第二章 流体的性质

合集下载

工程流体力学第二章2020(版)

工程流体力学第二章2020(版)

解:假设两盘之间流体的速度为直线 分布,上盘半径r处的切向应力为:
r
所需力矩为: M
d
0
2 2rdr r
2 d 2 r 3dr
0
d 4 32
d
dr r
牛顿流体:切向应力和流体的速度梯度成正比的流体, 即满足牛顿粘性应力公式的流体。 非牛顿流体:不满足牛顿粘性应力公式的流体。
dvx dy
n
k
上式中, 为流体的表观粘度,k为常数,n为指数。
dx dy
A:牛顿流体,如水和空气
B:理想塑性体,存在屈服应力τ。如牙膏
C:拟塑性体,如粘土浆和纸浆
D:胀流型流体,如面糊
o
D A CB
0
τ
理想流体:假设没有粘性的流体,即 =0。
理想流体是假想的流体模型,客 观上并不存在。实际流体都是有 粘性的。
12
应用1:如下图所示,转轴直径d=0.36m,轴承长度l=1m,轴与轴承 之间的间隙=0.2mm,其中充满动力粘度=0.72Pa·s的油,如果轴 的转速n=200 r/min,求克服油的粘性阻力所消耗的功率。
分析:油层与轴承接触面上的速度为
d
零,与接触面上的速度等于轴面上的
线速度:
r r n 0.18 200 3.77 m/s
出现两种情形: ①润湿:内聚力>附着力, 液体依附于固体壁面。如:水在玻璃管内。
②不润湿:内聚力<附着力, 主讲人:宋永军
第二章 流体及其物理性质
2.1 流体的定义和特征
定义:能够流动的物质为流体; 定义(力学):在任何微小剪切力的作用下都能发生连续 变形的物质称为流体。 特征:流动性、压缩、膨胀性、粘性
物态
固体 液体 气体

工程流体力学第二章 流体及其物理性质

工程流体力学第二章 流体及其物理性质

第五节 流体的粘性
牛顿内摩擦定律:
牛顿在《自然哲学的数学原理》中假设:“流体两部分由于缺乏润滑而引起 的阻力与速度梯度成正比”。
F ' A
U H
dv x dy
xt / y d x d lim lim t t 0 0 dt t t dy
固体:既能承受压力,也能承受拉力与抵抗拉伸变形。 流体:只能承受压力,一般不能承受拉力与抵抗拉伸变形。
第一节
液体和气体的区别:
流体的定义和特征
气体易于压缩;而液体难于压缩; 液体有一定的体积,存在一个自由液面;气体能充满任意形 状的容器,无一定的体积,不存在自由液面。
液体和气体的共同点:
两者均具有易流动性,即在任何微小切应力作用下都会发生 变形或流动,故二者统称为流体。
第二节 流体的连续介质模型
连续介质(continuous medium) 质点连续地充满所占空间的流体或固体。 连续介质模型(continuous medium model) 把流体视为由流体质点没有间隙地充满它所占据的整 个空间的一种连续介质,表征流体状态的宏观物理量(速 度、温度、压强、密度等)都是空间坐标和时间的连续函 数的一种假设模型:
第三节 流体的密度 相对密度 比容
密度:单位体积内流体所具有的质量。
密度表征流体在空间的密集程度。
密度:
m lim V 0 V
kg m 3
对于均质流体:
m = V
1
比体积(比容):密度的倒数。 v 相对密度:

d= f w
式中, f -流体的密度(kg/m3)
第四节 流体的压缩性和膨胀性
流体的膨胀性 当压强一定时,流体温度变化体积改变的性质称为流 体的膨胀性,膨胀性的大小用温度体胀系数来表示。 体胀系数:

流体力学公式总结

流体力学公式总结

工程流体力学公式总结第二章流体得主要物理性质❖流体得可压缩性计算、牛顿内摩擦定律得计算、粘度得三种表示方法。

1.密度ρ= m/V2.重度γ= G /V3.流体得密度与重度有以下得关系:γ= ρg或ρ= γ/ g4.密度得倒数称为比体积,以υ表示υ= 1/ ρ= V/m5.流体得相对密度:d = γ流/γ水= ρ流/ρ水6.热膨胀性7.压缩性、体积压缩率κ8.体积模量9.流体层接触面上得内摩擦力10.单位面积上得内摩擦力(切应力)(牛顿内摩擦定律)11.、动力粘度μ:12.运动粘度ν:ν=μ/ρ13.恩氏粘度°E:°E = t 1 /t 2第三章流体静力学❖重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学基本方程意义及其计算、压强关系换算、相对静止状态流体得压强计算、流体静压力得计算(压力体)。

1.常见得质量力:重力ΔW = Δmg、直线运动惯性力ΔFI =Δm·a离心惯性力ΔFR =Δm·rω2、2.质量力为F。

:F= m·am= m(fxi+f yj+fzk)am =F/m = f xi+f yj+fzk为单位质量力,在数值上就等于加速度实例:重力场中得流体只受到地球引力得作用,取z轴铅垂向上,xoy为水平面,则单位质量力在x、y、z轴上得分量为fx= 0,fy=0 , fz=-mg/m= -g式中负号表示重力加速度g与坐标轴z方向相反3流体静压强不就是矢量,而就是标量,仅就是坐标得连续函数。

即:p=p(x,y,z),由此得静压强得全微分为:4.欧拉平衡微分方程式单位质量流体得力平衡方程为:5.压强差公式(欧拉平衡微分方程式综合形式)6.质量力得势函数7.重力场中平衡流体得质量力势函数积分得:U =-gz + c*注:旋势判断:有旋无势流函数就是否满足拉普拉斯方程:8.等压面微分方程式、fx dx+fy d y + fz d z =09.流体静力学基本方程对于不可压缩流体,ρ=常数。

[工学]第2章 流体力学基础

[工学]第2章 流体力学基础

Q S1S2 2gh /(S12 S22 )
15
4、体位对血压的影响 血流在静脉和动脉中的速度近似不变
当v不变时有: P gh 恒量, h P
举例
直立
平卧
动脉 头
静脉
6.8kPa -5.2kPa
12.67kPa 0.67kPa
直立减小5.87kPa
动脉 脚
静脉
24.4kPa 12.4kPa
头打开时管内水的速度和压强。
解:将一楼至二楼的水管看作一流管,在一楼流管
取一截面A,在二搂流管取一截面B将水视为理想流体,
由连续性方程可得:
vB
S AvA SB
(1102 )2 4 (0.5102 )2
16m s1
又由伯努利方程 P 1 v2 gh 恒量 有:
2
2021/8/26
11
PA
2、柏努利方程中,当P不变时有: 1 v2 gh 恒量
2 当h不变时有: P 1 v2 恒量
2
当v不变时有: P gh 恒量
2021/8/26
9
3、方程的适用条件为:理想流体(无内摩擦,不可压
缩);稳定流动(v不随时间变化)。实际流体只
是具有近似性,对于粘性比较小的水和酒精等可较 好的符合,而对于甘油和血液等粘性较大的流体只 能粗略解释;对于气体,若不受压,可适用。
r v
r+r
5、实验表明:摩擦力 f 与 dv/dr 和接触
v+v
面积A成正比,即:
f
A dv
dr
(牛顿黏滞定律)
2021/8/26
20
f A dv
dr 其中 为黏滞系数或黏度,表示流体间速度梯度为1

流体性质

流体性质

§1.3 作用在流体上的力
一、表面力
作用在所取分离体表面上的力。通常 指分离体以外的其他物体通过分离体的表 面作用在分离体上的力。
§1.3.1 表面力
F pn lim A 0 A
n
应力 z
Fn
A
F
pn f ( x, y, z, n, t )
F

Fn d Fn pnn lim A 0 A dA F d F pn lim A 0 A dA
pv const
pv const
K 1 Vp V dp k V dV
等温压缩:K=p 理想绝热过程K=γ p
§1.5.1 流体的压缩性和膨胀性
体胀系数 在一定压强下单位温升引起的 体积变化率。
单位:1/K, 1/℃
§1.5.1 流体的压缩性和膨胀性
体胀系数
§1-5.1 流体的压缩性和膨胀性
单位:Pa 流速在其法线方向上的变化 律
§1.6.1 流体的粘性,牛顿内摩擦定律
一般情况下流体的速度并不按直线变化
dv x dy
牛顿内摩擦定律
§1.6.1 流体的粘性,牛顿内摩擦定律 牛顿内摩擦定律 作用在流层上的切向应力和速 度梯度成正比,比例系数为流体的 dv x 动力粘度。
y
x
1、不能承受拉力,不存在拉应力
2、宏观平衡下不能承受剪切力----连续变形导致流动
§1.3.2 作用在流体上的力
二、质量力 某种力场作用在流体的全部 质点上的力,是与流体的质量成 正比的力。
§1.3.2 质量力
重力
dV g
z
dV a
惯性力 dV a 离心力 电磁力
a

化工基础第二章第一节流体的主要性质

化工基础第二章第一节流体的主要性质
气体混合物的组成通常以体积分率表示。 对于理想气体,体积分率与摩尔分率、压力分率 是相等的。

举例
例1-2 已知干空气的组成为:O221%、
N279%(均为体积%)。试求干空气在压 力为101.3Pa、温度为20℃时的密度。
作业
1 已知干空气的组成为:O221%、
N279%(均为体积%)。试求干空气在压 力为101.3KPa、温度为30℃时的密度。
解:p=Pa-p真
=101.3-80 =21.3Kpa
三.流量与流速


(一)流量 什么是体积流量、质量流量?各用什么符号表示? 单位是什么? (二)流速 1、平均流速 、质量流速的概念、符号、单位? 2、各种流量与流速间的关系 (体积流量与流速、 质量流量与体积流量、质量流速与质量流量与流 速的关系、圆形管道中流速与体积流量的关系 )
3、气体的密度
气体的密度随压力和温度的变化较大。
当压力不太高、温度不太低时,气体的密度
可近似地按理想气体状态方程式计算:

m v
pM RT
(1-3)
式中 p —— 气体的压力,kN/m2或kPa; T —— 气体的绝对温度,K; M —— 气体的分子量,kg/kmol; R —— 通用气体常数,8.314kJ/kmol· K。
1、什么是流体?
我们体内的血液是不是流体?
水是不是流体? 空气是不是流体?
2、流体如何输送?
体内的血液是如何输送到全身的?
自来水是如何输送到每家每户的?

流体:具有流动性的物体 包括气体和液体两大类。

流体如何输送?
流体是用管路来输送的
输送管路是由管子、阀门、输送机械(泵、 通风机等)流量计等部分机械组成

流体力学第二章_流体的物理性质

流体力学第二章_流体的物理性质

1/ 7
1.0456
3 1030 1 1.0456 0456 1077kg / m 10 km处水的密度为
重度为ρɡ = 1077×9.806=10561N/m3 比重为 SG / H O (4℃)=1077/1000=1.077
2
在10 km海洋深处,压强达1000 atm (大气压), 水的密度仅增加4.6% 4 6%,因此可将水视为不可压 缩流体。
d zx u w 2 z x dt d xy v u y 3
x y
天津大学力学系 方一红
dtLeabharlann 35流体的旋转旋转角速度 两正交线元在xy 面内绕一点的旋 转角速度平均值 (规定逆时针方向为正) 1 v u z 2 x y 1 w v 1 2 y z
M r r M x x, y y , z z
天津大学力学系 方一红
30
v v v v v0 x y z x y z u ( M ) u ( M 0 ) u u u u ( M 0 ) u dx d dy d dz d x y z v ( M ) v ( M ) v 0 v v v d d dy d dz v( M 0 ) x dx y z w( M ) w( M 0 ) w w w w w( M 0 ) d dx d dy d dz x y z
L A A
dx d y t 1 1
这是过原点的一、三象限 角平分线,与质点A的迹线 在原点相切(见图)。
天津大学力学系 方一红
26
[例]不定常流场的迹线与流线(6-5) (3)为确定t = 1时刻质点A的运动方向,需求此 时刻过质点A所在位置的流线方程。由迹线参数 式方程(a)可确定,t =1时刻质点 A位于x =3/2, y =1位置,代入流线方程(b)

流体的基本概念和物理性质

流体的基本概念和物理性质

密度 密度差会形成自然循环、热对流和自 然对流换热等现象。
F
热板
自然循环锅炉 1—给水泵 2—省煤器 3—汽包 4—下降管 5—联箱 6—蒸发受热面 单位体积流体所具有的质量。 用符号ρ表示,单位为kg/m3 。
m 均质流体定义式: V m 非均质流体定义式为: lim
第一篇
第一篇
工程流体力学
第一章 流体的基本概念和性质 第二章 流体静力学 第三章 流体动力学
第一章 流体的基本概念和性质 流体的定义和连续介质假设 流体的压缩性和膨胀性 流体的粘性 作用在流体上的力
第一节 流体的定义和连续介质假设
一、流体的定义 通俗定义:能流动的物质称为流体。 力学定义:在任何微小剪切力的持续作 用下能够连续变形的物质,称为流体。
• 气体易于压缩;而液体难于压缩; • 液体有一定的体积,存在一个自由表面; 气体能充满任意形状的容器,无一定的体积, 不存在自由表面。
•液体和气体的共同点:两者均具有流动性 ——在任何微小切应力作用下都会发生变 形或流动,故二者都是流体。
从微观角度看
流体是由大量做无规则运动的分子组成的,分子之间存在空 隙,在标准条件下,1mm3气体含有2.7×1016个左右的分子, 分子间距离是3.3×10-6mm。
1 dV V dt V
单位为m3
流体温度的增加量, 单位为℃(K)
流体原有的体积, 单位为m3
•关于体胀系数αv
液体的体胀系数很小;
如:水在98000Pa下,10~20℃内,
αv =150×10-6 1/ ℃
大多数液体αv随压强的增大而稍减小; 水在50℃以下,
αv 随压强增大而增大;
一般情况下
通常把液体视为不可压缩流体。 通常在流速较高,压强变化较大的场合,气 体视为可压缩流体,必须将密度视为变量。 在流速不高(比声速小得多时),压强变化 较小,密度变化不大( )的场合, 气体可视为不可压缩流体。如锅炉的尾部烟 2 1 100% 20% 道中和空调系统通风管道中的气体等。 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宏观:
液体有一定体积,有自由表面; 气体充满容器,无自由表面; 液体几乎不可压缩; 气体可压缩性较大。
2 流体的连续介质模型:
传递过程离不开物质(包括固体和流体,而流体又 分为液体和气体),物质都是由一些离散的、不断 地做杂乱运动且互相碰撞的分子组成的。从微观角 度讲,物质的物理量在时间上和空间上都是不连续 的。
RT p
RT0 p
Rt p
所以: V R
T p
V /V0 R 1 1
T
p V0 T0
气体膨 胀系数
于是: 0 (密度和温度的具体关系式) 1 t
恒压下气体膨胀系数的推导:
单位质量气体在273K时的体积为V0,温度升高ΔT后其体
积为Vt,当压强一定时,有:
V0 273
Vt 273 T
V 5.39 105 V
液体具有不可压缩性
b) 膨胀性
dV /V
dT
(1-2)
含义:压强一定时,温度升高1 ℃时液体体积的增大率。
: 温度膨胀系数, ℃-1 dT:温度升高值,℃
例:液体水的热膨胀系数
温度 T = 10~20 ℃,压力 P = 0.1MPa,β水=1.5×10-4 K-1
• 反映宏观流体的物理量(密度、压 力、粘度、流速、浓度……)也是 空间坐标的连续函数。从而可以利 用数学上连续函数的方法来定量描 述。
研究区域与分子 自由程处于同一 数量级时,非常 稀薄的空气、高 真空环境??
3 流体的压缩性和膨胀性:
压缩性:四周受压时体积变小特性; 膨胀性:本身温度升高时体积增大特性
压力(MPa) 0.5 1.0
2.0
4.0
5.0
k (10-10 Pa-1) 5.39 5.37 5.32 5.24 5.15
0.5MPa时,若压力增大0.1MPa,体积变化量?
V /V
p
5.391010 V /V V p Vp
此时体积的 减小只有约 万分之0.5
V 5.391010 0.1106 V
液体视为不可压缩流体处理; 气体为可压缩流体处理:气体有明显的压缩性和热胀性。
在工程上考虑气体的压缩性和热胀性时,常根据过程的特 点做一些简化处理。(见P.6)
1、1 流体的一些特性
1. 流体:
在剪切应力的作用下会发生连续的变形的物质。 通常指能够流动的物质。
一般为液体和气体 带有固相颗粒、液相颗粒的气体或液体也是为流体
流体的力学性质: 流体可以承受压力,传递压力和切力,但不能传递拉 力,并在压力和切力作用下出现连续变形产生流动。 (流动可持续)
流体流动时内部出现内摩擦力,静止流体没有内摩擦 力。
p
k
p1
k
const
T k 1
T k 1 1
p
k
p1
1k
const
(1-6)
pV k p1V1k const
TV k 1 const
k: 气体的绝热指数,仅 与气体的子结构有关
k=Cp /Cv Cp :定压比热容 Cv:定容比热容
单原子气体:k=1.6;双原子气体:k=1.4(如氧气、空气) 多原子气体:k=1.3(如过热蒸汽);干饱和蒸汽: k=1.135
气体和液体的区别:
微观:
液体的分子间距几乎与分子的直径相等。对 液体施压时,间距稍有缩小就会产生斥力而抵抗外 压力,即分子间距很难缩小,因此通常称液体为不 可压缩流体。
气体分子间距大,常温下约是分子直径的10 倍。常温常压下分子间距为3.3x10-7cm,分子有效 直径约为3.5x10-8cm。只有当分子间距很小时才会 出现斥力,因此,通常称气体为可压缩流体。
气体具有明显的压缩性和膨胀性,压缩性与压缩过程有关; 当气体的压力不太高(<10kPa) ,或速度不太大(<70m/s) 时,可认为是不可压缩的。
(3)可压缩流体和不可压缩流体
不可压缩流体:
流体的k和都很小,可忽略,其密度和重量可看成常数。
可压缩流体:
流体的k和都比较大,不能忽略,其密度和重量可变。
ii)等压时,p=const
盖吕萨克定律: T const
恒压下推导盖吕萨克定律:Fra bibliotekp, T0, ρ0
由 T const 得 T00 T
p, T, ρ
令 T T0 t 有
T00 T00 0
T T0 t 1 t T0
温度变化为: T T-T0 t,
体积变化为:
V
V V0
(1-3)
V:比体积(m3/kg)=1/ρ p:绝对压力(Pa) T:热力学温度(K)
R' :气体常数,287.2(N·m/(kg·K))[空气]
标准状态下的空气(T=273K, p=101325Pa, V=0.774m3/kg)
i)等温时,T=const
波义耳定律: p const
(1-4)
温度一定时,气体的密度与压力成正比。
人们感兴趣的不是物质的微观结构和分子运动,而 是一些宏观的物理量,如压力、密度、温度等,因 此有理由不以分子作为研究对象,而采用连续介质 模型。
2 流体的连续介质模型:
• 流体连续性基本假设:流体质点之 间没有空隙。
• 即把流体看成占有一定空间的无限 多个流体微团(质点)组成的密集无 间隙的连续介质。
(1)液体 a) 压缩性
k dV /V dp
(1-1)
含义:温度一定时,每增 加单位压强,液体体积变 化的相对值。
负号表示: P V
k:体积压缩系数,Pa-1 V: 液体原有体积,m3 dV: 缩小的体积, m3 dp:液体受压增加的压强,Pa
例:液体水的体积压缩系数
表1-1 0 oC水在不同压力下的k值
Vt
V0
273 T 273
根据气体膨胀系数的定义,有:
Vt V0 V V0 V0T V0 (1 T )
比较这两式可得:气体膨胀系数 1
273
压力不变时,一定质量气体的体积随温度升高而膨胀。温 度升高1K,体积便增加273K时体积的1/273,此即盖吕萨 克定律。
iii)绝热过程(等熵过程),当气体没有摩擦,又没有 热交换时,可认为是绝热可逆过程
V /V 当温度变化ΔT=1K时,
T
不考虑液体的膨胀性
V 1.5104 V
实际在工程上,可以认为水是不可被压缩的。 类似地,其他液体也可认为不可压缩。
液体的热胀性在工程上一般也不考虑。 特殊情况(比如液体体积较大,而压力变化突
然),必须考虑液体的压缩性。
(2)对气体
pV R'T
理想气体: p R'T
相关文档
最新文档