一元一次不等式和一元一次不等式组难题
2022年中考数学复习:一元一次不等式(组)及一元一次不等式的应用

17.(2021·长沙)为庆祝伟大的中国共产党成立 100 周年,发扬红色传统,传承红 色精神,某学校举行了主题为“学史明理,学史增信,学史崇德,学史力行”的 党史知识竞赛,一共有 25 道题,满分 100 分,每一题答对得 4 分,答错扣 1 分, 不答得 0 分. (1)若某参赛同学只有一道题没有作答,最后他的总得分为 86 分,则该参赛同学 一共答对了多少道题? 解:设该参赛同学一共答对了 x 道题,则答错了(25-1-x)道题.
解:圆圆的解答过程有错误. 正确过程如下:由①,得 2+2x>-1. 所以 2x>-3.所以 x>-32. 由②,得 1-x<2.所以-x<1.所以 x>-1. 所以原不等式组的解集是 x>-1.
3(x-1)>x, ①
15.(2021·湘西州)解不等式组1-2x≥x-2 3,
并在数轴上表示它的解集. ②
解:解不等式①,得 x>32. 解不等式②,得 x≤1. 在数轴上表示不等式①和②的解集为
∴不等式组无解.
3(x-1)≥2x-5,①
16.(2021·济南)解不等式组:2x<x+2 3, ②
并写出它的所有整数解.
解:解不等式①,得 x≥-2. 解不等式②,得 x<1. ∴不等式组的解集为-2≤x<1, ∴它的整数解是-2,-1,0.
11.(2021·眉山)若关于 x 的不等式 x+m<1 只有 3 个正整数解,则 m 的取
值范围是 -3≤m<-2
.
12.(2021·通辽)若关于 x 的不等式组32xx- -2a≥ <51,有且只有 2 个整数解,则
a 的取值范围是 -1<a≤1
.
13.(2021·乐山)当 x 取何正整数时,代数式x+2 3与2x3-1的值的差大于 1? 解:根据题意,得x+2 3-2x- 3 1>1,解得 x<5. ∵x 为正整数, ∴当 x 为 1,2,3,4 时,代数式x+2 3与2x3-1的值的差大于 1.
(完整版)一元一次不等式和一元一次不等式组(经典难题)

一元一次不等式和一元一次不等式组1.某同学说213a a -+一定比21a -大,你认为对吗?说明理由。
2.已知方程组23121x y m x y m +=+⎧⎨-=-⎩(1) 请列出x>y 成立的关于m 的不等式。
(2) 运用不等式的基本性质将此不等式化为m>a 或m<a 的形式。
3.要使不等式(1)12a x x a ->+-的解集为x<-1,求a 的取值范围。
4.已知关于x 的一元一次方程4131x m x -+=-的解都是负数,求m 的取值范围.5.如果关于x 的不等式(1)524.a x a x a -<+<和的解集相同,求的值6.x 取哪些非负整数时,322x -的值不小于213x +与1的差。
7.m 取何值时,关于x 的方程6151632x m m x ---=-的解大于1?8.如果方程组24122x y m x y m -=+⎧⎨-=-⎩的解满足3x-y>0,求m 的取值范围.9.若关于x 的方程52)4(3+=+a x 的解大于关于x 的方程3)43(4)14(-=+x a x a 的解,求a 的取值范围.10.不等式组⎩⎨⎧+>+<+1,159m x x x 的解集是x >2,则m 的取值范围是 .11.对于整数a ,b ,c ,d ,定义bd ac c d ba -=,已知3411<<d b,则b +d 的值为_________.12.k 满足______时,方程组⎩⎨⎧=-=+4,2y x k y x 中的x 大于1,y 小于1.13.解下列不等式或不等式组:.15)2(22537313-+≤--+x x x ).1(32)]1(21[21-<---x x x x⋅->+-+2503.0.02.003.05.09.04.0x x x ⎪⎩⎪⎨⎧-<-->-->+.3273,4536,7342x x x x x x14.当310)3(2kk -<-时,求关于x 的不等式k x x k ->-4)5(的解集.15.已知⎩⎨⎧+=+=+122,42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值范围.16.已知a 是自然数,关于x 的不等式组⎩⎨⎧>-≥-02,43x a x 的解集是x >2,求a 的值.17.关于x 的不等式组⎩⎨⎧->-≥-123,0x a x 的整数解共有5个,求a 的取值范围.18.若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+ax x x x 322,3215只有4个整数解,求a 的取值范围.22.某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).(1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的函数关系式;(2)对x的取值情况进行分析,说明按哪种优惠方法购买比较便宜;(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.。
一元一次不等式和一元一次不等式组

一元一次不等式和一元一次不等式组知识梳理(一)基本概念1.不等式:2.不等式的解:3.不等式的解集:4.一元一次不等式:5.一元一次不等式组的解集:(二)不等式的基本性质基本性质1:基本性质2:基本性质3:(三)基本方法1.不等式解集的表示方法:(1) (2)2.不等式的解法:【与解方程类似,不同之处就在:左右两边同时乘以(或除以)一个负数时,不等号的方向一定要改变。
】3.不等式组解法:“分开解,集中判”解出各个不等式,再判断所有解集的公共部分即为不等式组的解集。
4.不等式组解集规律:“同大取大,同小取小,不大不小中间找,又大又小无解了。
” 请用数轴展现:设 a > b :⎩⎨⎧bx a x ⎩⎨⎧b x a x ⎩⎨⎧b x a x ⎩⎨⎧bx a x(四)方法思想1.数形结合思想:不等式(组)解集的两种表示方法。
2.不等式与一次函数的关系,可以利用函数图像来分析解答。
如:一次函数y 1=k 1x+b 1,y 2=k 2x+b 2图像如右图所示,求不等式k 1x+b 1≤k 2x+b 2的解集。
专题一:不等式的有关概念与不等式的基本性质解不等式(组)(一)、不等式的基本性质练习1、已知a <b ,用“<”或“>”填空(1) a -3b -3;(2) 6a6b ;(3) -a -b ;(4) a -b 0;2aa+b2、若a <b ,则不等式○1a-5<b-5 ○2a+k <b+k ○32a <2b ○4ac <b 中成立的有( ) A、1个 B、2个 C、3个 D、4个3、不等式7+5x 〈24 的正整数解的个数是( )A.1个B.3个C.无数个D.4个4、已知32,5221+-=-=x y x y ,如果21y y <,则x 的取值范围是( )A .2>xB .2<xC .2->xD .2-<x5、当x 时,能使x+4>0和2x+1>0同时成立6、关于x 的方程632=-x a 的解是正数,那么a 的取值范围:__________(二)、解不等式(组)1(1)4352+>-x x (2)11237x x --≤2、解下列不等式组(1)⎪⎩⎪⎨⎧->->13132x x (2)⎩⎨⎧>+≤0312x x(3)⎩⎨⎧-≤+>+145321x x x x (4)24321<--<-x专题三、不等式组的特解1、求不等式x x 228)2(5-≤+的非负整数解2、解不等式组()⎪⎩⎪⎨⎧---+≥+-xx x x 81311323 并写出该不等式组的整数解当堂练习1、求不等式组⎪⎩⎪⎨⎧-≤+421121 x x 的整数解2、求不等式()⎪⎩⎪⎨⎧-+≤+3212352x x x x 的正整数专题三 用不等式或不等式组解答实际问题一、课堂练习1、小明用30元钱买笔记本和练习本共30本,已知每个笔记本4元,每个练习本4角,那么他最多能买笔记本多少本?2、某校初一新生中有若干住宿生,分住若干间宿舍,若每间住4人,则还有21人无房住;若每间住7人,则有一间不空也不满,求住宿生人数.3、暑假,学校的老师将带领校、镇、市级“三好学生”去旅游.甲旅行社说:“其中一位带队老师买全票,全票价为240元,则其余老师和学生可享受半价优惠”;乙旅行社说:“包括带队老师和学生全部票价6折优惠”。
一元一次不等式方程组困难应用题

16.迎接大运,美化深圳,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A、B两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需要甲种花卉50盆,乙种花卉90盆。 (1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来. (2)若搭配一个A造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本是最低的?最低成本是多少元?
那么就是有5间宿舍,女生有5×5+5=30人
六、某手机生产厂家根据其产品在市场上的销售情况,决定对原来以每部2000元出售的一款彩屏手机进行调价,并按新单价的八折优惠出售,结果每部手机仍可获得实际销售价的20%的利润(利润=销售价—成本价).已知该款手机每部成本价是原销售单价的60%。
(1)求调整后这款彩屏手机的新单价是每部多少元?让利后的实际销售价是每部多少元?
解:手机原来的售价=2000元/部
每部手机的成本=2000×60%=1200元
设每部手机的新单价为a元
a×80%-1200=a×80%×20%
0.8a-1200=0.16a
0.64a=1200
a=1875元
让利后的实际销售价是每部1875×80%=1500元
(2)为使今年按新单价让利销售的利润不低于20万元,今年至少应销售这款彩屏手机多少部?
11.水果店进了一批水果,原按50%的利润率定价,销去一半以后为尽快销完,准备打折出售,若要使总利润不低于30%,问余下的水果可按定价的几折出售(精确到0.1折)?
初中数学《一元一次不等式和一元一次不等式组》单元教学设计以及思维导图

一元一次不等式和一元一次不等式组
主题单元学习目标
知识与技能:
1、经历将一些实际问题抽象成不等式的过程,体会不等式也是刻画现实世界中量与量之间关系的有效数学模型进一步发展符号感。
2、能够根据具体问题中的大小关系了解不等式的意义。
3、掌握不等式的基本性质。
4、理解不等式组的解及解集的含义,会解简单的一元一次不等式并能在数轴上表示一元一次不等式的解集,会解一元一次不等式组并会在数轴上确定其解集,初步体会数形结合的思想。
其他:纸、笔
学习活动设计
活动一、
如下图,正方形的边长和圆的直径都是acm。
1、如果要使正方形的周长不大于25cm,那么 a 应满足怎样的关系式?
2、如果要使圆的周长不小于100cm,那么a 应满足怎样的关系式?
3、当 a= 8 时,正方形和圆的周长哪个大?a = 12 呢?
4、你能得到什么猜想?改变a的取值再试一试。
观察由上述问题得到的关系式,它们有什么共同特点?
由4a 4a4a≤25, πa ≥100 ,3x+5>240得,这些关系式都是用不等号连接的式子.由此
一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式
活动二、。
专题1.2 一元一次不等式与不等式组章末重难点题型(举一反三)(沪科版)(解析版)

专题1.2 一元一次不等式与不等式组章末重难点题型【沪科版】【考点1 不等式的基本性质】【方法点拨】不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。
不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
【例1】(2019春•南平期中)下列四个不等式:(1)ac>bc;(2)﹣ma<mb;(3)ac2>bc2;(4)>1,一定能推出a>b的有()A.1个B.2个C.3个D.4个【分析】根据不等式的性质逐个判断即可求得答案.【答案】解:在(1)中,当c<0时,则有a<b,故不能推出a>b,在(2)中,当m>0时,则有﹣a<b,即a>﹣b,故不能推出a>b,在(3)中,由于c2>0,则有a>b,故能推出a>b,在(4)中,当b<0时,则有a<b,故不能推出a>b,综上可知一定能推出a>b的只有(3),故选:A.【点睛】本题主要考查不等式的性质,掌握不等式的性质是解题的关键,特别是在不等式的两边同时乘或除以一个不为0的数或因式时,需要确定该数或因式的正负.【变式1-1】(2018春•江汉区期末)若a>b,则下列结论:①a+x>b+x;②>;③ax2>bx2;④ab<b2;⑤﹣|a|<﹣|b|.其中一定成立的个数是()A.1 B.2 C.3 D.4【分析】根据不等式的基本性质逐项判断即可.【答案】解:①∵a>b,∴根据不等式的基本性质1可得:a+x>b+x;所以,正确的个数为1个;②当x<0时,>不成立;③ax2>bx2;④当b>0时,ab<b2不成立;⑤当0>a>b时,﹣|a|<﹣|b|不成立.故选:A.【点睛】主要考查了不等式的基本性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.【变式1-2】(2019春•冠县期末)下列式子正确的是()A.若<,则x<y B.若bx>by,则x>yC.若=,则x=y D.若mx=my,则x=y【分析】根据不等式的基本性质,以及等式的性质,逐项判断即可.【答案】解:∵若<,则a>0时,x<y,a<0时,x>y,∴选项A不符合题意;∵若bx>by,则b>0时,x>y,b<0时,x<y,∴选项B不符合题意;∵若=,则x=y,∴选项C符合题意;∵若mx=my,且m=0,则x=y或x≠y,∴选项D不符合题意.故选:C.【点睛】此题主要考查了不等式的基本性质,以及等式的性质,要熟练掌握,解答此题的关键是要明确:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变【变式1-3】(2019春•宜宾县校级期中)若ab<0,且a<b,下列解不等式正确的是()A.由ax<b,得x<B.由(a﹣b)x>2,得x>C.由bx<a,得x>D.由(b﹣a)x<2,得x<【分析】先求出a,b的大小关系,再运用不等式的基本性质判定.【答案】解:∵ab<0,且a<b,∴a<0<b.A、由ax<b,得x>,故A选项错误;B、由(a﹣b)x>2,得x<,故B选项错误;C、由bx<a,得x<),故C选项错误;D、由(b﹣a)x<2,得x<,故D选项正确.故选:D.【点睛】本题主要考查了不等式的基本性质,解题的关键是确定x系数的正负值.【考点2 由实际问题抽象出一元一次不等式】【方法点拨】由实际问题抽象出一元一次不等式组,关键是正确理解题意,找出题目中的不等关系.【例2】(2019春•湘桥区期末)某种商品的进价为600元,出售时标价为900元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最低可打()A.6折B.7折C.8折D.9折【分析】设该商品打x折销售,根据利润=销售价格﹣进价结合利润率不低于5%,即可得出关于x的一元一次不等式,解之取其中的最小值即可得出结论.【答案】解:设该商品打x折销售,依题意,得:900×﹣600≥600×5%,解得:x≥7.故选:B.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.【变式2-1】(2019春•威远县校级期中)将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有一个小朋友分到苹果但不到8个苹果.求这一箱苹果的个数与小朋友的人数.若设有x人,则可列不等式为()A.8(x﹣1)<5x+12<8 B.0<5x+12<8xC.0<5x+12﹣8(x﹣1)<8 D.8x<5x+12<8【分析】设有x人,由于每位小朋友分5个苹果,则还剩12个苹果,则苹果有(5x+12)个;若每位小朋友分8个苹果,则有一个小朋友分不到8个苹果,就是苹果数﹣8(x﹣1)大于0,并且小于8,根据不等关系就可以列出不等式【答案】解:设有x人,则苹果有(5x+12)个,由题意得:0<5x+12﹣8(x﹣1)<8,故选:C.【点睛】此题主要考查由实际问题抽象出一元一次不等式组,关键是正确理解题意,找出题目中的不等关系.【变式2-2】(2019春•肥城市期中)篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队预计在2016﹣2017赛季全部32场比赛中最少得到48分,才有希望进入季后赛.假设这个队在将要举行的比赛中胜x场,要达到目标,x应满足的关系式是()A.2x+(32﹣x)≥48 B.2x﹣(32﹣x)≥48C.2x+(32﹣x)≤48 D.2x≥48【分析】根据题意表示出胜与负所得总分数大于等于48,进而得出不等关系.【答案】解:这个队在将要举行的比赛中胜x场,要达到目标,x应满足的关系式是:2x+(32﹣x)≥48.【点睛】此题主要考查了由实际问题抽象出一元一次不等式,正确得出不等关系是解题关键.【变式2-3】(2019•江北区一模)某商店将定价为3元的商品,按下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折.小聪有27元钱想购买该种商品,那么最多可以购买多少件呢?若设小聪可以购买该种商品x件,则根据题意,可列不等式为()A.3×5+3×0.8x≤27 B.3×5+3×0.8x≥27C.3×5+3×0.8(x﹣5)≤27 D.3×5+3×0.8(x﹣5)≥27【分析】设小聪可以购买该种商品x件,根据总价=3×5+3×0.8×超出5件的部分结合总价不超过27元,即可得出关于x的一元一次不等式,此题得解.【答案】解:设小聪可以购买该种商品x件,根据题意得:3×5+3×0.8(x﹣5)≤27.故选:C.【点睛】本题考查了由实际问题抽象出一元一次不等式,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.【考点3 解一元一次不等式】【方法点拨】解一元一次不等式组的步骤:(1)求出每个不等式的解集;(2)求出每个不等式的解集的公共部分;(一般利用数轴)(3)用代数符号语言来表示公共部分。
一元一次不等式和一元一次不等式组(经典难题)

一元一次不等式和一元一次不等式组1.某同学说一定比大,你认为对吗?说明理由。
213a a -+21a -2.已知方程组23121x y m x y m +=+⎧⎨-=-⎩(1)请列出x>y 成立的关于m 的不等式。
(2)运用不等式的基本性质将此不等式化为m>a 或m<a 的形式。
3.要使不等式的解集为x<-1,求a 的取值范围。
(1)12a x x a ->+-4.已知关于x 的一元一次方程的解都是负数,求m 的取值范围.4131x m x -+=-5.如果关于x 的不等式(1)524.a x a x a -<+<和的解集相同,求的值6.x 取哪些非负整数时,的值不小于与1的差。
322x -213x+7.m 取何值时,关于x 的方程的解大于1?6151632xm m x ---=-8.如果方程组的解满足3x-y>0,求m 的取值范围.24122x y m x y m -=+⎧⎨-=-⎩9.若关于x 的方程52)4(3+=+a x 的解大于关于x 的方程3)43(4)14(-=+x a x a 的解,求a 的取值范围.10.不等式组的解集是x >2,则m 的取值范围是.⎩⎨⎧+>+<+1,159m x x x 11.对于整数a ,b ,c ,d ,定义,已知,则b +d 的值为_________.bd ac c d ba -=3411<<d b12.k 满足______时,方程组中的x 大于1,y 小于1.⎩⎨⎧=-=+4,2y x k y x 13.解下列不等式或不等式组:.15)2(22537313-+≤--+x x x ).1(32)]1(21[21-<---x x x x ⋅->+-+2503.0.02.003.05.09.04.0x x x ⎪⎩⎪⎨⎧-<-->-->+.3273,4536,7342x x x x x x14.当时,求关于x 的不等式的解集.310)3(2k k -<-k x x k ->-4)5(15.已知中的x ,y 满足0<y -x <1,求k 的取值范围.⎩⎨⎧+=+=+122,42k y x k y x 16.已知a 是自然数,关于x 的不等式组的解集是x >2,求a 的值.⎩⎨⎧>-≥-02,43x a x 17.关于x 的不等式组的整数解共有5个,求a 的取值范围.⎩⎨⎧->-≥-123,0x a x 18.若关于x 的不等式组只有4个整数解,求a 的取值范围.⎪⎪⎩⎪⎪⎨⎧+<+->+ax x x x 322,321522.某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).(1)分别写出两种优惠方法购买费用y (元)与所买水性笔支数x (支)之间的函数关系式;(2)对的取值情况进行分析,说明按哪种优惠方法购买比较便宜;x (3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.。
第二章 一元一次不等式与一元一次不等式组(提高卷)(解析版)

《阳光测评》2020-2021学年下学期八年级数学单元提升卷【北师大版】第二章一元一次不等式与一元一次不等式组(提高卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,考试时间90分钟,试题共25题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下面给出了6个式子:①3>0;②4x+3y>0;③x=3;④x﹣1;⑤x+2≤3;⑥2x≠0,其中不等式有()A.2个B.3个C.4个D.5个【答案】C【分析】不等式就是含有不等号,表示不等关系的式子,据此即可判断.【解答】解:其中是不等式的有:①3>0;②4x+3y>0;⑤x+2≤3;⑥2x≠0.共4个.故选:C.【知识点】不等式的定义2.下列不等式的变形中,不正确的是()A.若a>b,则a+1>b+1B.若﹣a>﹣b,则a<bC.若﹣x<y,则x>﹣3y D.若﹣3x>a,则x>﹣a【答案】D【分析】根据不等式的基本性质,逐项判断即可.【解答】解:∵a>b,∴a+1>b+1,∴选项A不符合题意;∵﹣a>﹣b,∴a<b,∴选项B不符合题意;∵﹣x<y,∴x>﹣3y,∴选项C不符合题意;∵﹣3x>a,∴x>﹣a,∴选项D符合题意.故选:D.【知识点】不等式的性质3.不等式5x﹣1≤2x+5的解集在数轴上表示正确的是()A.B.C.D.【答案】D【分析】不等式移项合并,把x系数化为1,求出解集,表示在数轴上即可.【解答】解:不等式移项合并得:3x≤6,解得:x≤2,表示在数轴上,如图所示:,故选:D.【知识点】在数轴上表示不等式的解集、解一元一次不等式4.如图,L1:y=x+2与L2:y=ax+b相交于点P(m,4),则关于x的不等式x+2≥ax+b的解集为()A.x≥2B.x≤2C.x≤4D.x≥4【答案】A【分析】首先把P(m,4)代入y=x+2可得m的值,进而得到P点坐标,然后再利用图象写出不等式的解集即可.【解答】解:把P(m,4)代入y=x+2得:m=2,则P(2,4),根据图象可得不等式x+2≥ax+b的解集是x≥2,故选:A.【知识点】两条直线相交或平行问题、一次函数与一元一次不等式5.对有理数x,y定义运算:x※y=ax+by,其中a,b是常数.如果2※(﹣1)=﹣4,3※2>1,那么a,b的取值范围是()A.a<﹣1,b>2B.a>﹣1,b<2C.a<﹣1,b<2D.a>﹣1,b>2【答案】D【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题意得:2a﹣b=﹣4①,3a+2b>1②由①得:b=2a+4③∴3a+2(2a+4)>1,解得a>﹣1,把a>﹣1代入得,b>2,∴a>﹣1,b>2故选:D.【知识点】解一元一次不等式、有理数的混合运算6.已知一次函数y=kx+b(k≠0,k,b为常数),x与y的部分对应值如下表所示,x﹣2﹣10123y3210﹣1﹣2则不等式kx+b<0的解集是()A.x<1B.x>1C.x>0D.x<0【答案】B【分析】由表格得到函数的增减性后,再得出y=0时,对应的x的值即可.【解答】解:当x=1时,y=0,根据表可以知道函数值y随x的增大而减小,故不等式kx+b<0的解集是x>1.故选:B.【知识点】一次函数的性质、一次函数与一元一次不等式7.不等式组的解集为()A.x≥2B.﹣3≤x≤2C.x<﹣3D.﹣3<x≤2【答案】D【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式x+1>0,得:x>﹣3,解不等式2﹣x≥0,得:x≤2,则不等式组的解集为﹣3<x≤2,故选:D.【知识点】解一元一次不等式组8.不等式组有3个整数解,则a的取值范围是()A.﹣2≤a≤﹣1B.﹣2<a≤﹣1C.﹣2≤a<﹣1D.﹣2<a<﹣1【答案】C【分析】先求出不等式组的解集,根据不等式组的整数解即可得出答案.【解答】解:∵解不等式①得:x>a,解不等式②得:x<2,∴不等式组的解集是a<x<2,∵不等式组有3个整数解,∴﹣2≤a<﹣1,故选:C.【知识点】一元一次不等式组的整数解9.对于整数a、b、c、d,符号表示运算ac﹣bd,已知关于x的不等式组有4个整数解,则a的取值范围为()A.﹣≤a≤﹣B.﹣3<a<﹣C.﹣3≤a≤﹣D.﹣≤a<﹣【答案】D【分析】先变形,再求出不等式组的解集,再得出关于a的不等式组,求出不等式组的解集即可.【解答】解:,∵解不等式①得:x>8,解不等式②得:x<2﹣4a,∴不等式组的解集是8<x<2﹣4a,∵不等式组有4个整数解,∴12<2﹣4a≤13,解得:﹣≤a<﹣,故选:D.【知识点】有理数的混合运算、一元一次不等式组的整数解10.小明去商店购买A、B两种玩具,共用了10元钱,A种玩具每件1元,B种玩具每件2元.若每种玩具至少买一件,且A种玩具的数量多于B种玩具的数量.则小明的购买方案有()A.5种B.4种C.3种D.2种【答案】C【分析】设小明购买了A种玩具x件,则购买的B种玩具为件,根据题意列出不等式组进行解答便可.【解答】解:设小明购买了A种玩具x件,则购买的B种玩具为件,根据题意得,,解得,3<x≤8,∵x为整数,也为整数,∴x=4或6或8,∴有3种购买方案.故选:C.【知识点】一元一次不等式组的应用二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在横线上)11.不等式组有2个整数解,则实数a的取值范围是.【答案】8≤a<13【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【解答】解:解不等式3x﹣5>1,得:x>2,解不等式5x﹣a≤12,得:x≤,∵不等式组有2个整数解,∴其整数解为3和4,则4≤<5,解得:8≤a<13,故答案为:8≤a<13.【知识点】一元一次不等式组的整数解12.今年4月某天的最高气温为8℃,最低气温为2℃,则这天气温t℃的t的取值范围是.【答案】2≤t≤8【分析】这一天的气温应该大于或等于最低气温而小于或等于最高气温.【解答】解:因为最低气温是2℃,所以2≤t,最高气温是8℃,t≤8,则今天气温t(℃)的范围是2≤t ≤8.故答案为:2≤t≤8.【知识点】不等式的定义13.非负数a,b,c满足a+b=9,c﹣a=3,设y=a+b+c的最大值为m,最小值为n,则m﹣n=.【答案】9【分析】由于已知a,b,c为非负数,所以m、n一定≥0;根据a+b=9和c﹣a=3推出c的最小值与a 的最大值;然后再根据a+b=9和c﹣a=3把y=a+b+c转化为只含a或c的代数式,从而确定其最大值与最小值.【解答】解:∵a,b,c为非负数;∴y=a+b+c≥0;又∵c﹣a=3;∴c=a+3;∴c≥3;∵a+b=9;∴y=a+b+c=9+c;又∵c≥3;∴c=3时y最小,即y最小=12,即n=12;∵a+b=9;∴a≤9;∴y=a+b+c=9+c=9+a+3=12+a;∴a=9时y最大,即y最大=21,即m=21;∴m﹣n=21﹣12=9,故答案为:9【知识点】不等式的性质14.若关于x的一元一次不等式组有解,则m的取值范围为﹣.【答案】m>-1.5【分析】求得不等式①和不等式②的解集,然后根据不等式组有解以及不等式组解集的判断口诀求解即可.【解答】解:解不等式①得:x<3,解不等式②得:x≥﹣2m.∵不等式组有解,∴﹣2m<3.解得:m>﹣1.5.故答案为:m>﹣1.5.【知识点】不等式的解集15.关于x的方程3k﹣5x=9的解是非负数,则k的取值范围是.【答案】k≥3【分析】求出方程的解,根据题意得出≥0,求出不等式的解集即可.【解答】解:3k﹣5x=﹣9,﹣5x=﹣9﹣3k,x=,∵关于x的方程3k﹣5x=﹣9的解是非负数,∴≥0,解不等式得:k≥3,∴k的取值范围是k≥3.故答案是:k≥3.【知识点】一元一次方程的解、解一元一次不等式16.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式kx+6>x+b的解集是.【答案】x<3【分析】观察函数图象得到当x<3时,函数y=kx+6的图象都在y=x+b的图象上方,所以关于x的不等式kx+6>x+b的解集为x<3.【解答】解:当x<3时,kx+6>x+b,即不等式kx+6>x+b的解集为x<3.故答案为:x<3.【知识点】一次函数与一元一次不等式三、解答题(本大题共9小题,共72分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.若关于x、y的方程组的解满足x+y≤6,求k的取值范围.【分析】先把k当作已知表示出x、y的值,再根据x+y≤6列出不等式,求出k的取值范围即可.【解答】解:解方程组得,,∵x+y≤6,∴3k+1﹣k﹣2≤6,解得k≤.∴k的取值范围为k≤.【知识点】二元一次方程组的解、解一元一次不等式18.解不等式组:并把解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式①,得:x<3,解不等式②,得:x≥﹣1,则不等式组的解集为﹣1≤x<3,将不等式组的解集表示在数轴上如下:【知识点】在数轴上表示不等式的解集、解一元一次不等式组19.(1)若x>y,比较﹣3x+5与﹣3y+5的大小,并说明理由;(2)若x<y,且(a﹣3)x>(a﹣3)y,求a的取值范围.【分析】(1)先在x>y的两边同乘以﹣3,变号,再在此基础上同加上5,不变号,即可得出结果;(2)根据题意,在不等式x<y的两边同时乘以(a﹣3)后不等号改变方向,根据不等式的性质3,得出a﹣3<0,解此不等式即可求解.【解答】解:(1)∵x>y,∴不等式两边同时乘以﹣3得:(不等式的基本性质3)﹣3x<﹣3y,∴不等式两边同时加上5得:5﹣3x<5﹣3y;(2)∵x<y,且(a﹣3)x>(a﹣3)y,∴a﹣3<0,解得a<3.即a的取值范围是a<3.【知识点】不等式的性质、整式的加减20.如图,已知直线y=x+5与x轴交于点A,直线y=﹣x+b与x轴交于点B(1,0),且这两条直线交于点C.(1)求直线BC的解析式和点C的坐标;(2)直接写出关于x的不等式x+5>﹣x+b的解集.【分析】(1)将点B的坐标代入y=﹣x+b即可求得直线BC的解析式,然后联立两个函数求得交点C的坐标即可;(2)根据函数的图象确定不等式的解集即可.【解答】解:(1)∵直线y=﹣x+b与x轴交于点B(1,0),∴﹣1+b=0 解得:b=1,∴直线BC的解析式为y=﹣x+1,,解得:,∴C(﹣2,3)(2)∵直线y=﹣x+b与y=﹣x+1,交于点C(﹣2,3),∴根据图象得到关于x的不等式x+5>﹣x+b的解集x>﹣2.【知识点】一次函数与一元一次不等式、待定系数法求一次函数解析式、两条直线相交或平行问题21.已知:x,y满足3x﹣4y=5.(1)用含x的代数式表示y,结果为;(2)若y满足﹣1<y≤2,求x的取值范围;(3)若x,y满足x+2y=a,且x>2y,求a的取值范围.【答案】3x-54【分析】(1)解关于y的方程即可;(2)利用y满足﹣1<y≤2得到关于x的不等式,然后解不等式即可;(3)解方程组得由x>2y得不等式,解不等式即可.【解答】解:(1)y=;故答案为:;(2)根据题意得﹣1<≤2,解得<x≤;(3)解方程组得∵x>2y,∴>2×,解得a<10.【知识点】不等式的性质、列代数式22.(1)解方程组:;(2)解不等式组:,并将不等式组的解集在数轴上表示出来.【分析】(1)利用加减消元法求解可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1),①×3+②,得:5x=10,解得x=2,将x=2代入①,得:2+y=1,解得y=﹣1,则方程组的解为;(2)解不等式x﹣2(x﹣1)≤3,得:x≥﹣1,解不等式>x﹣1,得:x<2,则不等式组的解集为﹣1≤x<2,将解集表示在数轴上如下:【知识点】在数轴上表示不等式的解集、解二元一次方程组、解一元一次不等式组23.如图,直线y=﹣x+m与x轴交于点B(4,0),与y轴交于点A,点C为x轴上一点,且已知S△ABC=4.又直线y=x+b与直线AB交于点M,M点横坐标为2.(1)求直线AB的解析式;(2)求C点坐标;(3)结合图形写出不等式x+b≥﹣x+m的解集.【分析】(1)先把B点坐标代入y=﹣x+m求出m的值,从而得到直线AB的解析式为y=﹣x+4,(2)求出A点坐标,接着利用三角形面积公式计算出BC,即可得到C(2,0)或(6,0);(3)根据图象即可求得;【解答】解:(1)把B(4,0)代入y=﹣x+m得﹣4+m=0,解得m=4,所以直线AB的解析式为y=﹣x+4;(2)当x=0时,y=﹣x+4=4,则A(0,4),∵S△ABC=4,∴BC•4=4,解得BC=2,∴C(2,0)或(6,0);(3)由图象可知,不等式x+b≥﹣x+m的解集为x≥2.【知识点】待定系数法求一次函数解析式、两条直线相交或平行问题、一次函数与一元一次不等式24.在抗击新冠肺炎疫情期间,市场上防护口罩岀现热销,某药店售出一批口罩.已知3包儿童口罩和2包成人口罩共26个,5包儿童口罩和3包成人口罩共40个.(1)求儿童口罩和成人口罩的每包各是多少个?(2)某家庭欲购进这两种型号的口罩共5包,为使其中口罩总数量不低于26个,且不超过34个,①有哪几种购买方案?②若每包儿童口罩8元,每包成人口罩25元,哪种方案总费用最少?【分析】(1)设儿童口罩每包x个,成人口罩每包y个,根据:“3包儿童口罩和2包成人口罩共26个,5包儿童口罩和3包成人口罩共40个”列方程组求解即可;(2)①设购买儿童口罩m包,根据“这两种型号的口罩共5包,为使其中口罩总数量不低于26个,且不超过34个”列出不等式组,确定m的取值,进而解决问题;②分别求出每个方案的费用即可解决问题.【解答】解:(1)设儿童口罩每包x个,成人口罩每包y个,根据题意得,,解得,,∴儿童口罩每包2个,成人口罩每包10个;(2)①设购买儿童口罩m包,则购买成人口罩(5﹣m)包,根据题意得,,解得,2≤m≤3,∵m为整数,∴m=2或m=3,∴共有两种购买方案:方案一:购买儿童口罩2包,则购买成人口罩3包;方案二:购买儿童口罩3包,则购买成人口罩2包.②方案一的总费用为:2×8+3×25=91元;方案二的总费用为:3×8+2×25=74元.∵91>74,∴方案二的总费用最少.【知识点】一元一次不等式组的应用、二元一次方程组的应用25.哈六十九中校团委为了教育学生,开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,共用110元,且买甲种笔记本30个比买乙种笔记本20个少花10元.(1)求甲、乙两种笔记本的单价各是多少元?(2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购买这两种笔记本的总金额不超过320元,求本次乙种笔记本最多购买多少个?【分析】(1)首先设甲种笔记本的单价是x元,乙种笔记本的单价是y元,根据题意可得:①20个甲种笔记本的价格+10个乙种笔记本的价格=110元;②甲种笔记本30个的价格+10=乙种笔记本20个的价格,根据等量关系列出方程组,再解即可;(2)设乙种笔记本购买a个,由题意得不等关系:3×甲种笔记本的数量+5×乙种笔记本的数量≤320元,根据不等关系列出不等式,再解即可.【解答】解:(1)设甲种笔记本的单价是x元,乙种笔记本的单价是y元,由题意得:,解得.答:甲种笔记本的单价是3元;乙种笔记本的单价是5元;(2)设乙种笔记本购买a个,由题意得:3(2a﹣10)+5a≤320,解得:,∵a为整数,∴a取31.答:本次乙种笔记本最多购买31个.【知识点】一元一次不等式的应用、二元一次方程组的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次不等式和一元一次不等式组1.某同学说a21 3a一定比a21大,你认为对吗?说明理由。
—、计f 2x y 3m 1
2.已知方程组'
x y 2m 1
(1)请列出x>y成立的关于m的不等式。
(2)运用不等式的基本性质将此不等式化为m>a或m<a的形式。
3.要使不等式a(x 1) x 1 2a的解集为x<-1,求a的取值范围。
4.已知关于x的一元一次方程4x m 1 3x 1的解都是负数,求m的取值范围
5.如果关于x的不等式(a 1)x a 5和 2x 4的解集相同,求a的值.
6.x取哪些非负整数时,3x 2 的值不小于2x 1与1的差。
2 3
x6m 1 5m 1
7.m取何值时,关于x的方程一x 的解大于1 ?
6 3 2
8.如果方程组
12. k 满足 时,方程组 x k 的解集
x 2v 4m 1
的解满足3x-y>0,求m 的取值范围
2x y m 2
x V 2k
,
中的x 大于1, y 小于1.
x y 4
13.解下列不等式或不等式组: 3x 1 7x 3 2 2(x 2) 3 5 15
1 1 2
x [x (x 1)] (x 1).
2 2 3
2 4x 3x 乙 0.4x 0.9 0.0
3 0.02.x x 5 6x 3 5x 4
, 0.5 0.03 2 3x 7 2x 3
.
10 k k(x 5) 9.若关于x 的方程3(x 4) 2a 5的解大于关于x 的方程(4a 1)x 4 a(3x 4)的解,求a 的取值范围. 3 10.不等式组 9 5x m 1
1,
的解集是 x >2,贝U m 的取值范围是
11.对于整数 a , b , c , d , 定义 ac bd ,已知1 3,贝U b + d 的值为
14.当2(k 3) 时,求关于x的不等式—
x 2v 4k
15.已知 '中的x , y 满足O v y — x v 1,求k 的取值范围.
2x y 2k 1
3x 4 a
16.已知a 是自然数,关于 x 的不等式组 '的解集是x >2,求a 的值.
x 2 0 x a 0,
17.关于x 的不等式组 的整数解共有5个,求a 的取值范围.
3 2x 1 x 15
x 3, 18.若关于x 的不等式组
2 只有4个整数解,求a 的取值范围
2x 2 x a
3
19 一若 a h M J6^AliC 的三边’ H uj f 滞绘关系式
|u~3' +仆…4严* 0—是不等式蛆
T —1
>工4电 广L 1的绘大整数解、试判斯△ABQ 的
fir +
9折优惠.书
B. —-^-<^<0
<3*
C, 0 V JT VE
D* — V JT <C2
乩…家小电放映厅的盈利额衬尤)同售票数 川张)之
间的关系如图所示,其中保险祁 门规定;超过150人时雯激纳公安淸防保 险费50元*试根据关系图,何答下列 冋题.
(1) 试就 0<^^150 fll 150<x<200,分別 写出盈
利额列元[与文(张)之间的关 系式.
(2) ①当郴出的栗数丄为何值时"此放映
厅不赔不赚?
Q 半售出的樂数x 谶足何值时,此放映;『要赔钱? ③当售出的劭数T 为何值时,此放映厅能賺钱?
(3〉当售岀的聖数工为何值肘”此时所获得利润比x=15Q 时多?
22.某办公用品销售商店推出两种优惠方法: ①购1个书包,赠送1支水性笔;②购书包和水性笔一律按
包每个定价20元,水性笔每支定价 5元.小丽和同学需买 4个书包,水性笔若干支(不少于
4 支) (1) 分别写出两种优惠方法购买费用 y (元)与所买水性笔支数 x (支)之间的函数关系式;
(2) 对X 的取值情况进行分析,说明按哪种优惠方法迥秦图网得出不尊式組匕壮+5 }*
购买比较便宜;
(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.。