线1y x =上,顶点B 在双曲线3y x=上,求矩形ABCD 的面积.A B CDE Oxy【方法二】实例探索法题型1.反比例函数的图象与性质的应用1.(2023•株洲)下列哪个点在反比例函数的图象上?()A .P 1(1,﹣4)B .P 2(4,﹣1)C .P 3(2,4)D .2.(2023•西湖区校级开学)若点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),都在反比例函数(k 为常数,k>0)的图象上,其中y 2<0<y 1<y 3,则x 1,x 2,x 3的大小关系是()A .x 1<x 2<x 3B .x 2<x 3<x 1C .x 1<x 3<x 2D .x 2<x 1<x 33.(2023春•东阳市期末)已知反比例函数的图象的一支如图所示,它经过点(3,﹣2).(1)求此反比例函数的表达式,并补画该函数图象的另一支.(2)求当y ≤4,且y ≠0时自变量x 的取值范围.4.(1)平面直角坐标系中,点A (725)m m --,在第二象限,且m 为整数,求过点A 的反比例函数解析式;(2)若反比例函数3k y x -=的图像位于第二、四象限内,正比例函数2(1)3y k x =-过一、三象限,求整数k 的值.5.已知反比例函数(0)k y k x =≠,当自变量x 的取值范围为84x ≤≤--时,相应的函数取值范围是12y ≤≤--1,求这个反比例函数解析式.题型2.反比例函数与图形面积问题6.(1)若P是反比例函数3kyx=图像上的一点,PQ⊥y轴,垂足为点Q,若2POQs∆=,求k的值;(2)已知反比例函数kyx=的图像上有一点A,过A点向x轴,y轴分别做垂线,垂足分别为点B C,,且四边形ABOC的面积为15,求这个反比例函数解析式.7.(2022秋•朝阳期末)如图,一次函数y=k1x+b与反比例函数y=(x>0)的图象交于A(1,6),B(3,n)两点.(1)求反比例函数的解析式和n的值;(2)根据图象直接写出不等式k1x+b的x的取值范围;(3)求△AOB的面积.题型3.利用反比例函数图象的对称性解题8.(2023•福建)如图,正方形四个顶点分别位于两个反比例函数y=和y=的图象的四个分支上,则实数n的值为()A.﹣3B.﹣C.D.39.(2023•广西)如图,过的图象上点A,分别作x轴,y轴的平行线交的图象于B,D 两点,以AB,AD为邻边的矩形ABCD被坐标轴分割成四个小矩形,面积分别记为S1,S2,S3,S4,若,则k的值为()A.4B.3C.2D.1(1)若点A(1,1),分别求线段(2)对于任意的点A(a,b),试探究线段14.(2022秋·安徽滁州·九年级统考期中)如图,已知1A,2A,3A,…,n A…是x轴上的点,且15.(2021秋·河北石家庄每个台阶凸出的角的顶点记作(1)若L 过点1T ,则k =(2)若曲线L 使得1T T ~16.(2022秋·全国·九年级期末)如图,已知反比例函数题型5.反比例函数与几何图形的综合17.过原点作直线交双曲线(0)ky k x=>于点A 、C ,过A 、C 两点分别作两坐标轴的平行线,围成矩形ABCD ,如图所示.(1)已知矩形ABCD 的面积等于8,求双曲线的解析式;(2)若已知矩形ABCD 的周长为8,能否由此确定双曲线的解析式?如果能,请予求出;如果不能,说明理由.y ABCDOx18.正方形OAPB 、ADFE 的顶点A 、D 、B 在坐标轴上,点E 在AP 上,点P 、F 在函数(0)ky k x=>的图像上,已知正方形OAPB 的面积是16.(1)求k 的值和直线OP 的函数解析式;(2)求正方形ADEF 的边长.yABPFOxED19.如图,已知正方形OABC 的面积是9,点O 为坐原点,A 在x 轴上,C 在y 轴上,B 在函数(00)ky k x x=>>,的图像上,点P (m ,n )在(00)ky k x x=>>,的图像上异于B 的任意一点,过点P 分别作x 轴,y 轴的垂线,垂足分别是E 、F .设矩形OEPF 和正方形OABC 不重合部分的面积是S .(1)求点B 的坐标;(2)当92S =时,求点P 的坐标;(3)写出S 关于m 的函数解析式.A BC PE FyOx【方法三】仿真实战法考法1.反比例函数的比例系数k 的几何意义1.(2023•福建)如图,正方形四个顶点分别位于两个反比例函数y =和y =的图象的四个分支上,则实数n 的值为()A .﹣3B.﹣C.D .32.(2023•湘西州)如图,点A 在函数y=(x >0)的图象上,点B 在函数y=(x >0)的图象上,且AB ∥x 轴,BC ⊥x 轴于点C ,则四边形ABCO 的面积为()A .1B .2C .3D .4考法2.利用反比例函数的性质比较函数值大小3.(2023•镇江)点A(2,y1)、B(3,y2)在反比例函数y=的图象上,则y1y2(用“<”、“>”或“=”填空).4.(2022•广东)点(1,y1),(2,y2),(3,y3),(4,y4)在反比例函数y=图象上,则y1,y2,y3,y4中最小的是()A.y1B.y2C.y3D.y45.(2021•广安)若点A(﹣3,y1),B(﹣1,y2),C(2,y3)都在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系是()A.y3<y1<y2B.y2<y1<y3C.y1<y2<y3D.y3<y2<y1【方法四】成果评定法一、单选题A.1 43.(2022·福建福州·校考模拟预测)如图,在x轴于B、D两点,连结A .4B .65.(2022秋·福建厦门·九年级校考期中)如图,过双曲线上任意一点交x 轴、y 轴于点M 、N ,所得矩形A .4B .4-6.(2021秋·河北石家庄·九年级校联考期中)关于反比例函数A .函数图像分别位于第一、三象限C .函数图像过()(23A mB n -,、,A.4 10.(2023·江苏宿迁图像上,点E在yA.1B 二、填空题11.(2022秋·湖南永州13.(2022秋·黑龙江大庆的大小关系是14.(2023·安徽滁州15.(2023秋·重庆沙坪坝比例函数()0ky k x=≠上两点,平行线,两直线交于点16.(2023秋·福建泉州·九年级校考专题练习)如图,已知直线(00)a y x a x =>>,和b y x =象于点D ,过点C 作CE ∥17.(2022秋·贵州铜仁·九年级统考期中)如图,点112232021OA A A A A A ==== 图象分别交于点123,,,B B B 18.(2023·浙江·九年级专题练习)如图,点所示,分别过点A ,C 作x 轴与构成的阴影部分面积为2,则矩形三、解答题19.(2023秋·陕西榆林·九年级校考期末)已知反比例函数(1)函数的图象在第二、四象限?(1)求k的值;(2)请用无刻度的直尺和圆规作出(3)设(2)中的角平分线与⊥.证:DE OA(1)如图,在平面直角坐标系中,观察描出的这些点的分布,作出函数图象;(2)研究函数并结合图象与表格,回答下列问题:①点()121,7552,,,,2A y B y C x ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭②当函数值2y =时,求自变量x 的值;(1)求点A 的坐标;(2)求反比例函数的解析式:(1)点D的坐标为______,点E的坐标为______;(2)动点P在第一象限内,且满足12PBO ODE S S∆∆=。
(江西人教)数学中考专题突破【专题4】反比例函数与几何图形综合题(20页)

本的途径,预计2015年仍会延续此命题方式.
考点探究
专题四
反比例函数与几何图形综合题
考向互动探究
【点拨交流】
1.本题考查了哪些知识?解题的关键是什么?
2.∠BCO与∠BPD有怎样的数量关系?
3.tan∠BCO的值是多少?怎样求线段OC的长?
4.要求点D的坐标,需要求出哪两条线段的长?怎样求?
5.怎样确定反比例函数的解析式?
考点探究
专题四
反比例函数与几何图形综合题
【解题思路】
考点探究
专题四
反比例函数与几何图形综合题
例 1 [2014·南昌] 如图 T4-1,在平面直角坐标系中,Rt△ 1 PBD 的斜边 PB 落在 y 轴上,tan∠BPD= .延长 BD 交 x 轴于点 C, 2 过点 D 作 DA⊥x 轴,垂足为 A,OA=4,OB=3. (1)求点 C 的坐标; k (2)若点 D 在反比例函数 y= (k>0)的图象上,求反比例函数 x 的解析式.考点探究专题四来自反比例函数与几何图形综合题
图T4-3
考点探究
专题四
反比例函数与几何图形综合题
解:(1)过点 C 作 CE⊥AB 于点 E. ∵四边形 ABCD 是梯形,AD=BC ∴DO=CE, ∴△AOD≌△BEC,∴AO=BE=2. ∵BO=6,∴DC=OE=4, ∴C(4,3). k 设反比例函数的解析式为 y= (k≠0), x k 根据题意,得 3= , 4
【点拨交流】
1.本题考查了哪些知识?
2.B,C,D三点的坐标可以看作由点A(2,6)通过怎样的平
移得到?
3.在将矩形向下平移的过程中,哪两点能同时落在函数图 象上? 4.将矩形向下平移 a个单位后点A,C对应的点A′,C′的 坐标怎样表示?
专题九-反比例函数与几何的综合应用

在物理学中,一些物理量之间可能存在反比例关系,如电阻与电流、压力与面积等。通过运用反 比例函数的性质,可以更好地理解和解决这些物理问题。
反比例函数在经济学中的应用
在经济学中,一些经济指标之间可能存在反比例关系,如价格与需求量、成本与产量等。通过运 用反比例函数的性质,可以对这些经济指标进行更准确的预测和分析。
如长度、面积等。
利用反比例函数性质建立关系
02
根据反比例函数的性质,结合几何图形的特点,建立所求最值
与相关量之间的关系。
求解最值
03
通过求解反比例函数的最值,得到所求几何量的最值。
判定存在性问题
根据题意列出方程或不等式
01
根据题目条件,列出与几何图形相关的方程或不等式
。
利用反比例函数性质分析解的情况
反比例关系在圆中的应用
在圆中,当一个圆的半径增加时,其 面积会按平方比例增加,但其周长只 会按线性比例增加。这种关系虽然不 是严格的反比例关系,但也可以用于 解决一些与圆相关的问题。
解题技巧与实例分析
通过利用圆的性质和上述关系, 可以求解一些与圆相关的问题。 例如,已知一个圆的半径和另一 个圆的面积或周长,可以求解未 知圆的半径或面积等。
仔细阅读题目要求,明确题意 ,避免答非所问。
合理安排答题顺序
先做易做的题目,确保会做的 题目不丢分,再攻克难题。
控制答题时间
每道题目分配合理的时间,避 免时间不够用或浪费过多时间
。
检查答案
做完题目后要认真检查答案, 确保没有遗漏或错误。
THANKS FOR WATCHING
感谢您的观看
解题技巧与实例分析
对于其他几何图形中的反比例关系问题,可以通过设定未知数、利用几何图形的性质和反比例关系来求解。 需要注意的是,在解题过程中要仔细分析题目条件和数据特点,选择合适的解题方法和思路。
专题:反比例函数与几何图形结合

专题4:反比例函数与几何图形结合方法点睛反比例函数与几何图形结合常涉及以下几个方面:1.求反比例函数与一次函数的解析式:(1)找到或求出反比例函数图象上一点的坐标,利用待定系数法求解;(2)找到或求出一次函数图象上两点的坐标,再利用待定系数法求解.注:当已知一次函数与反比例数函数图象上的一个交点A的坐标及交点B的横(纵)坐标,确定两个函数的解析式时,先利用点A的坐标求得反比例函数解析式,再由反比例函数解析式求得点B的坐标,再利用A,B两点的坐标确定一次函数解析式.2、(1)给出图形面积求点的坐标:根据解析式用只含一个参数的代数式表示该点的坐标,列出关于该图形面积的等式进行求解.(2)点的存在性问题:涉及线段和面积的关系,图形的判定等,对这类题应观察图形,结合问题,建立数学模型,按照题意列出等量关系式进行求解.典例分析例1:(2022达州中考)如图,一次函数1y x =+与反比例函数k y x=的图象相交于(,2)A m ,B 两点,分别连接OA ,OB .(1)求这个反比例函数的表达式;(2)求AOB 的面积;(3)在平面内是否存在一点P ,使以点O ,B ,A ,P 为顶点的四边形为平行四边形?若存在,请直接写出点P专题过关1.(2022西宁中考)如图,正比例函数4y x =与反比例函数()0k y x x=>的图象交于点(),4A a ,点B 在反比例函数图象上,连接AB ,过点B 作BC x ⊥轴于点()2,0C .(1)求反比例函数解析式;(2)点D 在第一象限,且以A ,B ,C ,D 为顶点的四边形是平行四边形,请直接写出....点D 的坐标.2.(2022绵阳中考)如图,一次函数1y k x b =+与反比例函数2k y x=在第一象限交于(2,8)M 、N 两点,NA 垂直x 轴于点A ,O 为坐标原点,四边形OANM 的面积为38.(1)求反比例函数及一次函数的解析式;(2)点P 是反比例函数第三象限内的图象上一动点,请简要描述使PMN 的面积最小时点P 的位置(不需证明),并求出点P 的坐标和PMN3.(2022眉山中考)已知直线y x =与反比例函数k y x=的图象在第一象限交于点(2,)M a .(1)求反比例函数的解析式;(2)如图,将直线y x =向上平移b 个单位后与k y x=的图象交于点(1,)A m 和点(,1)B n -,求b 的值;(3)在(2)的条件下,设直线AB 与x 轴、y 轴分别交于点C ,D ,求证:AOD BOC ≌△△.4.(2022衡阳中考)如图,反比例函数myx=的图象与一次函数y kx b=+的图象相交于()3,1A,()1,B n-两点.(1)求反比例函数和一次函数的关系式;(2)设直线AB交y轴于点C,点M,N分别在反比例函数和一次函数图象上,若四边形OCNM是平行四边形,求点M的坐标.A,B两点.5.(2022常德中考)如图,已知正比例函数1y x=与反比例函数2y的图象交于()2,2y y<时x的取值范围;(1)求2y的解析式并直接写出12(2)以AB为一条对角线作菱形,它的周长为,在此菱形的四条边中任选一条,求其所在直线的解析式.6.(2022绥化中考)在平面直角坐标系中,已知一次函数11y k x b =+与坐标轴分别交于()5,0A ,50,2B ⎛⎫ ⎪⎝⎭两点,且与反比例函数22k y x =的图象在第一象限内交于P ,K 两点,连接OP ,OAP △的面积为54.(1)求一次函数与反比例函数的解析式;(2)当21y y >时,求x 的取值范围;(3)若C 为线段OA 上的一个动点,当PC KC +最小时,求PKC 的面积.7.(2022大庆中考)已知反比例函数k y x =和一次函数1y x =-,其中一次函数图象过(3,)a b ,31,3k a b ⎛⎫++ ⎪⎝⎭两点.(1)求反比例函数的关系式;(2)如图,函数1,33y x y x ==的图象分别与函数(0)k y x x =>图象交于A ,B 两点,在y 轴上是否存在点P ,使得ABP △周长最小?若存在,求出周长的最小值;若不存在,请说明理由.8.(2022湘潭中考)已知()3,0A 、()0,4B 是平面直角坐标系中两点,连接AB .(1)如图①,点P 在线段AB 上,以点P 为圆心的圆与两条坐标轴都相切,求过点P 的反比例函数表达式;(2)如图②,点N 是线段OB 上一点,连接AN ,将AON 沿AN 翻折,使得点O 与线段AB 上的点M 重合,求经过A 、N 两点的一次函数表达式.9.(2022成都中考)如图,在平面直角坐标系xOy 中,一次函数26y x =-+的图象与反比例函数ky x=的图象相交于(),4A a ,B 两点.(1)求反比例函数的表达式及点B 的坐标;(2)过点A 作直线AC ,交反比例函数图象于另一点C ,连接BC ,当线段AC 被y 轴分成长度比为1:2的两部分时,求BC 的长;(3)我们把有两个内角是直角,且一条对角线垂直平分另一条对角线的四边形称为“完美筝形”.设P 是第三象限内的反比例函数图象上一点,ABPQ 是完美筝形时,求P ,Q 两点的坐标.10.(2022河南西华二模)如图,反比例函数(0)my x x=>的图象与一次函数y kx b =+的图象交于(14)B ,和(1)C n ,两点.(1)求反比例函数与一次函数的解析式;(2)根据图象直接写出不等式(0)mkx b x x+> 的解集;(3)将直线BC 向下平移5个单位长度得到直线l ,已知点P ,Q 分别为x 轴、直线l 上的动点,当PC PQ +的值最小时,请直接写出点P 的坐标.11.(2022河南西华一模)在平面直角坐标系xOy 中,函数()0ky x x=>的图象经过点()2,3A ,()6,B a ,直线l :y =mx +n 经过A ,B 两点,直线l 分别交x 轴,y 轴于D ,C 两点.(1)求反比例函数与一次函数的解析式;(2)在y 轴上是否存在一点E ,使得以A ,C ,E 为顶点的三角形与△CDO 相似?若存在,请求出点E 的坐标;若不存在,请说明理由.12.(2022河南长垣一模)如图,在平面直角坐标系中,直线y x =与反比例函数1y x=(x >0)的图象交于点A ,将直线y x =沿y 轴向上平移k 个单位长度,交y 轴于点B ,交反比例函数图象于点C ,且13BC OA =.AD ⊥y 轴于点D 、CE ⊥y 于点E .(1)求证:△BCE ∽△OAD ;(2)求点A 和点C 的坐标;(3)求k 值.13.(2022河南虞城二模)如图,点A 为直线y =3x 上位于第一象限的一个动点,过点A 作AB ⊥x 轴于点B ,将点B 向右平移2个单位长度到点C ,以AB ,BC 为边构造矩形ABCD ,经过点A 的反比例函数()0ky x x=>的图象交CD 于点M .(1)若B(1,0),求点M 的坐标;(2)连接AM ,当AM ⊥OA 时,求点A 的坐标.14.(2022河南商城二模)如图,一次函数2y x =与反比例函数(0)ky k x=>的图象交于点A ,B ,点P 在以点(2,0)C -为圆心,1为半径的C 上,Q 是AP 的中点,OQ 长的最大值为32时.(1)试确定反比例函数ky x=的表达式.(2)C 与x 轴在点C 的左侧交于点M ,请直接写出劣弧MP 的长是___________.(sin 310.52︒≈,sin 400.64︒≈,sin530.8︒≈.)15.(2022新乡二模)如图,在平面直角坐标系中,正比例函数为11y k x =和反比例函数22k y x=图像交于A ,B 两点,矩形OAEC 的边EC 交x 轴于点D ,AD ⊥x 轴,点D 的坐标为(2,0),且AE=ED .(1)求这两个函数的解析式;(2)点P 为y 轴上的一个动点,当PE-PA 的值最大时,求点P 的坐标.16.(2022河南西平一模)如图,一次函数11y k x b =+经过点()4,0A ,()0,4B ,与反比例函数()220k y x x=>的图象交于点()1,C n ,D 两点.(1)求反比例函数和一次函数的解析式;(2)结合函数图象,直接写出当210k k x b x<+≤时x 的取值范围;(3)点P 在x 轴上,是否存在PCD 是以CD 为腰的等腰三角形,若存在,请直接写出点P 的坐标;若不存在,说明理由.17.(2022河南天一大联考)如图,一次函数y =k 1x+b 的图象与反比例函数y 2k x=的图象交于点A (m ,2),B (﹣1,4),与y 轴交于点C ,连接OA ,OB .(1)求反比例函数和一次函数的解析式;(2)求△OAB 的面积;(3)若点P 在y 轴上,且BP 12=OA ,请直接写出点P 的坐标.18.(2022河南实验中学一模)如图,在矩形OABC中,AB=2,BC=4,D是AB边的中点,反比例函数yk x(x>0)的图象经过点D,与BC边交于点E.(1)求反比例函数的表达式及点E的坐标;(2)若点P在y轴上,当△PDE的周长最小时,求出此时点P的坐标.19.(2022河南虞城二模)如图,一次函数142y x=-+交反比例函数(0)ky xx=>于A,B两点,过点A作AC x⊥轴于点C,AOC△的面积为3.(1)求反比例函数的解析式;(2)D为y轴上一个动点,当DA DB+有最小值时,求点D的坐标.20.(2022河南夏邑一模)在平面直角坐标系xOy 中,函数(0)k y x x=>的图象经过点(2,3),(6,)A B a ,直线:l y mx n =+经过A ,B 两点.(1)求反比例函数与一次函数的解析式,并在下面的平面直角坐标系中描绘出一次函数的大致图象.(2)当直线l 向下平移b 个单位时,与(0)k y x x=>的图象有唯一交点,求b 的值.(3)若直线AB 分别交x 轴,y 轴于D ,C 两点,在y 轴上是否存在一点Q ,使得ACQ 与CDO 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.21.(2022南阳方城二模)如图,在矩形OABC 中,2,4AB BC ==,点D 是边AB 的中点,反比例函数1(0)k y x x=>的图象经过点D ,交BC 边于点E ,直线DE 的解析式为2(0)y mx n m =+≠.(1)求反比例函数1(0)k y x x=>的解析式和直线DE 的解析式;(2)在y 轴上找一点P ,使PDE △的周长最小,求出此时点P 的坐标;(3)在(2)的条件下,PDE △的周长最小值是______.22.(2022洛阳一模)如图,反比例函数()0k y k x =≠的图象与正比例函数32y x =-的图象相交于(),3A a ,B 两点.(1)求k 的值及点B 的坐标;(2)请直接写出不等式32k x x >-的解集;(3)已知AD x ∥轴,以AB 、AD 为边作菱形ABCD ,求菱形ABCD 的面积.23.(2022开封二模)如图,平面直角坐标系中,反比例函数()0n y n x=≠与一次函数()0y kx b k =+≠的图像相交于点()1,A m ,()3,1B --两点.(1)求反比例函数与一次函数的解析式;(2)直接写出n kx b x+>的解集.(3)已知直线AB 与y 轴交于点C ,点(),0P t 是x 轴上一动点,作PQ ⊥x 轴交反比例函数图像于点Q ,当以C ,P ,Q ,O 为顶点的四边形的面积等于2时,求t 的值.24.(2022鹤壁一模)如图,在矩形ABCO 中,84AB BC ==,,点D 是边AB 的中点,反比例函数11(0)k y x x=<的图象经过点D ,交BC 边于点E ,直线DE 的解析式为()2220y k x b k =+≠.(1)求反比例函数和直线DE 的解析式.(2)在x 轴上找一点P ,使PDE △的周长最小,求出此时点P 的坐标.(3)在(2)的条件下,PDE △的周长最小值是_________.25.(2022周口扶沟一模)如图,正比例函数y x =的图象与反比例函数k y x=(0x >)的图象交于点()1,A a ,在ABC 中,90ACB ∠=︒,CA CB =,点C 坐标为()2,0-.(1)求k 的值;(2)求AB 所在直线的解析式.26.(2022信阳一模)如图,直线y=-2x+b与x轴、y轴分别相交于点A,B,以线段AB为边在第一象限作正方形ABCD,已知(1)求直线AB的解析式;(2)求点D的坐标,并判断点D是否在双曲线y=12x,说明理由.27.(2022雅安中考)如图,在平面直角坐标系中,等腰直角三角形ABO的直角顶点A的坐标为(m,2),点B在x轴上,将△ABO向右平移得到△DEF,使点D恰好在反比例函数y=8x(x>0)的图象上.(1)求m的值和点D的坐标;(2)求DF所在直线的表达式;(3)若该反比例函数图象与直线DF的另一交点为点G,求S△EFG.28.(2022盘锦中考)如图,平面直角坐标系xOy 中,四边形OABC 是菱形,点A 在y 轴正半轴上,点B 的坐标是(4,8)-,反比例函数(0)k y x x=<的图象经过点C .(1)求反比例函数的解析式;(2)点D 在边CO 上,且34CD DO =,过点D 作DE x 轴,交反比例函数的图象于点E ,求点E 的坐标.29.(2022天门中考)(7分)如图,OA=OB,∠AOB=90°,点A,B分别在函数y=(x>0)和y=(x >0)的图象上,且点A的坐标为(1,4).(1)求k1,k2的值;(2)若点C,D分别在函数y=(x>0)和y=(x>0)的图象上,且不与点A,B重合,是否存在点C,D,使得△COD≌△AOB.若存在,请直接写出点C,D的坐标;若不存在,请说明理由.30.(2022恩施中考)如图,在平面直角坐标系中,O 为坐标原点,已知∠ACB=90°,A(0,2),C(6,2).D 为等腰直角三角形ABC 的边BC 上一点,且S △ABC =3S △ADC .反比例函数y 1=kx(k≠0)的图象经过点D .(1)求反比例函数的解析式;(2)若AB 所在直线解析式为()20y ax b a =+≠,当12y y >时,求x 的取值范围.31.(2022河南中考)如图,反比例函数()0ky x x=>的图像经过点()2,4A 和点B ,点B 在点A 的下方,AC 平分OAB ∠,交x 轴于点C .(1)求反比例函数的表达式.(2)请用无刻度的直尺和圆规作出线段AC 的垂直平分线.(要求:不写作法,保留作图痕迹,使用2B 铅笔作图)(3)线段OA 与(2)中所作的垂直平分线相交于点D ,连接CD .求证:CD AB ∥.32.(2022荆州中考)小华同学学习函数知识后,对函数()()2410410x x y x x x⎧-<≤⎪=⎨-≤->⎪⎩或通过列表、描点、连线,画出了如图1所示的图象.x…-4-3-2-134-12-14-01234…y (1)4324941140-4-243--1…请根据图象解答:(1)【观察发现】①写出函数的两条性质:______;______;②若函数图象上的两点()11,x y ,()22,x y 满足120x x +=,则120y y +=一定成立吗?______.(填“一定”或“不一定”)(2)【延伸探究】如图2,将过()1,4A -,()4,1B -两点的直线向下平移n 个单位长度后,得到直线l 与函数()41y x x=-≤-的图象交于点P ,连接PA ,PB .①求当n =3时,直线l 的解析式和△PAB 的面积;②直接用含....n .的代数式表示......△PAB 的面积.33.(2022牡丹江中考)如图,在平面直角坐标系中,四边形ABCD ,A 在y 轴的正半轴上,B ,C 在x 轴上,AD//BC ,BD 平分ABC ∠,交AO 于点E ,交AC 于点F ,CAO DBC ∠=∠.若OB ,OC 的长分别是一元二次方程2560x x -+=的两个根,且OB OC >.请解答下列问题:(1)求点B ,C 的坐标;(2)若反比例函数()0ky k x=≠图象的一支经过点D ,求这个反比例函数的解析式;(3)平面内是否存在点M ,N (M 在N 的上方),使以B ,D ,M ,N 为顶点的四边形是边长比为2:3的矩形?若存在,请直接写出在第四象限内点N 的坐标;若不存在,请说明理由.34.(2022驻马店六校联考三模)如图,在平面直角坐标系中,反比例函数kyx(x>0)的图象和矩形ABCD在第一象限,AD平行于x轴,且AB=2,AD=4,点A的坐标为(2,6).(1)直接写出B、C、D三点的坐标;(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.35.(2022周口川汇区一模)如图,正方形ABCD的边AB在x轴上,点D的坐标为(2,2),点M是AD的中点,反比例函数ykx的图象经过点M,交BC于点N.(1)求反比例函数的表达式;(2)若点P是x轴上的一个动点,求PM+PN的最小值.36.(2022郑州外国语一模)如图,点()4,B a 是反比例函数()120y x x=>图象上一点,过点B 分别向坐标轴作垂线,垂足为A ,C .反比例函数()0ky x x=>的图象经过OB 的中点M ,与AB ,BC 分别相交于点D ,E .连接DE 并延长交x 轴于点F ,连接BF .(1)求k 的值;(2)求BDF 的面积;(3)设直线DE 的解析式为1y k x b =+,请结合图像直接写出不等式1kk x b x+<的解集______.37.(2022郑州二模)如图1,点A、B是双曲线y=kx(k>0)上的点,分别经过A、B两点向x轴、y轴作垂线段AC、AD、BE、BF,AC和BF交于点G,得到正方形OCGF(阴影部分),且S阴影=1,△AGB的面积为2.(1)求双曲线的解析式;(2)在双曲线上移动点A和点B,上述作图不变,得到矩形OCGF(阴影部分),点A、B在运动过程中始终保持S阴影=1不变(如图2),则△AGB的面积是否会改变?说明理由.38.(2022信阳三模)如图,在矩形OABC中,BC=4,OC,OA分别在x轴、y轴上,对角线OB,AC交于点E;过点E作EF⊥OB,交x轴于点F.反比例函数kyx=(x>0)的图像经过点E,且交BC于点D,已知S△OEF=5,CD=1.(1)求OF的长;(2)求反比例函数的解析式;(3)将△OEF沿射线EB个单位长度,得到△O'E'F',则EF的对应线段E'F'的中点(填“能”或“不能”)落在反比例函数kyx=(x>0)的图上.39.(2022河南新野一模)如图,()()4,30P m m m ->是双曲线12y x =-上一点,过点P 作x 轴、y 轴的垂线,分别交x 轴、y 轴于A 、B 两点,交双曲线k y x=于E 、F 两点.(1)求直线AB 的解析式;(2)若12BFBP =,求k 的值和EF 的长.40.(2022平顶山二模)如图,四边形ABCD,EFGH均为菱形,其中点E,A,B,F四点均在x轴上,点D,H在y轴上,EH∥AD.双曲线y=kx(x>0)的图象过点C(5,4),交边GH于点P(103,a).(1)填空:k=______,a=______;(2)求菱形EFGH的面积.41.(2022南阳卧龙一模)如图,已知在平面直角坐标系中,点(3,4)B 在反比例函数(0,0)k y k x x=>>的图象上,过点B 作BA x ⊥轴于点A ,连接OB ,将OAB 向右平移,得到,'''''O A B O B 交双曲线于点(3,)C a a .(1)求k ,a 的值;(2)求OAB 向右平移的距离;(3)连接,BC OC ,则OBC 的面积为____________.42.(2022洛阳伊川一模)如图,已知点()0,1A 在y 轴上,点()10B ,在x 轴上,以AB 为边在第一象限内作正方形ABCD ,此时反比例函数(0)k y k x=≠在第一象限内的图象恰好经过点C ,D .(1)直接写出点D 的坐标和反比例函数的表达式;(2)将正方形ABCD 绕点B 按顺时针方向旋转,当点C 的对应点C '落在x 轴上时,判断点D 的对应点D ′是否落在反比例函数k y x =的图象上,并说明理由.43.(2022洛阳二模)如图,在平面直角坐标系中,ABCD 的顶点分别为()1,2A ,()4,2B ,()7,5C ,曲线():0k G y x x=>.(1)求点D 的坐标;(2)当曲线G 经过ABCD 的对角线的交点时,求k 的值;(3)若曲线G 刚好将ABCD 边上及其内部的“整点”(横、纵坐标都为整数的点)分成数量相等的两部分,则直接写出k 的取值范围是______.44.(2022河南林州一模)如图,在平面直角坐标系中,正方形ABCD 的边BC 在x 轴上,点A 坐标为()2,4,点M 是AB 的中点,反比例函数k y x=的图象经过点M ,交CD 于点N .(1)求反比例函数的表达式;(2)若反比例函数图象上的一个动点(),P m n 在正方形ABCD 的内部(含边界),求POC △面积的最小值.45.(2022河南兰考一模)如图,在平面直角坐标系中,ABCD 的顶点分别为(1,2),(4,2),(7,5)A B C ,曲线(0)k y k x=>.(1)当曲线经过ABCD 的对角线的交点时,求k 的值.(2)若曲线刚好将ABCD 边上及其内部的“整点”(横、纵坐标都为整数的点)分成数量相等的两部分,求k 的取值范围.46.(2022河南兰考二模)如图,在矩形OABC 中,2AB =,4BC =,D 是AB 边的中点,反比例函数()0k y x x=>的图象经过点D ,与BC 边交于点E .(1)求反比例函数的表达式及点E 的坐标;(2)若点P 在y 轴上,当△PDE 的周长最小时,直接写出△PDE 的面积.47.(2022河南滑县一模)如图,平行四边形OABC 的顶点A ,C 都在反比例函数y k x=(k >0)的图象上,已知点B 的坐标为(8,4),点C 的横坐标为2.(1)求反比例函数y k x=(k >0)的解析式;(2)求平行四边形OABC 的面积S .48.(2022河南邓州一模)如图,在平面直角坐标系中,矩形ABCD 的顶点A (1,0),D (0,2),反比例函数k y x =的图象经过了矩形的顶点B ,且1tan 2ABD ∠=.(1)求反比例函数表达式;(2)动手画直线OB ,记为y mx =,结合图象直接写出关于x 的不等式0k mx x ->的解集.。
2.反比例函数与几何图形结合(6道)

反比例函数与几何图形结合1.如图,已知点A(5,0),B(0,5),把一个直角三角尺DEF 放在△OAB内,使其斜边FD在线段AB上,三角尺可沿着线段AB上下滑动,其中∠EFD=45°,ED=2,点G为边FD 的中点.(1)求直线AB的解析式;(2)如图,当点D与点A重合时,求经过点G的反比例函数y=kx(k≠0)的解析式;(3)在三角尺滑动的过程中,经过点G的反比例函数的图象能否同时经过点F?如果能,求出此时反比例函数的解析式;如果不能,请说明理由.解:(1)设直线AB的解析式为y=ax+b,把A 、B 的坐标分别代入可得⎩⎪⎨⎪⎧5a +b =0b =5,解得⎩⎪⎨⎪⎧a =-1b =5,∴直线AB 的解析式为y =-x +5; (2)∵A (5,0), ∴OA =5,当D 与A 重合时,则OE =OD -DE =5-2=3, ∵∠EFD =45°, ∴EF =DE =2, ∴F (3,2),D (5,0), ∵G 为DF 的中点, ∴G (4,1),∵点G 在y =kx 图象上, ∴k =4×1=4,∴经过点G 的反比例函数的解析式为y =4x ;(3)设F (t ,-t +5),则D 点横坐标为t +2,代入直线AB 的解析式可得y =-(t +2)+5=-t +3, ∴D (t +2,-t +3), ∵G 为DF 的中点, ∴G (t +1,-t +4),若反比例函数图象同时过G 、F 点,则可得t (-t +5)=(t +1)(-t +4),解得t =2,此时F 点坐标为(2,3),设经过F 、G 的反比例函数解析式为y =sx ,则s =2×3=6, ∴经过点G 的反比例函数的图象能同时经过点F ,其函数解析式为y =6x .2. 如图,一次函数y =kx +b 的图象与反比例函数y =mx 的图象相交于点A (-2,1),点B (1,n ). (1)求此一次函数和反比例函数的解析式;(2)请直接写出满足不等式kx +b -mx <0的解集;第2题图(3)如图,在平面直角坐标系的第二象限内边长为1的正方形EFDG 的边均平行于坐标轴,若点E (-a ,a ),当曲线y =mx (x <0)与正方形EFDG 的边有交点时,求a 的取值范围. 解:(1)∵点A (-2,1)在反比例函数y =mx 的图象上, ∴m =-2×1=-2,∴反比例函数的解析式为y =-2x ;∵点B (1,n )在反比例函数y =-2x 的图象上, ∴-2=n ,即点B 的坐标为(1,-2).将点A (-2,1)、B (1,-2)分别代入y =kx +b 中得:212k b k b -=+⎧⎨=-+⎩,解得⎩⎪⎨⎪⎧k =-1b =-1, ∴一次函数的解析式为y =-x -1; (2)∵-x -1-(-2x )<0,∴-x -1<-2x ,观察两函数图象,发现:当-2<x <0或x >1时,一次函数图象在反比例函数图象的下方,∴满足不等式kx +b -mx <0的解集为-2<x <0或x >1; (3)过点O 、E 作直线OE ,如解图所示.第2题解图∵点E 的坐标为(-a ,a ), ∴直线OE 的解析式为y =-x .∵四边形EFDG 是边长为1的正方形,且各边均平行于坐标轴,∴点D 的坐标为(-a +1,a -1), 代入直线y =-x ,得: a -1=-(-a +1), ∴点D 在直线OE 上.将y =-x 代入y =-2x (x <0)得: -x =-2x ,即x 2=2, 解得x =-2或x =2(舍去).∵曲线y =-2x (x <0)与正方形EFDG 的边有交点, ∴-a ≤-2≤-a +1,解得2≤a ≤2+1.故当曲线y =mx (x <0)与正方形EFDG 的边有交点时,a 的取值范围为2≤a ≤2+1.3. 如图,一次函数y =-x +b 与反比例函数y =kx (x >0)的图象交于点A (m ,3)和B (3,1).第3题图(1)填空:一次函数的解析式为________,反比例函数的解析式为________;(2)点P 是线段AB 上一点,过点P 作PD ⊥x 轴于点D ,连接OP ,若△POD 的面积为S ,求S 的取值范围. 解:(1)y =-x +4,y =3x ;【解法提示】将B (3,1)分别代入y =-x +b 与y =kx 中,解得b =4,k =3,则一次函数的解析式为y =-x +4,反比例函数的解析式为y =3x .(2) 由(1)得3=3m ,∴m =1,则A 点坐标为(1,3).设P 点坐标为(a ,-a +4)(1≤a ≤3),则S =12OD ·PD =12a (-a +4)=-12(a -2)2+2, ∵-12<0,∴当a =2时,S 有最大值,此时S =-12×(2-2)2+2=2; 由二次函数的性质得,当a =1或3时,S 有最小值,此时 S =-12×(1-2)2+2=32, ∴S 的取值范围是32 ≤ S ≤2.4. 如图,矩形AOCB 的顶点B 在反比例函数y =kx (k >0,x >0)的图象上,且AB =3,BC =8.若动点E 从A 开始沿AB 向B 以每秒1个单位长度的速度运动,同时动点F 从B 开始沿BC 向C 以每秒2个单位长度的速度运动,当其中一个动点到达终点时,另一个动点随之停止运动,设运动时间为t 秒. (1)求反比例函数的解析式;第4题图(2)当t =1时,在y 轴上是否存在点D ,使△DEF 的周长最小?若存在,请求出△DEF 的周长最小值;若不存在,请说明理由;(3)在双曲线上是否存在一点M ,使以点B 、E 、F 、M 为顶点的四边形是平行四边形?若存在,请直接写出满足条件的t 的值;若不存在,请说明理由.解:(1)由题可知点B 的坐标为(3,8),且点B 在y =kx 上, ∴k =3×8=24,∴反比例函数的解析式为y =24x ;(2)存在.t =1时,E (1,8),F (3,6),则EF =22, 如解图,延长EA 使A ′E =EA ,连接DE ′,E ′F ,则E ′F =25,C △DEF =DE +DF +EF =22+DE ′+DF ≥22+E ′F =22+25,∴C △DEF min =22+25, 此时点D 为E ′F 与y 轴的交点,第4题解图∵E ′(-1,8),F (3,6),设直线E ′F 的解析式为:y =kx +b ,则⎩⎪⎨⎪⎧-k +b =83k +b =6, 解得⎩⎪⎨⎪⎧k =-12b =152,∴直线E ′F 的解析式为:y =-12x +152,∴此时D (0,152),即:y 轴上存在点D (0,152),使△DEF 的周长最小,且最小值为22+2 5.(3)存在,若四边形BEMF 为平行四边形,则有三种可能,已知E (t ,8),F (3,8-2t ),0<t ≤3. ①BE ∥FM ,此时M 在F 右侧,M (248-2t,8-2t ), 又∵BE =FM ,∴3-t =248-2t -3,即t 2-10t +12=0,解得t 1=5-13,t 2=5+13(舍去). ②BF ∥EM ,此时M 在E 正上方,M (t ,24t ), ∵ME =BF ,∴24t -8=2t ,t 2+4t -12=0, 解得t 1=2,t 2=-6(舍去).③EF ∥BM ,易知点M 一定不在反比例函数上, 故综上,t =2或5-13.5.在平面直角坐标系xOy 中,点B 在x 轴上,四边形OACB 为平行四边形,且∠AOB =60°,反比例函数y =kx (k >0)在第一象限内过点A ,且与BC 交于点F . (1)若OA =10,求反比例函数的解析式; (2)若F 为BC 的中点,且S △AOF =243,求OA 的第5题图长及点C 的坐标;(3)在(2)的条件下,在x 轴上是否存在一点P ,使得PF +P A 最小?若存在,求出点P 的坐标;若不存在,请说明理由. 解:(1)如解图①,过点A 作AH ⊥OB 于H ,第5题解图①∵∠AOB =60°,OA =10,∴AH =OA ·sin ∠AOB =53,OH =OA ·cos ∠AOB =5, ∴点A 的坐标为(5,53), 将点A (5,53)代入y =kx ,得 53=k5,解得k =253,∴反比例函数的解析式为y =253x ;(2)如解图①,过点F 作FM ⊥x 轴于点M ,设OA =a (a >0), ∵∠AOB =60°,∴AH =OA ·sin ∠AOB =32a ,OH =OA ·cos ∠AOB =12a , ∴S △AOH =12AH ·OH =12×32a ·12a =38a 2,∵S △AOF =243,∴S ▱AOBC =2S △AOF =483, ∵F 为BC 的中点, ∴S △OBF =14S ▱AOBC =123,∵BF =12BC =12OA =12a ,∠FBM =∠AOB =60°, ∴FM =BF ·sin ∠FBM =34a ,BM =BF ·cos ∠FBM =14a , ∴S △BMF =12FM ·BM =12×34a ·14a =332a 2, ∴S △FOM =S △OBF +S △BMF =123+332a 2, ∵点A ,F 都在y =kx 的图象上, ∴S △AOH =S △FOM , 即38a 2=123+332a 2, 解得a =82,∴OA =82,∴OH =42,AH =3OH =3×42=46,∵S▱AOBC=OB·AH=483,即OB·46=483,解得OB=62,∴AC=OB=62,∴C(102,46);(3)存在.如解图②,作点F关于x轴的对称点F′,连接AF′交x轴于点P,此时PF+P A最小,第5题解图②由(2)可知,A(42,46),FM=34a=26,BM=14a=22,∴OM=62+22=82,∴点F的坐标为(82,26),∴点F′的坐标为(82,-26),设直线AF′的解析式为y=mx+n,将点A(42,46),F′(82,-26)代入,得⎩⎪⎨⎪⎧42m +n =4682m +n =-26, 解得⎩⎨⎧m =-332n =106, ∴y =-332x +106,令y =0,即-332x +106=0, 解得x =2023,∴在x 轴上存在点P ,使得PF +P A 最小,点P 的坐标为(2023,0).6.如图,反比例函数y =m x (x >0)与一次函数y =kx +63交于点C (2,43),一次函数图象与两坐标轴分别交于点A 和点B ,动点P 从点A 出发,沿AB 以每秒1个单位长度的速度向点B 运动;同时,动点Q 从点O 出发,沿OA 以相同的速度向点A 运动,运动时间为t 秒(0<t ≤6),以点P 为圆心,P A 为半径的⊙P与AB交于点M,与OA交于点N,连接MN、MQ.第6题图(1)求m与k的值;(2)当t为何值时,点Q与点N重合;(3)若△MNQ的面积为S,试求S与t的函数关系式.解:(1)将C(2,43)代入y=mx中得,m=83,将(2,33)代入y=kx+63中得,2k+63=43,∴k=-3;(2)由(1)知,k=-3,∴直线AB的解析式为y=-3x+63,∴A(6,0),B(0,63),∴AB=12.∵AM是直径,∴∠ANM=90°,∴∠ANM=∠AOB.又∵∠MAN=∠BAO,∴△MAN∽△BAO,∴ANAO=MNBO=AMAB.∵OQ=AP=t,AM=2AP=2t,OA=6,OB=63,AB=12∴AN6=MN63=2t12,∴AN=t,MN=3t,∴ON=OA-AN=6-t.∵点Q与点N重合,∴ON=OQ.即6-t=t.∴t=3;(3)①当0<t ≤3时,QN =OA -OQ -AN =6-2t, ∴S =12QN ·MN =12(6-2t )·3t =-3t 2+33t ; ②当3<t ≤6时,QN =OQ +NA -OA =t +t -6=2t -6, ∴S =12QN ·MN =12(2t -6)·3t =3t 2-33t ,即:S =⎩⎪⎨⎪⎧-3t 2+33t (0<t ≤3)3t 2-33t (3<t ≤6).。
【常考压轴题】2023学年九年级数学下册压轴题攻略(人教版) 反比例函数与几何图形综合(解析版)

反比例函数几何图形综合例1.(等腰三角形)已知反比例函数1=myx-(m为常数)的图象在第一、三象限.(1)求m的取值范围;(2)如图若该反比例函数的图象经过▱ABOD的顶点D点A B的坐标分别为(0 4)(﹣3 0).①求出函数解析式;②【分类讨论思想】设点P是该反比例函数图象上的一点若以D O P为顶点的三角形是等腰三角形则满足条件的点P的个数为______个.AD OB例2.(直角三角形)如图 在平面直角坐标系中 直线32y kx k =++与坐标轴交于点B 与()0,1C 点A 是x 轴上一点 连接AC 且1AB = ()1,D m 是线段BC 上一点 反比例函数k y x'=的图象经过点D .(1)求k '的值.(2)求线段AC 所在直线的函数表达式.(3)延长DO 与反比例函数k y x'=的图象在第三象限交于点F Q 是x 轴上的一点 当以F 、Q 、D 三点构成的三角形为直角三角形时 直接写出Q 点的坐标.例3.(平行四边形)如图四边形OBAC是矩形OC=2 OB=6 反比例函数kyx=的图象过点A.(1)求k的值.(2)点P为反比例函数图象上的一点作PD▱直线AC PE▱x轴当四边形PDCE是正方形时求点P的坐标.(3)点G为坐标平面上的一点在反比例函数的图象上是否存在一点Q使得以A、B、Q、G为顶点组成的平行四边形面积为16?若存在请求出点G的坐标;若不存在请说明理由.例4.(菱形)如图 直线y =ax +b 与反比例函数y =k x(x <0)的图象相交于点A 、点B 与x 轴交于点C 其中点A 的坐标为(-2 6) 点B 的横坐标为-6(1)试确定反比例函数的关系式;(2)求点C 的坐标;(3)点M 是x 轴上的一个动点.①若点M 在线段OC 上 且△AMB 的面积为8 求点M 的坐标;②点N 是平面直角坐标系中的一点 当以A 、B 、M 、N 四点为顶点的四边形是菱形时 请直接写出点N 的坐标【变式训练1】.如图在平面直角坐标系中已知Rt▱AOB的两直角边OA、OB分别在x轴和y轴的正半轴上A(8 0) B(0 6) 点C从原点O出发沿边OA向点A运动速度为每秒1个单位长度点D从点A出发沿边AB向点B运动速度为每秒2个单位长度.设两点同时出发运动时间为t秒(0 < t < 5)(1)当t = 时 DC ∥BO ;(2)当▱ADC 的面积为9时 求t 的值;(3)在(2)的条件下;①作射线BC 若M 是射线BC 上的一个动点 在坐标平面内是否存在点P 使以A 、B 、M 、P 为顶点的四边形是矩形?若存在 请直接写出点P 的坐标;若不存在 请说明理由.② 过点C 作直线1l ▱x 轴 过点B 作直线2l ▱y 轴 直线1l 与直线2l 交于点P 反比例函数k y x=(k >0 x >0)的图像与直线1l 、2l 分别交于点E 、F 连接EF 在y 轴上是否存在点Q 使得▱PEF 和▱QEF 全等 若存在 请直接写出相应的k 的值;若不存在 请说明理由. ▱ADC ABO ∽AD AC AB AO = AD AB AC OA = 21088t t =- 40AD DE 2t DE ADC S =的面积为9 9=2BCO ACM ∴∽▱22P Q B BOC ∽2222Q P P B Q B OB BC OC== 即222256335P Q Q B == 224P Q ∴=,22Q B =2Rt ABM 中,22BM AB =21,AM BM ⊥▱1BAM BM ∠=∠又2ABM ∠=∠12BAM BM A ∴∽▱122AM AB AM BM = 1102545AM =▱11PBQ BAO ∽11BQ BP OA AB ∴= 15810BQ = 解得14BQ =,则6OQ OB BQ =-=11Rt PQ B 中 )3,2-如图 ▱QE PE =EF EF =只能是PFQ QFE ≌B 12l l ⊥ ▱PFQ QFE ≌36k PF QF ==-,FQE ∠如图 过点E 作EG ⊥又FBQ QGE ∠=∠▱FBQ QGE ∽4【变式训练2】如图已知矩形OABC中OA=6 AB=8 双曲线kyx=(k>0)与矩形两边AB BC分别交于点D E且BD=2AD.(1)求k的值和点E的坐标;(2)点P是线段OC上的一个动点是否存在点P使▱APE=90°?若存在求出此时点P的坐标若不存在请说明理由.经检验 m =2或m =6都是原方程的解 且符合题意▱存在要求的点P 点P 的坐标为(2 0)或(6 0).【变式训练3】如图 抛物线L :()()142y x t x t =---+(常数0t >)与x 轴从左到右的交点为B A 过线段OA 的中点M 作MP x ⊥轴 交双曲线k y x =(0k > 0x >)于点P 且12OA MP ⨯=.(1)求k 的值.(2)当t=1时 求AB 的长 并求直线MP 与L 的对称轴之间的距离.(3)把L 在直线MP 左侧部分的图像(含与直线MP 的交点)记为G 用t 表示图像G 最高点的坐标.(4)设L 与y 轴的交点为N 当2t =时 在x 轴上是否存在一点Q 使ONQ △与PMQ 相似 若存在 求出Q 的坐标 若不存在 请说明理由.1m 时:m 1m <<时:0<时:1m 时:m 1m <<时:0<时:-【变式训练4】如图 在平面直角坐标系中 点B D 分别在反比例函数()60y x x =-<和()0,0k y k x x =>>的图象上 AB x ⊥轴于点A DC x ⊥轴于点C O 是线段AC 的中点 3AB = 2DC =.(1)求反比例函数k y x=的表达式; (2)连接BD OB OD 求ODB △的面积;(3)P 是线段AB 上的一个动点 Q 是线段OB 上的一个动点 试探究是否存在点P 使得APQ 是等腰直角三角形?若存在 求所有符合条件点P 的坐标;若不存在 请说明理由.3⎛⎫2⎝⎭使得APQ是等腰直角三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
代几结合专题:反比例函数与几何图形的综合(选做)——代几结合,掌握中考风向标◆类型一 与三角形的综合1.(2016·云南中考)位于第一象限的点E 在反比例函数y =kx的图象上,点F 在x 轴的正半轴上,O 是坐标原点.若EO =EF ,△EOF 的面积等于2,则k 的值为( )A .4B .2C .1D .-22.(2016·菏泽中考)如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO =∠ADB=90°,反比例函数y =6x在第一象限的图象经过点B ,则△OAC 与△BAD 的面积之差S △OAC-S △BAD 为( )A .36B .12C .6D .33.如图,点A 在双曲线y =5x 上,点B 在双曲线y =8x上,且AB ∥x 轴,则△OAB 的面积等于________.第3题图第4题图4.(2016·包头中考)如图,在平面直角坐标系中,点A 在第二象限内,点B 在x 轴上,∠AOB =30°,AB =BO ,反比例函数y =k x(x <0)的图象经过点A ,若S △AOB =3,则k 的值为________.5.(2016·宁波中考)如图,点A 为函数y =9x(x >0)图象上一点,连接OA ,交函数y=1x(x >0)的图象于点B ,点C 是x 轴上一点,且AO =AC ,则△ABC 的面积为________.第5题图第6题图6.★如图,若双曲线y =kx(k >0)与边长为3的等边△AOB (O 为坐标原点)的边OA 、AB 分别交于C 、D 两点,且OC =2BD ,则k 的值为________.7.(2016·宁夏中考)如图,Rt △ABO 的顶点O 在坐标原点,点B 在x 轴上,∠ABO=90°,∠AOB =30°,OB =23,反比例函数y =kx(x >0)的图象经过OA 的中点C ,交AB 于点D .(1)求反比例函数的关系式;(2)连接CD ,求四边形CDBO 的面积.8.(2016·大庆中考)如图,P 1、P 2是反比例函数y =kx(k >0)在第一象限图象上的两点,点A 1的坐标为(4,0).若△P 1OA 1与△P 2A 1A 2均为等腰直角三角形,其中点P 1、P 2为直角顶点.(1)求反比例函数的解析式; (2)①求P 2的坐标;②根据图象直接写出在第一象限内当x 满足什么条件时,经过点P 1、P 2的一次函数的函数值大于反比例函数y =kx的函数值.◆类型二 与特殊四边形的综合9.如图,点A 是反比例函数y =-6x(x <0)的图象上的一点,过点A 作平行四边形ABCD ,使B 、C 在x 轴上,点D 在y 轴上,则平行四边形ABCD 的面积为( ) A .1 B .3 C .6 D .12第9题图第10题图10.(2016·烟台中考)如图,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C 在反比例函数y =kx的图象上,则k 的值为________.11.(2016·齐齐哈尔中考)如图,已知点P (6,3),过点P 作PM ⊥x 轴于点M ,PN ⊥y轴于点N ,反比例函数y =kx的图象交PM 于点A ,交PN 于点B ,若四边形OAPB 的面积为12,则k =________.第11题图第12题图12.如图,矩形OABC 的顶点A 、C 的坐标分别是(4,0)和(0,2),反比例函数y =k x(x >0)的图象过对角线的交点P 并且与AB ,BC 分别交于D ,E 两点,连接OD ,OE ,DE ,则△ODE 的面积为________.13.(2016·资阳中考)如图,在平行四边形ABCD 中,点A 、B 、C 的坐标分别是(1,0)、(3,1)、(3,3),双曲线y =kx(k ≠0,x >0)过点D .(1)求双曲线的解析式;(2)作直线AC 交y 轴于点E ,连接DE ,求△CDE 的面积.14.(2016·泰安中考)如图,在平面直角坐标系中,正方形OABC 的顶点O 与坐标原点重合,点C 的坐标为(0,3),点A 在x 轴的负半轴上,点D 、M 分别在边AB 、OA 上,且AD =2DB ,AM =2MO ,一次函数y =kx +b 的图象过点D 和M ,反比例函数y =m x的图象经过点D ,与BC 的交点为N .(1)求反比例函数和一次函数的解析式;(2)若点P 在直线DM 上,且使△OPM 的面积与四边形OMNC 的面积相等,求点P 的坐标.◆类型三 动点、规律性问题15.(2016·长春中考)如图,在平面直角坐标系中,点P (1,4),Q (m ,n )在函数y =kx(x >0)的图象上,当m >1时,过点P 分别作x 轴、y 轴的垂线,垂足为点A ,B ,过点Q 分别作x 轴、y 轴的垂线,垂足为点C ,D .QD 交AP 于点E ,随着x 的增大,四边形ACQE的面积( )A .减小B .增大C .先减小后增大D .先增大后减小第15题图第16题图16.★在反比例函数y =10x(x >0)的图象上,有一系列点A 1,A 2,A 3,…,A n ,A n +1,若A 1的横坐标为2,且以后每点的横坐标与它前一个点的横坐标的差都为2.现分别过点A 1,A 2,A 3,…,A n ,A n +1作x 轴与y 轴的垂线段,构成若干个矩形如图所示,将图中阴影部分的面积从左到右依次记为S 1,S 2,S 3,…,S n ,则S 1=________,S 1+S 2+S 3+…+S n =________(用含n 的代数式表示).代几结合专题:反比例函数与几何图形的综合(选做)1.B2.D 解析:设△OAC 和△BAD 的直角边长分别为a 、b ,则点B 的坐标为(a +b ,a -b ).∵点B 在反比例函数y =6x的第一象限图象上,∴(a +b )×(a -b )=a 2-b 2=6.∴S △OAC -S △BAD =12a 2-12b 2=12(a 2-b 2)=12×6=3.3.32 解析:延长BA 交y 轴于点C .S △OAC =12×5=52,S △OCB =12×8=4,则S △OAB =S △OCB -S △OAC =4-52=32.4.-3 35.6 解析:设点A 的坐标为⎝⎛⎭⎪⎫a ,9a ,点B 的坐标为⎝⎛⎭⎪⎫b ,1b .∵点C 是x 轴上一点,且AO =AC ,∴点C 的坐标是(2a ,0).设过点O (0,0),A ⎝ ⎛⎭⎪⎫a ,9a 的直线的解析式为y =kx ,∴9a =k ·a ,解得k =9a 2.又∵点B ⎝ ⎛⎭⎪⎫b ,1b 在y =9a 2x 上,∴1b =9a 2·b ,解得a b =3或a b =-3(舍去),∴S △ABC =S △AOC -S △OBC =2a ·9a 2-2a ·1b 2=182-62=9-3=6.6.36325 解析:过点C 作CE ⊥x 轴于点E ,过点D 作DF ⊥x 轴于点F .设OC =2x ,则BD =x .在Rt △OCE 中,OC =2x ,∠COE =60°,∴∠OCE =30°,则OE =x ,CE =3x ,则点C 的坐标为(x ,3x ).在Rt △BDF 中,BD =x ,∠DBF =60°,∴∠BDF =30°,则BF =12x ,DF =32x ,则点D 的坐标为⎝ ⎛⎭⎪⎫3-12x ,32x .将点C 的坐标代入反比例函数解析式可得k =3x 2,将点D 的坐标代入反比例函数解析式可得k =332x -34x 2,则3x 2=332x -34x 2,解得x 1=65,x 2=0(舍去),故k =3x 2=36325. 7.解:(1)∵∠ABO =90°,∠AOB =30°,OB =23,∴OA =2AB ,∴(2AB )2=AB 2+(23)2,∴AB =2.作CE ⊥OB 于E .∵∠ABO =90°,∴CE ∥AB .∵OC =AC ,∴OE=BE =12OB =3,CE =12AB =1,∴C 点坐标为(3,1).∵反比例函数y =kx (x >0)的图象经过OA 的中点C ,∴1=k3,∴k =3,∴反比例函数的关系式为y =3x ;(2)∵OB =23,∴D 的横坐标为23,代入y =3x 得y =12,∴D 点坐标为⎝⎛⎭⎪⎫23,12,∴BD =12.∵AB =2,∴AD =AB -BD =32,∴S △ACD =12AD ·BE =12×32×3=334.∴S 四边形CDBO =S △AOB -S△ACD =12OB ·AB -334=12×23×2-334=534.8.解:(1)过点P 1作P 1B ⊥x 轴,垂足为B .∵点A 1的坐标为(4,0),△P 1OA 1为等腰直角三角形,∴OB =2,P 1B =12OA 1=2,∴P 1的坐标为(2,2).将P 1的坐标代入反比例函数y =k x(k >0),得k =2×2=4,∴反比例函数的解析式为y =4x;(2)①过点P 2作P 2C ⊥x 轴,垂足为C ,∵△P 2A 1A 2为等腰直角三角形,∴P 2C =A 1C .设P 2C =A 1C =a ,则P 2的坐标为(4+a ,a ).将P 2的坐标代入反比例函数的解析式y =4x中,得a =44+a ,解得a 1=22-2,a 2=-22-2(舍去),∴P 2的坐标为(2+22,22-2);②在第一象限内,当2<x <2+22时,经过点P 1、P 2的一次函数的函数值大于反比例函数y =4x的函数值.9.C 10.-611.6 解析:∵点P 的坐标为(6,3),∴点A 的横坐标为6,点B 的纵坐标为3,代入反比例函数y =k x ,得点A 的纵坐标为k 6,点B 的横坐标为k 3,即AM =k 6,NB =k3.∵S 四边形OAPB =12,即S 矩形OMPN -S △OAM -S △NBO =12,∴6×3-12×6×k 6-12×3×k3=12,解得k =6.12.154 解析:∵四边形OABC 是矩形,∴AB =OC ,BC =OA .∵A 、C 的坐标分别是(4,0)和(0,2),∴OA =4,OC =2.∵P 是矩形对角线的交点,∴P 点的坐标是(2,1).∵反比例函数y =kx(x >0)的图象过对角线的交点P ,∴k =2,∴反比例函数的解析式为y =2x .∵D ,E 两点在反比例函数y =k x (x >0)的图象上,∴D 点的坐标是⎝ ⎛⎭⎪⎫4,12,E 点的坐标是(1,2),∴S △ODE =S 矩形OABC -S △AOD -S △COE -S △BDE =4×2-12×2-12×2-12×32×3=154.13.解:(1)∵在平行四边形ABCD 中,点A 、B 、C 的坐标分别是(1,0)、(3,1)、(3,3),∴点D 的坐标是(1,2).∵双曲线y =k x (k ≠0,x >0)过点D ,∴2=k1,得k =2,即双曲线的解析式是y =2x(x >0);(2)∵直线AC 交y 轴于点E ,∴S △CDE =S △EDA +S △ADC =(2-0)×12+(2-0)×(3-1)2=1+2=3,即△CDE 的面积是3.14.解:(1)∵正方形OABC 的顶点C 的坐标为(0,3),∴OA =AB =BC =OC =3,∠OAB =∠B =∠BCO =90°.∵AD =2DB ,∴AD =23AB =2,∴D 点的坐标为(-3,2).把D 点的坐标代入y =m x 得m =-6,∴反比例函数的解析式为y =-6x.∵AM =2MO ,∴MO=13OA =1,∴M 点的坐标为(-1,0).把M 点与D 点的坐标代入y =kx +b 中得⎩⎨⎧-k +b =0,-3k +b =2,解得⎩⎨⎧k =-1,b =-1,则一次函数的解析式为y =-x -1; (2)把y =3代入y =-6x得x =-2,∴N 点坐标为(-2,3),∴NC =2.设P 点坐标为(x ,y ).∵△OPM 的面积与四边形OMNC 的面积相等,∴12(OM +NC )·OC =12OM ·|y |,即|y |=9,解得y =±9.当y =9时,x =-10,当y =-9时,x =8,则点P 的坐标为(-10,9)或(8,-9).15.B 解析:由题意得AC =m -1,CQ =n ,则S 四边形ACQE =AC ·CQ =(m -1)n =mn -n .∵P (1,4),Q (m ,n )在函数y =k x(x >0)的图象上,∴mn =k =4(常数).∴S 四边形ACQE =4-n .∵当m >1时,n 随着m 的增大而减小,∴S 四边形ACQE =4-n 随着m 的增大而增大.故选B.16.5 10n n +1 解析:∵点A 1、A 2、A 3、…、A n 、A n +1在反比例函数y =10x (x >0)的图象上,且每点的横坐标与它前一个点的横坐标的差都为2,又点A 1的横坐标为2,∴点A 1的坐标为(2,5),点A 2的坐标为⎝ ⎛⎭⎪⎫4,52,∴S 1=2×⎝ ⎛⎭⎪⎫5-52=5.由题图象知,点A n 的坐标为⎝ ⎛⎭⎪⎫2n ,102n ,点A n +1的坐标为⎝ ⎛⎭⎪⎫2n +2,102n +2,∴S 2=2×⎝ ⎛⎭⎪⎫104-106=53,∴S n =2×⎝ ⎛⎭⎪⎫102n -102n +2=10⎝ ⎛⎭⎪⎫1n -1n +1(n =1,2,3,…).∴S 1+S 2+S 3+…+S n =10⎝ ⎛⎭⎪⎫1-12+10⎝ ⎛⎭⎪⎫12-13+…+10⎝ ⎛⎭⎪⎫1n -1n +1=10⎝ ⎛⎭⎪⎫1-12+12-13+…1n -1n +1=10n n +1.。