高中数学选择性必修二 专题4 2 等差数列(含答案)同步培优专练
高中数学选择性必修二 4 2 2 1等差数列的前n项和(知识梳理+例题+变式+练习)(含答案)

4.2.2.1等差数列的前n 项和要点一 等差数列的前n 项和公式 设等差数列{a n }的公差为d ,则S n =11()(1)22n n a a n n na d +-=+ 【重点总结】(1)等差数列前n 项和公式的推导:设S n =a 1+a 2+…+a n ,倒序得S n =a n +a n -1+…+a 2+a 1.相加得2S n =(a 1+a n )+(a 2+a n -1)+…+(a n +a 1).由等差数列性质,得2S n =n(a 1+a n ),∴S n =n (a 1+a n )2.我们不妨将上面的推导方法称为倒序相加求和法. 今后,某些数列求和常常会用到这种方法.(2)在求等差数列前n 项和时,若已知a 1和a n 及项数n ,则使用S n =n (a 1+a n )2;若已知首项a 1和公差d 及项数n ,则采用公式S n =na 1+n (n -1)2d 来求.要点二 等差数列前n 项和的主要性质 1.S n ,S 2n -S n ,S 3n -S 2n ,…成等差数列.2.若S 奇表示奇数项的和,S 偶表示偶数项的和,公差为d ,①当项数为偶数2n 时,S 偶-S 奇=nd ,S 奇S 偶=1n n aa+;②当项数为奇数2n -1时,S 奇-S 偶=n a ,S 奇S 偶=1n n -.S 2n -1=(2n -1)a n . 【重点总结】关于奇数项的和与偶数项的和的问题,要根据项数来分析,当项数为奇数或偶数时,S 奇与S偶的关系是不相同的.【基础自测】1.判断正误(正确的画“√”,错误的画“×”)(1)数列的前n 项和就是指从数列的第1项a 1起,一直到第n 项a n 所有项的和.( ) (2)数列{a n }为等差数列,S n 为前n 项和,则S 2,S 4,S 6成等差数列.( ) (3)在等差数列{a n }中,S n 为前n 项和,则有S 2n -1=(2n -1)a n .( ) (4)在等差数列{a n }中,当项数m 为偶数2n 时,则S 偶-S 奇=a n +1.( ) 【答案】(1)√(2)×(3)√(4)×2.在等差数列{a n }中,已知a 1=2,a 9=10,则S 9等于( ) A .45 B .52 C .108 D .54 【答案】D【解析】S 9=9(a 1+a 9)2=9×122=54.故选D.3.已知等差数列{a n }的前n 项和为S n ,若S 4=8,S 8=20,则S 12=( ) A .28 B .32 C .36 D .40 【答案】C【解析】∵数列{a n }为等差数列, ∴S 4,S 8-S 4,S 12-S 8成等差数列,∴2(S 8-S 4)=S 4+S 12-S 8,解得:S 12=36.4.已知数列{a n }是等差数列,且a 3+a 9=4,那么数列{a n }的前11项和等于________. 【答案】22【解析】∵数列{a n }为等差数列,∴a 3+a 9=a 1+a 11=4.∴S 11=11(a 1+a 11)2=112×4=22.题型一 等差数列前n 项和的基本运算【例1】在等差数列{a n }中,(1)已知a 1=56,a n =-32,S n =-5,求n 和d ;(2)已知a 1=4,S 8=172,求a 8和d .(3)已知d =2,a n =11,S n =35,求a 1和n .【解析】(1)由题意得,S n =n (a 1+a n )2=n ⎝⎛⎭⎫56-322=-5,解得n =15.又a 15=56+(15-1)d =-32,∴d =-16.∴n =15,d =-16.(2)由已知得S 8=8(a 1+a 8)2=8(4+a 8)2=172,解得a 8=39,又∵a 8=4+(8-1)d =39,∴d =5. ∴a 8=39,d =5.(3)∵a n =11,d =2,S n =35,∴⎩⎪⎨⎪⎧a 1+(n -1)×2=11na 1+n (n -1)2×2=35解得n =5,a 1=3或n =7,a 1=-1. 【方法归纳】a 1,d ,n 称为等差数列的三个基本量,a n 和S n 都可以用这三个基本量来表示,五个量a 1,d ,n ,a n ,S n 中可知三求二,一般通过通项公式和前n 项和公式联立方程组求解,在求解过程中要注意整体思想的运用.【跟踪训练】在等差数列{a n }中,(1)a 1=32,d =-12,S m =-15,求m 及a m ;(2)a 6=10,S 5=5,求a 8和S 10. (3)已知a 3+a 15=40,求S 17.【解析】(1)∵S m =m ×32+m (m -1)2×⎝⎛⎭⎫-12=-15,整理得m 2-7m -60=0解得m =12或m =-5(舍去)∴a m =a 12=32+(12-1)×⎝⎛⎭⎫-12=-4. (2)⎩⎪⎨⎪⎧S 5=5a 1+5×42d =5,a 6=a 1+5d =10,解得⎩⎪⎨⎪⎧a 1=-5,d =3.∴a 8=a 6+2d =10+2×3=16,S 10=10a 1+10×92d =10×(-5)+5×9×3=85.(3)S 17=17×(a 1+a 17)2=17×(a 3+a 15)2=17×402=340.题型二 等差数列前n 项和性质的应用【例2】(1)等差数列前3项的和为30,前6项的和为100,则它的前9项的和为( ) A .130 B .170 C .210 D .260 【答案】C【解析】利用等差数列的性质:S 3,S 6-S 3,S 9-S 6成等差数列. 所以S 3+(S 9-S 6)=2(S 6-S 3),即30+(S 9-100)=2(100-30),解得S 9=210.(2)已知{a n },{b n }均为等差数列,其前n 项和分别为S n ,T n ,且S n T n =2n +2n +3,则a 5b 5=________.【答案】53【解析】由等差数列的性质,知a 5b 5=a 1+a 92b 1+b 92=a 1+a 92×9b 1+b 92×9=S 9T 9=2×9+29+3=53. (3)已知等差数列{a n }前n 项和为S n ,S 4=40,S n =210,S n -4=130,则n =________. 【答案】14【解析】 S n -S n -4=a n -3+a n -2+a n -1+a n =80, S 4=a 1+a 2+a 3+a 4=40.两式相加得4(a 1+a n )=120,∴a 1+a n =30,又S n =n (a 1+a n )2=15n =210,∴n =14.【笔记小结】(1)中S 3,S 6-S 3,S 9-S 6也成等差数列. (2)中a 5b 5=qa 5qb 5=S 9T 9.(3)中S n -S n -4为末4项和,S 4为前4项和,倒序相加可得 4(a 1+a n ). 【方法归纳】等差数列前n 项和的常用性质(1)S n ,S 2n -S n ,S 3n -S 2n ,…是等差数列.(2)数列⎩⎨⎧⎭⎬⎫S n n 是等差数列,公差为数列{a n }的公差的12.(3)涉及两个等差数列的前n 项和之比时,一般利用公式a m b n =2n -12m -1·S 2m -1T 2n -1进行转化,再利用其他知识解决问题.(4)用公式S n =n (a 1+a n )2时常与等差数列的性质a 1+a n =a 2+a n -1=a 3+a n -2=…相结合.【跟踪训练2】设等差数列{a n }的前n 项和为S n ,若S 4=8,S 8=20,则a 11+a 12+a 13+a 14等于( ) A .18 B .17 C .16 D .15 【答案】A【解析】设{a n }的公差为d ,则a 5+a 6+a 7+a 8=S 8-S 4=12,(a 5+a 6+a 7+a 8)-S 4=16d ,解得d =14,a 11+a 12+a 13+a 14=S 4+40d =18.故选A.(2)已知等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对于任意的自然数n ,都有S n T n =2n -34n -3,则a 3+a 152(b 3+b 9)+a 3b 2+b 10=( )A.1941B.1737C.715D.2041 【答案】A【解析】a 3+a 152(b 3+b 9)+a 3b 2+b 10=a 9b 3+b 9+a 3b 2+b 10=a 9+a 3b 2+b 10=a 1+a 11b 1+b 11=S 11T 11=22-344-3=1941.故选A.(3)已知等差数列{a n }的前n 项和为S n ,且S 10=100,S 100=10,则S 110=________.【解析】(3)方法一:因为S 10,S 20-S 10,S 30-S 20,…,S 100-S 90,S 110-S 100成等差数列,设公差为d ,前10项的和为:10×100+10×92d =10,所以d =-22,所以前11项的和S 110=11×100+11×102d =11×100+11×102×(-22)=-110.方法二:设等差数列{a n }的公差为d , 则S n n =d 2(n -1)+a 1,所以数列⎩⎨⎧⎭⎬⎫S n n 成等差数列. 所以S 100100-S 1010100-10=S 110110-S 100100110-100,即10100-10010100-10=S 110110-1010010,所以S 110=-110.方法三:设等差数列{a n }的公差为d ,S 110=a 1+a 2+…+a 10+a 11+a 12+…+a 110=(a 1+a 2+…+a 10)+[(a 1+10d )+(a 2+10d )+…+(a 100+10d )]=S 10+S 100+100×10d ,又S 100-10S 10=100×992d -100×92d =10-10×100,即100d =-22,所以S 110=-110. 题型三 求数列{|a n |}的前n 项和【例3】在等差数列{a n }中,a 1=-60,a 17=-12,求数列{|a n |}的前n 项和. 【解析】等差数列{a n }的公差 d =a 17-a 117-1=-12-(-60)16=3,∵a n =a 1+(n -1)d =-60+3(n -1)=3n -63, 令a n <0,即3n -63<0,则n <21.∴等差数列{a n }的前20项是负数,第20项以后的项是非负数,设S n 和S ′n 分别表示数列{a n }和{|a n |}的前n 项和.当n ≤20时,S ′n =-S n =-⎣⎡⎦⎤-60n +3n (n -1)2=-32n 2+1232n ;当n >20时,S ′n =-S 20+(S n -S 20)=S n -2S 20=-60n +3n (n -1)2-2×⎝⎛⎭⎫-60×20+20×192×3=32n 2-1232n +1 260, ∴数列{|a n |}的前n 项和为S ′n =⎩⎨⎧-32n 2+1232n ,n ≤20,32n 2-1232n +1 260,n >20.【方法归纳】已知{a n }为等差数列,求数列{|a n |}的前n 项和的步骤 第一步,解不等式a n ≥0(或a n ≤0)寻找{a n }的正负项分界点.第二步,求和:①若a n 各项均为正数(或均为负数),则{|a n |}各项的和等于{a n }的各项的和(或其相反数);②若a 1>0,d <0(或a 1<0,d >0),这时数列{a n }只有前面有限项为正数(或负数),可分段求和再相加. 【跟踪训练3】已知数列{a n }的前n 项和S n =-32n 2+2052n ,求数列{|a n |}的前n 项和T n .【解析】a 1=S 1=-32×12+2052×1=101.当n ≥2时,a n =S n -S n -1=⎝⎛⎭⎫-32n 2+2052n - ⎣⎡⎦⎤-32(n -1)2+2052(n -1)=-3n +104.∵n =1也适合上式,∴数列{a n }的通项公式为a n =-3n +104(n ∈N *). 由a n =-3n +104≥0,得n ≤34.7. 即当n ≤34时,a n >0;当n ≥35时,a n <0.①当n ≤34时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =S n =-32n 2+2052n ;②当n ≥35时,T n =|a 1|+|a 2|+…+|a 34|+|a 35|+…+|a n |=(a 1+a 2+…+a 34)-(a 35+a 36+…+a n )=2(a 1+a 2+…+a 34)-(a 1+a 2+…+a n )=2S 34-S n =2⎝⎛⎭⎫-32×342+2052×34-⎝⎛⎭⎫-32n 2+2052n =32n 2-2052n +3 502. 故T n =⎩⎨⎧-32n 2+2052n ,n ≤34且n ∈N *,32n 2-2052n +3 502,n ≥35且n ∈N *.【易错辨析】混淆等差数列的性质致误【例4】已知等差数列{a n }的前n 项之和记为S n ,S 10=10,S 30=70,则S 40=________. 【答案】120【解析】由题意知⎩⎨⎧10a 1+10×92d =1030a 1+30×292d =70得⎩⎨⎧a 1=25,d =215.所以S 40=40×25+40×392×215=120.【易错警示】 1. 出错原因将等差数列中S m ,S 2m -S m ,S 3m -S 2m 成等差数列误认为S m ,S 2m ,S 3m 成等差数列. 2. 纠错心得本题可用等差数列的性质:S m ,S 2m -S m ,S 3m -S 2m 成等差数列求解;还可以由S 10=10,S 30=70联立方程组解得a 1和d ,再求S 40.一、单选题1.已知等差数列{}n a 的前n 项和为18,若21S =,13n n a a -+=,则n 的值为( )A .9B .18C .27D .36【答案】B 【分析】由已知得()121124n n n a a a a a a -+++=+=,得12n a a +=,再由等差数列求和公式可求得答案. 【解析】解:∵等差数列{}n a 的前n 项和为18,21S =,13n n a a -+=,∵121a a +=, ∵()121124n n n a a a a a a -+++=+=,解得12n a a +=, 又()1182n n n a a S +==,∵2182n ⨯=,∵18n =.故选:B.2.已知在等比数列{}n a 中,3544a a a =,等差数列{}n b 的前n 项和为n S ,且74b a =,则13S =( ) A .26 B .52 C .78 D .104【答案】B 【分析】利用等比中项的性质可求得4a 的值,即为7b 的值,再利用等差数列的求和公式可求得13S 的值. 【解析】因为在等比数列{}n a 中,3544a a a =,可得2444a a =,40a ≠,解得44a =,又因为数列{}n b 是等差数列,744b a ==,则()13113711313134522S b b b =⨯+==⨯=.故选:B.3.已知数列{}n a 的各项均不为零,1a a =,它的前n 项和为n S .且n a1n a +(*N n ∈)成等比数列,记1231111n nT S S S S =+++⋅⋅⋅+,则( ) A .当1a =时,202240442023T < B .当1a =时,202240442023T > C .当3a =时,202210111012T > D .当3a =时,202210111012T <【答案】C 【分析】结合等比性质处理得22n n a a +-=,再分1a =和3a =分类讨论,1a =时较为简单,结合裂项法直接求解,当3a =时,放缩后再采用裂项即可求解.【解析】由n a1n a +成等比数列可得,12n n n S a a +=⋅①,也即1122n n n S a a +++=⋅②,②-①得()1122n n n n a a a a +++=-,因为0n a ≠,所以,22n n a a +-=,即数列的奇数项成等差数列,偶数项成等差数列,当1a a =时,1122a a a =⋅,即22a =,对A 、B ,当1a =时,12341,2,3,4,n a a a a a n =====,此时数列为等差数列,前n 项和为()12n n n S +=,()1211211n S n n n n ⎛⎫==- ⎪++⎝⎭, 故12311111111112121223+11n n T S S S S n n n ⎛⎫⎛⎫=+++⋅⋅⋅+=-+-+-=- ⎪ ⎪+⎝⎭⎝⎭, 当2022n =时,2022140442120232023T ⎛⎫=-=⎪⎝⎭,故A 、B 错误; 对C 、D ,当3a =时,1352021202113,5,7,3+220232a a a a -====⨯=, 2420222,4,,2022a a a ===,当n 为偶数时,232n n nS +=, 当n 为奇数时,()()()2213132122n n n n n S n +++++=-+=, 所以()()12,2n n n S n N *++≤∈,()()121121212n S n n n n ⎛⎫≥=- ⎪++++⎝⎭, 此时202212320221111T S S S S =+++⋅⋅⋅+ 111111110112123342023202410121012⎛⎫>-+-++-=-= ⎪⎝⎭,故C 正确,D 错误. 故选:C4.数列{}n a 中,12a =,且112n n n n n a a a a --+=+-(2n ≥),则数列()211n a ⎧⎫⎪⎪⎨⎬-⎪⎪⎩⎭前2021项和为( ) A .20211010B .20211011C .20191010D .40402021【答案】B 【分析】由已知可得221(1)(1)n n a a n ----=,从而得221(1)(1)(1)2n a a n n ---=+-+⋅⋅⋅+,再由12a =得2(1)(1)2n n n a +-=,所以212112(1)(1)1n a n n n n ⎛⎫==- ⎪-++⎝⎭,然后利用裂项相消求和法可求得结果【解析】因为112n n n n na a a a --+=+-(2n ≥),所以22112()n n n n a a a a n -----=,整理得,221(1)(1)n n a a n ----=,所以221(1)(1)(1)2n a a n n ---=+-+⋅⋅⋅+,因为12a =,所以2(1)(1)2n n n a +-=, 所以212112(1)(1)1n a n n n n ⎛⎫==- ⎪-++⎝⎭,所以数列()211n a ⎧⎫⎪⎪⎨⎬-⎪⎪⎩⎭前2021项和为2021111111202121212232021202220221011S ⎛⎫⎛⎫=-+-+⋅⋅⋅+-=-=⎪ ⎪⎝⎭⎝⎭, 故选:B5.有一个三人报数游戏:首先甲报数字1,然后乙报两个数字2、3,接下来丙报三个数字4、5、6,然后轮到甲报四个数字7、8、9、10,依次循环,则甲报出的第2028个数字为( ) A .5986 B .5987 C .5988 D .以上都不对【答案】C 【分析】首先分析出甲第n 次报数的个数,得到甲第n 次报完数后总共报数的个数,计算出甲是第0n 次报数中会报到第2020个数字,再计算当甲第0n 次报数时,3人总的报数次数m , 再推算出此时报数的最后一个数m S ,再推出甲报出的第2028个数字. 【解析】由题可得甲第n *()n N ∈次报数的个数为32n -, 则甲第n 次报完数后总共报数的个数为[1(32)](31)22n n n n n T +--==,再代入正整数n ,使2020,n T n ≥的最小值为37,得372035T =, 而甲第37次报时,3人总共报数为3631109⨯+=次, 当甲第109次报完数3人总的报数个数为109(1091)12310959952m S +=++++==, 即甲报出的第2035个数字为5995, 所以甲报出的第2028个数字为5988. 故选:C.6.已知数列{}n a 满足()112nn n a a n +=-+,*n N ∈,则10S =( )A .32B .50C .72D .90【答案】B 【分析】由递推关系式,求得12a a +,34a a +,56a a +,78a a +,910a a +,然后相加可得10S . 【解析】由已知212a a =-+,122a a +=,436a a =-+,346a a +=,同理5610a a +=,7814a a +=,91018a a +=, 所以102610141850S =++++=. 故选:B .7.庑殿是古代传统建筑中的一种屋顶形式,其可近似看作由两个全等的等腰梯形和两个全等的等腰三角形组成,如图所示.若在等腰梯形与等腰三角形侧面中需铺瓦6层,等腰梯形中下一层铺的瓦数比上一层铺的瓦数多2,等腰三角形中下一层铺的瓦数是上一层铺的瓦数的2倍.两个等腰梯形与两个等腰三角形侧面同一层全部铺上瓦,其瓦数视作同一层的总瓦数.若顶层需铺瓦82块,整个屋顶需铺瓦666块,则最底层需铺瓦块数为( )A .82B .114C .164D .228【答案】C 【分析】由题意得等腰梯形中铺的瓦数自上而下构成一个公差为2的等差数列{}n a ,等腰三角形中铺的瓦数自上而下构成一个公比为2的等比数列{}n b ,故得到()()11611282,1265262666,212a b b a ⎧+=⎪⎪⎡⎤-⨯⎨⎢⎥+⨯+=⎪-⎢⎥⎪⎣⎦⎩,进而可求得两个数列的通项公式,再分别求每个数列的第6项,()()56622502164a b +=+=可得到最终结果.【解析】由题意等腰梯形中铺的瓦数自上而下构成一个公差为2的等差数列{}n a , 等腰三角形中铺的瓦数自上而下构成一个公比为2的等比数列{}n b , 由条件可知,()()11611282,1265262666,212a b b a ⎧+=⎪⎪⎡⎤-⨯⎨⎢⎥+⨯+=⎪-⎢⎥⎪⎣⎦⎩解之得1140,1ab ==,所以()14021238,2n n n a n n b -=+-=+=,所以()()56622502164a b +=+=,故最底层需铺瓦块数为164,故选:C.8.设数列{}n a 和{}n b 的前n 项和分别为n S ,n T ,已知数列{}n b 的等差数列,且2n n na nb a +=,33a =,4511b b +=,则n n S T +=( ) A .22n n - B .22n n -C .22n n +D .22n n +【答案】D 【分析】设等差数列{}n b 的公差为d ,进而根据等差数列的通项公式计算得121b d =⎧⎨=⎩,故1n b n =+,n a n =,再根据等差数列前n 项和公式求解即可。
高中数学选择性必修二 4 2 1 1等差数列的概念和通项公式(知识梳理+例题+变式+练习)(含答案)

4.2.1.1等差数列的概念和通项公式要点一 等差数列的概念(1)文字语言:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d_表示. (2)符号语言:a n +1-a n =d (d 为常数,n ∈N *). 【重点概要】(1)“从第2项起”是因为首项没有“前一项”.(2)一个数列从第2项起,每一项与它前一项的差即使等于常数,这个数列也不一定是等差数列,因为当这些常数不同时,该数列不是等差数列,因此定义中强调“同一个常数”,即该常数与n 无关.(3)求公差d 时,可以用d =a n -a n -1来求,也可以用d =a n +1-a n 来求.注意公差是每一项与其前一项的差,且用a n -a n -1求公差时,要求n ≥2,n ∈N *. 要点二 等差中项(1)条件:如果a ,A ,b 成等差数列. (2)结论:那么A 叫做a 与b 的等差中项. (3)满足的关系式是________. 【重点概要】在等差数列{a n }中,任取相邻的三项a n -1,a n ,a n +1(n ≥2,n ∈N *),则a n 是a n -1与a n +1的等差中项. 反之,若a n -1+a n +1=2a n 对任意的n ≥2,n ∈N *均成立,则数列{a n }是等差数列.因此,数列{a n }是等差数列⇔2a n =a n -1+a n +1(n ≥2,n ∈N *).用此结论可判断所给数列是不是等差数列,此方法称为等差中项法.要点三 等差数列的通项公式以a 1为首项,d 为公差的等差数列{a n }的通项公式a n =1(1)a n d +-【重点总结】从函数角度认识等差数列{a n }若数列{a n }是等差数列,首项为a 1,公差为d ,则a n =f(n)=a 1+(n -1)d =nd +(a 1-d). (1)点(n ,a n )落在直线y =dx +(a 1-d)上; (2)这些点的横坐标每增加1,函数值增加d. 【基础自测】1.判断正误(正确的画“√”,错误的画“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( ) (2)等差数列{a n }的单调性与公差d 有关.( )(3)若三个数a ,b ,c 满足2b =a +c ,则a ,b ,c 一定是等差数列.( )(4)一个无穷等差数列{a n }中取出所有偶数项构成一个新数列,公差仍然与原数列相等.( ) 【答案】(1)×(2)√(3)√(4)×2.(多选题)下列数列是等差数列的有( ) A .1,1,1,1,1 B .4,7,10,13,16 C.13,23,1,43,53 D .-3,-2,-1,1,2 【答案】ABC3.已知等差数列{a n }的通项公式a n =3-2n ,则它的公差d 为( )A .2B .3C .-2D .-3 【答案】C【解析】由等差数列的定义,得d =a 2-a 1=-1-1=-2.故选C. 4.在△ABC 中,三内角A 、B 、C 成等差数列,则B 等于________. 【答案】60°【解析】因为三内角A 、B 、C 成等差数列, 所以2B =A +C ,又因为A +B +C =180°, 所以3B =180°,所以B =60°.题型一 等差数列的通项公式 探究1 基本量的计算【例1】(1)在等差数列{a n }中,已知a 6=12,a 18=36,则a n =________. (2)已知数列{a n }为等差数列,a 3=54,a 7=-74,则a 15=________.【答案】(1)2n (2)-314【解析】(1)由题意得⎩⎪⎨⎪⎧ a 1+5d =12a 1+17d =36,⎩⎪⎨⎪⎧解得d =2,a 1=2,∴a n =2+(n -1)×2=2n .(2)法一:(方程组法)由⎩⎨⎧a 3=54,a 7=-74,得⎩⎨⎧a 1+2d =54,a 1+6d =-74,解得⎩⎨⎧a 1=114,d =-34,∴a 15=a 1+(15-1)d =114+14×⎝⎛⎭⎫-34=-314. 法二:(利用a m =a n +(m -n )d 求解)由a 7=a 3+(7-3)d ,即-74=54+4d ,解得d =-34,∴a 15=a 3+(15-3)d =54+12×⎝⎛⎭⎫-34=-314. 探究2 判断数列中的项【例2】100是不是等差数列2,9,16,…的项?如果是,是第几项?如果不是,说明理由. 【解析】∵a n =2+(n -1)×7=7n -5, 由7n -5=100,得n =15, ∴100是这个数列的第15项.探究3 等差数列中的数学文化 【例3】《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把100个面包分给五个人,使每个人所得成等差数列,最大的三份之和的17是最小的两份之和,则最小的一份的量是( )A.116B.103C.56D.53【答案】D【解析】由题意可得中间的那份为20个面包, 设最小的一份为a 1,公差为d ,由题意可得[20+(a 1+3d )+(a 1+4d )]×17=a 1+(a 1+d ),解得a 1=53,故选D.【方法归纳】(1)已知a n ,a 1,n ,d 中的任意三个量,求出第四个量.(2)应用等差数列的通项公式求a 1和d ,运用了方程的思想.一般地,可由a m =a ,a n =b ,得⎩⎪⎨⎪⎧a 1+(m -1)d =aa 1+(n -1)d =b ,求出a 1和d ,从而确定通项公式.(3)若已知等差数列中的任意两项a m ,a n ,求通项公式或其它项时,则运用a m =a n +(m -n )d 较为简捷. 【跟踪训练】(1)等差数列{a n }中,a 1=13,a 2+a 5=4,a n =33,则n 等于( )A .50B .49C .48D .47 【答案】A【解析】由题得2a 1+5d =4,将a 1=13代入得,d =23,则a n =13+23(n -1)=33,故n =50.(2)等差数列{a n }中,已知a 5=10,a 12=31. ①求a 20;②85是不是该数列中的项?若不是,说明原因;若是,是第几项? 【解析】(2)①设数列{a n }的公差为d . 因为a 5=10,a 12=31,由a n =a 1+(n -1)d 得,⎩⎪⎨⎪⎧ a 1+4d =10,a 1+11d =31,解得⎩⎪⎨⎪⎧a 1=-2,d =3. 即a n =-2+3(n -1)=3n -5,则a 20=3×20-5=55. ②令3n -5=85,得n =30,所以85是该数列{a n }的第30项. 题型二 等差数列的判定与证明【例4】已知数列{a n }满足a 1=4且a n =4-4a n -1(n >1),记b n =1a n -2.(1)求证:数列{b n }是等差数列; (2)求数列{a n }的通项公式.【解析】(1)证明:∵b n +1-b n =1a n +1-2-1a n -2=1⎝⎛⎭⎫4-4a n -2-1a n -2=a n 2(a n -2)-1a n -2=a n -22(a n -2)=12又b 1=1a 1-2=12∴数列{b n }是首项为12,公差为12的等差数列.(2)由(1)知,b n =12+(n -1)×12=12n ∵b n =1a n -2∴a n =1b n +2=2n+2.要证{b n }是等差数列,只需证b n +1-b n =常数或b n -b n -1=常数(n ≥2).【变式探究1】将本例中的条件“a 1=4,a n =4-4a n -1”改为“a 1=2,a n +1=2a na n +2”,求a n .【解析】∵a n +1=2a na n +2∴取倒数得:1a n +1=a n +22a n =12+1a n ∴1a n +1-1a n =12,又1a 1=12,∴数列⎩⎨⎧⎭⎬⎫1a n 是首项为12,公差为12的等差数列, ∴1a n =1a 1+(n -1)×12=12+n 2-12=n 2,∴a n =2n . 【方法归纳】定义法判断或证明数列{a n }是等差数列的步骤: (1)作差a n +1-a n ,将差变形;(2)当a n +1-a n 是一个与n 无关的常数时,数列{a n }是等差数列;当a n +1-a n 不是常数,是与n 有关的代数式时,数列{a n }不是等差数列.【跟踪训练】已知数列{a n }中,a 1=1,a n +1=2a n +2n .(1)设b n =a n2n -1,证明:数列{b n }是等差数列.(2)求数列{a n }的通项公式.【解析】(1)证明:因为a n +1=2a n +2n ,所以a n +12n =2a n +2n 2n =a n2n -1+1,所以a n +12n -a n2n -1=1,n ∈N *.又b n =a n2n -1,所以b n +1-b n =1.所以数列{b n }是等差数列,其首项b 1=a 1=1,公差为1. (2)由(1)知b n =1+(n -1)×1=n ,所以a n =2n -1b n =n ·2n -1,经检验,n =1时a 1=1也满足上式. 题型三 等差中项【例5】已知三个数成等差数列,其和为15,其平方和为83,则这三个数为________. 【答案】3,5,7或7,5,3【解析】设此三个数分别为x -d ,x ,x +d , 则⎩⎪⎨⎪⎧(x -d )+x +(x +d )=15(x -d )2+x 2+(x +d )2=83 解得x =5,d =±2.∴所求三个数分别为3,5,7或7,5,3.【总结】三个数成等差数列可设为x -d,x,x+d【变式探究2】已知四个数成等差数列,它们的和为26,中间两项的积为40,求这四个数. 【解析】法一:(设四个变量)设这四个数分别为a ,b ,c ,d ,根据题意,得⎩⎪⎨⎪⎧b -a =c -b =d -c ,a +b +c +d =26,bc =40,解得⎩⎪⎨⎪⎧ a =2,b =5,c =8,d =11或⎩⎪⎨⎪⎧a =11,b =8,c =5,d =2,∴这四个数分别为2,5,8,11或11,8,5,2.法二:(设首项与公差)设此等差数列的首项为a 1,公差为d ,根据题意,得 ⎩⎪⎨⎪⎧a 1+(a 1+d )+(a 1+2d )+(a 1+3d )=26,(a 1+d )(a 1+2d )=40,化简,得⎩⎪⎨⎪⎧4a 1+6d =26,a 21+3a 1d +2d 2=40, 解得⎩⎪⎨⎪⎧ a 1=2,d =3,或⎩⎪⎨⎪⎧a 1=11,d =-3,∴这四个数分别为2,5,8,11或11,8,5,2.法三:(灵活设元)设这四个数分别为a -3d ,a -d ,a +d ,a +3d ,根据题意,得⎩⎪⎨⎪⎧ (a -3d )+(a -d )+(a +d )+(a +3d )=26,(a -d )(a +d )=40,化简,得⎩⎪⎨⎪⎧4a =26,a 2-d 2=40,解得⎩⎨⎧a =132,d =±32.∴这四个数分别为2,5,8,11或11,8,5,2.【小结】四个数成等差数列可设为a -3d ,a -d ,a +d ,a +3d【变式探究3】已知五个数成等差数列,它们的和为5,平方和为859,求这5个数.【解析】设第三个数为a ,公差为d ,则这5个数分别为a -2d ,a -d ,a ,a +d ,a +2d .由已知有 ⎩⎪⎨⎪⎧(a -2d )+(a -d )+a +(a +d )+(a +2d )=5,(a -2d )2+(a -d )2+a 2+(a +d )2+(a +2d )2=859, 整理得⎩⎪⎨⎪⎧ 5a =5,5a 2+10d 2=859.解得⎩⎪⎨⎪⎧a =1,d =±23. 当d =23时,这5个分数分别是-13,13,1,53,73.当d =-23时,这5个数分别是73,53,1,13,-13.综上,这5个数分别是-13,13,1,53,73或73,53,1,13,-13.【方法归纳】当等差数列{a n }的项数n 为奇数时,可设中间的一项为a ,再以d 为公差向两边分别设项,即设为…,a -2d ,a -d ,a ,a +d ,a +2d ,…;当等差数列的项数n 为偶数时,可设中间两项分别为a -d ,a +d ,再以2d 为公差向两边分别设项,即设为…,a -3d ,a -d ,a +d ,a +3d ,….【易错辨析】忽视等差数列中的隐含条件致误【例6】已知{a n }为等差数列,首项为125,它从第10项开始比1大,那么公差d 的取值范围是( )A .d >875B .d <325C.875<d <325D.875<d ≤325 【答案】D【解析】由题意可得a 1=125,且⎩⎪⎨⎪⎧a 10>1a 9≤1即⎩⎨⎧125+9d >1125+8d ≤1解得875<d ≤325,故选D.【易错警示】1. 出错原因(1)错选A ,只看到了a 10>1而忽视了a 9≤1,是审题不仔细而致误; (2)错选C ,误认为a 9<1,是由不会读题,马虎造成错误. 2. 纠错心得认真审题,充分挖掘题目中的隐含条件.一、单选题1.等差数列{}n a 的公差为3,若2a ,4a ,8a 成等比数列,则{}n a 的前2n 项2n S =( ). A .3(21)n n - B .3(21)n n + C .3(1)2n n + D .3(1)2n n - 【答案】B 【分析】根据等差数列与等比数列的性质可得数列的通项公式,进而可得2n S . 【解析】等差数列{}n a 的公差为3,且2a ,4a ,8a 成等比数列,2428a a a ∴=,()()2222618a a a ∴+=+,解得26a =,1233a a ∴=-=,{}∴n a 的前2n 项, 22(21)2332n n n S n -=⋅+⨯ 3(21)n n =+.故选:B .2.已知数列{}n a 满足()()11220n n n n a a a a ++--+=,下列结论正确的是( ) A .当11a =时,10a 的最大值258 B .当11a =时,9a 的最小值384- C .当101a =时,1a 的最小值17- D .当91a =时,1a 的最大值132【答案】C【分析】根据题干中的条件可得:12n n a a +-=或120n n a a ++=,即{}n a 是等差数列或等比数列,A 选项分别把两种情况下的10a 算出来,比较大小,求出10a 的最大值,同样的道理,其他选项也可以判断出来,进而选出正确的选项 【解析】()()11220n n n n a a a a ++--+=则120n n aa +--=或120n n a a ++=A 选项,当120n n a a +--=时,{}n a 是等差数列,公差为2,当11a =时,101911819a a d =+=+= 当120n n a a ++=时,12n na a +=-,{}n a 是等比数列,公比为-2,当11a =时,()9102512a =-=-,10a 的最大值为19,故A 选项错误;B 选项,当120n n a a +--=时,{}n a 是等差数列,公差为2,当11a =时,91811617a a d =+=+=当120n n a a ++=时,12n na a +=-,{}n a 是等比数列,公比为-2,当11a =时,()892256a =-=,9a 的最小值为17,故B 选项错误;C 选项,当120n n a a +--=时,{}n a 是等差数列,公差为2,当101a =时,即1192a +⨯=,解得:117a =- 当120n n a a ++=时,12n n a a +=-,{}n a 是等比数列,公比为-2,当101a =时,即()9112a -=,解得:11512a =-,117512<--,故1a 的最小值为17-,故选项C 正确 D 选项,当120n n a a +--=时,{}n a 是等差数列,公差为2,当91a =时,1161a += ,解得:115a =- 当120n n a a ++=时,12n n a a +=-,{}n a 是等比数列,公比为-2,当91a =时,即()8112a -=,解得:11256a =,此时1a 的最大值为1256,D 选项错误 故选:C3.记n S 为等差数列{}n a 的前n 项和,若235a a +=,728S =,则数列{}n a 的公差为( ) A .1- B .2-C .1D .2【答案】C 【分析】由等差数列性质,747S a =求得44a =,根据项与项之间的关系代入条件求得公差. 【解析】由题知,74728S a ==,则44a =,设数列公差为d ,则234424435a a a d a d d +=-+-=+-=, 解得1d =, 故选:C4.在等差数列{}n a 中,前9项和918S =,266a a +=,则3n a =( ) A .33-n B .35n + C .73n - D .213n -【答案】C 【分析】根据918S =,266a a +=,可求得公差,再利用等差数列的通项公式即可得解. 【解析】 解:()199599182a a S a ===+,52a ∴=,又26426a a a +==,43a ∴=,∴公差541d a a =-=-,()447n a a n d n =+-⋅=-,373n a n ∴=-.故选:C.5.在ABC ∆中,“π3B =”是“角A ,B ,C 成等差数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【答案】C 【分析】若π3B =,则2π23AC B +==,若A ,B ,C 成等差数列,则π3B =,得到答案. 【解析】在ABC ∆中,若π3B =,则2ππ23A CB B +=-==,所以A ,B ,C 成等差数列,充分性成立. 反之,若A ,B ,C 成等差数列,则2B A C =+,因为3πA B C B ++==,所以π3B =,必要性成立.所以“π3B =”是“角A ,B ,C 成等差数列”的充要条件. 故选:C.6.已知数列{}n a 的前n 项和n S ,且{}n a 满足122n n n a a a ++=+,532a a -=,若424S S =,则9a =( ) A .9 B .172C .10D .192【答案】B 【分析】根据122n n n a a a ++=+判断出{}n a 是等差数列,然后将条件化为基本量,进而解出答案. 【解析】由122n n n a a a ++=+可知,{}n a 是等差数列,设公差为d ,所以53221a a d d -==⇒=, 由()1421114642241S S a a a ⇒+=⨯+⇒==,所以9117822a =+=. 故选:B.7.等差数列{}n a 的前n 项和为n S ,若3724a a +=,840S =,则29a a +等于( ) A .44- B .14C .24D .38【答案】D 【分析】根据条件,列出方程组,求出首项和公差即可求解. 【解析】设等差数列{}n a 的公差为d ,由3724a a +=,840S =得112824,82840,a d a d +=⎧⎨+=⎩ 解得144,14,a d =-⎧⎨=⎩则2912938a a a d +=+= 故选:D8.已知等差数列{}n a 的前n 项和为n S ,43a =,1224S =,若i 0j a a +=(i ,j N *∈,且1i j ≤<),则i 的取值集合是( )A .{}1,2,3B .{}1,2,3,4,5C .{}6,7,8D .{}6,7,8,9,10【答案】B 【分析】设公差为d ,结合等差数列的通项公式和求和公式即可求出首项和公差,即可写出数列中的项,从而可选出正确答案. 【解析】设公差为d ,由4133a a d =+=-及121121112242S a d ⨯=+=,解得19a =-,2d =, 所以数列为9-,7-,5-,3-,1-,1,3,5,7,9,11,…,故i 取值的集合为{}1,2,3,4,5. 故选:B .二、多选题9.将2n 个数排成n 行n 列的一个数阵,如下图: 1112131n a a a a ⋯⋯ 2122232n a a a a ⋯⋯ 3132333n a a a a ⋯⋯ ……123n n n nn a a a a ⋯⋯ 该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知1113612,1a a a ==+,记这2n 个数的和为S .下列结论正确的有( ) A .3m =B .767173a =⨯C .1()313j ij a i -=⨯-D . (13)131(4)n S n n =-+ 【答案】ACD 【分析】根据题意,利用等差数列和等比数列的通项公式以及求和公式,对各选项进行判断,即可得到结果. 【解析】由11136121a a a ==+,,可得22131161112525a a m m a a m m ===+=+,,所以22251m m =++,解得3m =或12m =- (舍去),所以选项A 是正确的; 又由6666761(253)3173a a m ==+⨯⨯=⨯,所以选项B 不正确;又由1111111[()][2]11333()(3)1j j j j ij i a a m a i m m i i ----==+-⋅⋅=+-⨯⨯=-⨯,所以选项C 是正确的;又由这2n 个数的和为S ,则111212122212()()()n n n n nn S a a a a a a a a a =++⋯++++⋯++⋯+++⋯+()()()11211131313...131313n n n n a a a ---=+++--- ()()()()23111 313131224n n n n n n +-=-⨯=+-,所以选项D 是正确的; 故选:ACD.10.设等差数列{a n }的前n 项和为S n .若S 3=0,a 4=8,则( )A .S n =2n 2-6nB .S n =n 2-3nC .a n =4n -8D .a n =2n【答案】AC【分析】根据已知条件求得1,a d ,由此求得,n n a S ,从而确定正确选项,【解析】 依题意3408S a =⎧⎨=⎩, 1113304,438a d a d a d +=⎧⇒=-=⎨+=⎩, 所以2148,262n n n a a a n S n n n +=-=⋅=-. 故选:AC11.已知等差数列{a n }中,a 1=3,公差为d (d ∈N *),若2021是该数列的一项,则公差d 不可能是( ) A .2B .3C .4D .5【答案】BCD【分析】由已知得2021=3+(n -1)d ,即有n =2018d +1,因为d ∈N *,所以d 是2 018的约数,故d 不可能是3,4和5.由此可得选项.【解析】解:由2021是该数列的一项,即2021=3+(n -1)d ,所以n =2018d+1,因为d ∈N *,所以d 是2 018的约数,故d 不可能是3,4和5.故选:BCD.第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题12.设n S 为正项数列{n a }的前n 14n a +,则通项公式n a =___________ 【答案】21()4n n N +-∈ 【分析】当1n =时,求得114a =;当2n ≥时,可得21()4n n S a =+,则2111()4n n S a --=+, 两式相减得到112n n a a --=,结合等差数列的定义,即可求解其通项公式. 【解析】由n S 为正项数列{n a }的前n 14n a =+,当1n =114a =+,可得2111()4a a =+,解得114a =, 当2n ≥时,可得21()4n n S a =+,则2111()4n n S a --=+, 两式相减,可得1-11()()02n n n n a a a a -+--=, 因为0n a >,所以112n n a a --=, 所以数列{n a }是以12为公差,以14为首项的等差数列, 所以1121(1)424n n a n -=+-=. 故答案为:21()4n n N +-∈. 13.在等差数列{a n }中,a 3=0.如果a k 是a 6与a k +6的等比中项,那么k =________.【答案】9【分析】根据等比数列的性质以及等差数列的通项公式求解即可.【解析】设等差数列{a n }的公差为d ,由题意得a 3=a 1+2d =0,∈a 1=-2d .又∈a k 是a 6与a k +6的等比中项,266k k a a a +∴=,即[a 1+(k -1)d ]2=(a 1+5d )·[a 1+(k +5)d ],[(k -3)d ]2=3d ·(k +3)d ,解得k =9或k =0(舍去). 故答案为:914.在等差数列{a n }中,a 1+a 5=2,a 3+a 7=8,则a 11+a 15=________.【答案】32【分析】由a 1+a 5=2,a 3+a 7=8,两式相减求得公差即可.【解析】因为a 1+a 5=2,a 3+a 7=8,所以(a 3+a 7)-(a 1+a 5)=4d =6,解得d =32, 所以a 11+a 15=(a 1+a 5)+20d =2+20×32=32. 故答案为:32四、解答题15.已知等差数列{}n a 的前n 项和为n S ,且28S =,9411S a =. (1)求n a ;(2)若3n n S a =+2 ,求n .【答案】(1)21n a n =+(2)4n =【分析】(1)设公差为d ,根据28S =,9411S a =,列出方程组,求得首项跟公差,即可得出答案; (2)利用等差数列前n 项和的公式求得n S ,再根据3n n S a =+2 ,即可的解. (1)解:设公差为d ,由已知294811S S a =⎧⎨=⎩, 得:()11128936113a d a d a d +=⎧⎨+=+⎩,解得:132a d =⎧⎨=⎩, 所以21n a n =+;(2)解:()232122n n n S n n ++==+, 因为3n n S a =+2 ,即()223212n n n +=++,得2450n n --=,解得4n =,或1n =-(舍去), 所以4n =.16.已知等差数列{}n a 的前n 项和为n S ,1646,2a a a +==. (1)求数列{}n a 的通项公式; (2)求n S 的最大值及相应的n 的值.【答案】(1)102n a n =-(2)当4n =或5n =时,n S 有最大值是20【分析】(1)用等差数列的通项公式即可. (2)用等差数列的求和公式即可. (1)在等差数列{}n a 中,∈1646,2a a a +==, ∈1125632a d a d +=⎧⎨+=⎩, 解得182a d =⎧⎨=-⎩, ∈1(1)102n a n d a n ==--+;(2)∈18,2a d ==-,1(1)2n n n S na d -=+ ∈1(1)(1)8(2)22n n n n n S na d n --=+=+-29n n =-+ , ∈当4n =或5n =时,n S 有最大值是20。
高中数学选择性必修二 4 2 2第1课时等差数列的前n项和-练习

第四章数列4.2 等差数列4.2.2 等差数列的前n 项和公式第1课时 等差数列的前n 项和课后篇巩固提升基础达标练1.已知S n 为等差数列{a n }的前n 项和,a 2+a 5=4,S 7=21,则a 7的值为( )A.6B.7C.8D.9{a n }的公差为d ,则{a 1+d +a 1+4d =4,7a 1+7×62d =21,解得{a 1=-3,d =2,所以a 7=a 1+6d=-3+6×2=9,故选D .2.(多选)(2020山东高三月考)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则下列正确的是( )A.a 1=-2B.a 1=2C.d=4D.d=-4{a 4+a 5=2a 1+7d =24,S 6=6a 1+15d =48,所以{a 1=-2,d =4.故选AC .3.已知数列{a n }的前n 项和S n =n 2,则a n 等于( )A.nB.n 2C.2n+1D.2n-1n=1时,a 1=S 1=1;当n ≥2时,a n =S n -S n-1=n 2-(n-1)2=2n-1,且a 1=1适合上式,故a n =2n-1(n ∈N *).4.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里,良马先至齐,复还迎驽马,二马相逢,问:相逢时良马比驽马多行( ) A.1 125里 B.920里 C.820里 D.540里{a n },则{a n }是以103为首项,以13为公差的等差数列,其前n 项和为A n ,驽马每天所行路程为{b n },则{b n }是以97为首项,以-12为公差的等差数列,其前n 项和为B n ,设共用n 天二马相逢,则A n +B n =2×1 125,所以103n+n (n -1)2×13+97n+n (n -1)2(-12)=2 250, 化简得n 2+31n-360=0,解得n=9.A 9=103×9+9×82×13=1 395,B 9=2 250-1 395=855,A 9-B 9=1 395-855=540.5.已知数列{a n }的通项公式为a n =2n+1,令b n =1n (a 1+a 2+…+a n ),则数列{b n }的前10项和T 10=( )A.70B.75C.80D.85a n =2n+1, ∴数列{a n }是等差数列,首项a 1=3,其前n 项和S n =n (a 1+a n )2=n (3+2n+1)2=n 2+2n ,∴b n =1n S n =n+2,∴数列{b n }也是等差数列,首项b 1=3,公差为1.∴其前10项和T 10=10×3+10×92×1=75,故选B .6.已知等差数列{a n}中,a10=13,S9=27,则公差d=,a100=.9=9a5=27⇒a5=3,d=a10-a55=13-35=2,∴a100=a10+90d=13+90×2=193.1937.(2019全国Ⅲ,理14)记S n为等差数列{a n}的前n项和.若a1≠0,a2=3a1,则S10S5=.{a n}的公差为d.∵a1≠0,a2=3a1,∴a1+d=3a1,即d=2a1.∴S10S5=10a1+10×92d5a1+5×42d=100a125a1=4.8.已知数列{a n}的前n项和为S n=n·2n-1,则a3+a4+a5=.3+a4+a5=S5-S2=(5×25-1)-(2×22-1)=152.9.设数列{a n}的前n项和为S n,点(n,S nn)(n∈N*)均在函数y=3x-2的图象上,求数列{a n}的通项公式.,得S nn=3n-2,即S n=3n2-2n.当n≥2时,a n=S n-S n-1=(3n2-2n)-[3(n-1)2-2(n-1)]=6n-5.因为a1=S1=1,满足a n=6n-5,所以a n=6n-5(n∈N*).10.已知数列{a n}满足a1=1,a2=2,a n+2=2a n+1-a n+2.(1)设b n=a n+1-a n,证明{b n}是等差数列;(2)求{a n}的通项公式.∵a n+2=2a n+1-a n+2,∴a n+2-a n+1=a n+1-a n+2,即b n+1=b n+2.又b1=a2-a1=2-1=1,∴数列{b n}是以1为首项,2为公差的等差数列.(2)由(1)可知,a n+1-a n=1+2(n-1)=2n-1,∴a n-a n-1=2(n-1)-1,a n-1-a n-2=2(n-2)-1,……a2-a1=2×1-1,累加,得a n-a1=2×n(n-1)-(n-1)=n2-2n+1,2∴a n=a1+n2-2n+1=n2-2n+2,∴数列{a n}的通项公式为a n=n2-2n+2.能力提升练1.在等差数列{a n}中,2a4+a7=3,则数列{a n}的前9项和S9等于()A.3B.6C.9D.12{a n}的公差为d,因为2a4+a7=3,所以2(a1+3d)+a1+6d=3,整理,得a1+4d=1,即a5=1,所以S 9=9(a 1+a 9)2=9a 5=9.2.若公差不为0的等差数列{a n }的前21项的和等于前8项的和,且a 8+a k =0,则正整数k 的值为( )A.20B.21C.22D.23{a n }的前n 项和为S n ,由题意,得S 21=S 8,即a 9+a 10+…+a 21=0.根据等差数列的性质,得13a 15=0,即a 15=0.故a 8+a 22=2a 15=0,即k=22.故选C .3.已知等差数列{a n },a 2=6,a 5=15,若b n =a 2n ,则数列{b n }的前5项和等于( )A .30B .45C .90D .186{a n }易得公差d 1=3.又b n =a 2n ,所以{b n }也是等差数列,公差d 2=6.故S 5=b 1+b 2+b 3+b 4+b 5=a 2+a 4+a 6+a 8+a 10=5×6+5×42×6=90.4.(2020河北正定中学高一月考)设等差数列{a n }的前n 项和是S n ,已知S 14>0,S 15<0,下列选项正确的是( ) A.a 1>0,d<0B.a 7+a 8>0C.S 6与S 7均为S n 的最大值D.a 8<0,有S 14=14×(a 1+a 14)2=7(a 1+a 14)=7(a 7+a 8)>0,即a 7+a 8>0,S 15=15×(a 1+a 15)2=15a 8<0,即a 8<0,则a 7>0;故等差数列{a n }的前7项为正数,从第8项开始为负数,则a 1>0,d<0.则有S7为S n的最大值.故A,B,D正确.故选ABD.5.已知数列{a n}的前n项和为S n,且S n=2a n-1(n∈N*),则a5=.n≥2时,由S n=2a n-1,得S n-1=2a n-1-1.两式相减,得a n=2a n-2a n-1,所以a n=2a n-1.因为a1=2a1-1,所以a1=1,故a5=2a4=22a3=23a2=24a1=16.6.(2019北京,理10)设等差数列{a n}的前n项和为S n.若a2=-3,S5=-10,则a5=,S n的最小值为.{a n}中,由S5=5a3=-10,得a3=-2,又a2=-3,公差d=a3-a2=1,a5=a3+2d=0,由等差数列{a n}的性质得当n≤5时,a n≤0,当n≥6时,a n大于0,所以S n的最小值为S4或S5,即为-10.-107.已知数列{a n}的前n项和为S n(S n≠0),且满足a n+2S n·S n-1=0(n≥2),a1=12.(1)求证:{1S n}是等差数列;(2)求数列{a n}的通项公式.-a n=2S n S n-1(n≥2),∴-S n+S n-1=2S n S n-1(n≥2).又S n≠0(n=1,2,3,…),∴1S n −1S n-1=2.又1S1=1a1=2,∴{1S n}是以2为首项,2为公差的等差数列.(1)可知1S n =2+(n-1)·2=2n,∴S n=12n.当n ≥2时,a n =S n -S n-1=12n −12(n -1)=-12n (n -1)或当n ≥2时,a n =-2S n S n-1=-12n (n -1);当n=1时,S 1=a 1=12.故a n ={12,n =1,-12n (n -1),n ≥2. 素养培优练设S n 为数列{a n }的前n 项和,S n =λa n -1(λ为常数,n=1,2,3,…).(1)若a 3=a 22,求λ的值.(2)是否存在实数λ,使得数列{a n }是等差数列?若存在,求出λ的值;若不存在,请说明理由.因为S n =λa n -1,所以a 1=λa 1-1,a 2+a 1=λa 2-1,a 3+a 2+a 1=λa 3-1. 由a 1=λa 1-1,可知λ≠1,所以a 1=1λ-1,a 2=λ(λ-1)2,a 3=λ2(λ-1)3. 因为a 3=a 22,所以λ2(λ-1)3=λ2(λ-1)4,解得λ=0或λ=2.(2)假设存在实数λ,使得数列{a n }是等差数列,则2a 2=a 1+a 3,由(1)可得2λ(λ-1)2=1λ-1+λ2(λ-1)3, 所以2λ(λ-1)2=2λ2-2λ+1(λ-1)3=2λ(λ-1)2+1(λ-1)3,即1(λ-1)3=0,显然不成立,所以不存在实数λ,使得数列{a n }是等差数列.。
人教版高中数学选择性必修第二册4.2.1等差数列的性质及综合问题 同步作业(含解析)

人教版高中数学选择性必修第二册4.2.1等差数列的性质及综合问题同步作业(原卷版)1.已知在等差数列{a n}中,a7+a9=16,a4=1,则a12=()A.15B.30C.31D.642.在等差数列{a n}中,a2+a5+a8=9,那么关于x的方程x2+(a4+a6)x+10=0() A.无实根B.有两个相等的实根C.有两个不等实根D.不能确定有无实根3.如果等差数列{a n}中,a3+a4+a5=12,那么a1+a2+…+a7=()A.14B.21C.28D.354.设{a n},{b n}都是等差数列,且a1=25,b1=75,a2+b2=100,则a37+b37=() A.0B.37C.100D.-375.在等差数列{a n}中,若a4+a6+a8+a10+a12=120,则2a10-a12=()A.20B.22C.24D.286.在等差数列{a n}中,a3+a12=60,a6+a7+a8=75,则()A.a n=10n+45B.a n=6n-24C.a n=10n-45D.a n=6n+247.【多选题】已知等差数列{a n}满足a1+a2+a3+…+a101=0,则下列结论中,不正确的有()A.a1+a101>0B.a2+a100<0C.a3+a100≤0D.a51=08.等差数列{a n}的前三项依次为x,2x+1,4x+2,则它的第5项为________.9.在等差数列{a n}中,a3=7,a5=a2+6,则a6=________.10.已知{a n}为等差数列,a15=8,a60=20,则a75=________.11.设数列{a n}是递增等差数列,前三项的和为12,前三项的积为48,则它的首项为() A.1B.2C .4D .612.无穷等差数列{a n }的公差为d ,首项为a 1,则它有且仅有有限个负项的条件是()A .a 1>0,d >0B .a 1>0,d <0C .a 1<0,d >0D .a 1<0,d<013.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共为3升,下面3节的容积共4升,则第5节的容积为________升.14.已知成等差数列的四个数之和为26,第二个数与第三个数之积为40,求这四个数.15.若关于x 的方程x 2-x +a =0与x 2-x +b =0(a ≠b)的四个根可组成首项为14的等差数列,则a +b 的值是()A.38B.1124C.1324D.317216.已知数列{a n }为等差数列且a 1+a 7+a 13=4π,则tan(a 2+a 12)=()A.3B .±3C .-33D .-317.设公差为-2的等差数列{a n }满足a 1+a 4+a 7+…+a 97=50,那么a 3+a 6+a 9+…+a 99=()A .-182B .-78C .-148D .-8218.已知等差数列{a n }中,a 1+a 4+a 7=39,a 2+a 5+a 8=33,则a 3+a 6+a 9=________.1.已知不等式x 2-2x -3<0的整数解构成等差数列{a n }的前三项,则数列{a n }的第四项为()A .3B .-1C .2D .3或-12.已知数列{a n }对任意的n ∈N *,点P n (n ,a n )都在直线y =2x +1上,则{a n }为()A .公差为2的等差数列B .公差为1的等差数列C .公差为-2的等差数列D .非等差数列人教版高中数学选择性必修第二册4.2.1等差数列的性质及综合问题同步作业(解析版)1.已知在等差数列{a n}中,a7+a9=16,a4=1,则a12=()A.15B.30C.31D.64答案A解析a7+a9=a4+a12,∴a12=16-1=15.2.在等差数列{a n}中,a2+a5+a8=9,那么关于x的方程x2+(a4+a6)x+10=0() A.无实根B.有两个相等的实根C.有两个不等实根D.不能确定有无实根答案A解析∵a4+a6=a2+a8=2a5,即3a5=9,∴a5=3,方程为x2+6x+10=0,无实根.3.如果等差数列{a n}中,a3+a4+a5=12,那么a1+a2+…+a7=()A.14B.21C.28D.35答案C解析由等差数列的性质知,a3+a4+a5=3a4=12⇒a4=4,故a1+a2+a3+…+a7=(a1+a7)+(a2+a6)+(a3+a5)+a4=7a4=28.4.设{a n},{b n}都是等差数列,且a1=25,b1=75,a2+b2=100,则a37+b37=() A.0B.37C.100D.-37答案C解析∵{a n},{b n}都是等差数列,∴{a n+b n}也是等差数列.∵a1+b1=25+75=100,a2+b2=100,∴{a n+b n}的公差为0,∴a37+b37=100.5.在等差数列{a n}中,若a4+a6+a8+a10+a12=120,则2a10-a12=()A.20B.22C.24D.28答案C解析∵a4+a6+a8+a10+a12=5a8=120,∴a8=24.又a8,a10,a12成等差数列,∴2a10-a12=a8=24.6.在等差数列{a n}中,a3+a12=60,a6+a7+a8=75,则()A.a n=10n+45B.a n=6n-24C.a n=10n-45D.a n=6n+24答案C解析∵a6+a7+a8=3a7=75,∴a7=25.∴a3+a12=a7+a8=60,∴a8=60-25=35.∴公差d=a8-a7=10.∴a n=a7+(n-7)d=25+(n-7)·10=10n-45.7.【多选题】已知等差数列{a n}满足a1+a2+a3+…+a101=0,则下列结论中,不正确的有()A.a1+a101>0B.a2+a100<0C.a3+a100≤0D.a51=0答案ABC8.等差数列{a n}的前三项依次为x,2x+1,4x+2,则它的第5项为________.答案4解析2(2x+1)=x+(4x+2),∴x=0,∴a1=0,a2=1,d=a2-a1=1,∴a5=a1+4d=4.9.在等差数列{a n}中,a3=7,a5=a2+6,则a6=________.答案13解析由等差数列的性质有a2+a6=a3+a5,则a6=a3+a5-a2=7+6=13.10.已知{a n}为等差数列,a15=8,a60=20,则a75=________.答案24解析a15,a30,a45,a60,a75成等差数列,公差d=20-84-1=4,∴a75=8+(5-1)×4=24.11.设数列{a n}是递增等差数列,前三项的和为12,前三项的积为48,则它的首项为() A.1B.2C.4D.6答案B解析设前三项为a-d,a,a+d,则由a -d +a +a +d =12知a =4.又由(4-d)×4×(4+d)=48知d 2=4,∵{a n }为递增数列,∴d =2.∴首项为4-2=2.12.无穷等差数列{a n }的公差为d ,首项为a 1,则它有且仅有有限个负项的条件是()A .a 1>0,d >0B .a 1>0,d <0C .a 1<0,d >0D .a 1<0,d<0答案C13.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共为3升,下面3节的容积共4升,则第5节的容积为________升.答案6766解析设竹子自上而下各节的容积依次为a 1,a 2,…,a 9,由题意可得a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4,设等差数列{a n }的公差为d ,则有4a 1+6d =3①,3a 1+21d =4②,由①②可得d =766,a 1=1322,所以a 5=6766.14.已知成等差数列的四个数之和为26,第二个数与第三个数之积为40,求这四个数.解析设这四个数为a -3d ,a -d ,a +d ,a +3d,则由题意,得a -3d )+(a -d )+(a +d )+(a +3d )=26,a -d )(a +d )=40,=132,=32=132,=-32.故所求四个数为2,5,8,11或11,8,5,2.15.若关于x 的方程x 2-x +a =0与x 2-x +b =0(a ≠b)的四个根可组成首项为14的等差数列,则a +b 的值是()A.38B.1124C.1324D.3172答案D16.已知数列{a n }为等差数列且a 1+a 7+a 13=4π,则tan(a 2+a 12)=()A.3B .±3C.-33D.-3答案D解析由题意可得3a7=4π,∴a7=4π3,∴tan(a2+a12)=tan2a7=tan8π3=tan2π3=- 3.17.设公差为-2的等差数列{a n}满足a1+a4+a7+…+a97=50,那么a3+a6+a9+…+a99=()A.-182B.-78C.-148D.-82答案D18.已知等差数列{a n}中,a1+a4+a7=39,a2+a5+a8=33,则a3+a6+a9=________.答案27解析a3+a6+a9=2(a2+a5+a8)-(a1+a4+a7)=2×33-39=27.1.已知不等式x2-2x-3<0的整数解构成等差数列{a n}的前三项,则数列{a n}的第四项为()A.3B.-1C.2D.3或-1答案D解析∵x2-2x-3<0,∴-1<x<3,∴a1=0,a2=1,a3=2,a4=3或a1=2,a2=1,a3=0,a4=-1.2.已知数列{a n}对任意的n∈N*,点P n(n,a n)都在直线y=2x+1上,则{a n}为() A.公差为2的等差数列B.公差为1的等差数列C.公差为-2的等差数列D.非等差数列答案A解析a n=2n+1,∴a n+1-a n=2.故选A.。
高中数学选择性必修二 4 2 1 等差数列新(含答案)

课时同步练4.2.1 等差数列(2)一、单选题1.在等差数列{}n a 中,若2a =4,4a =2,则6a =( )A .-1B .0C .1D .6【答案】B【解析】在等差数列{}n a 中,若244,2a a ==,则()()4266114222a a a a =+=+=,解得60a =, 故选B.2.在等差数列{}n a 中,157913100a a a a a ++++=,6212a a -=,则1a =( )A .1B .2C .3D .4【答案】B【解析】因为157913100a a a a a ++++=,所以75100a =,即720a =, 设等差数列{}n a 的公差为d ,又6212a a -=,所以412d =,故3d =,所以17620182a a d =-=-= 故选B .3.在数列{a n }=,a 1=8,则数列{a n }的通项公式为( )A .a n =2(n +1)2B .a n =4(n +1)C .a n =8n 2D .a n =4n (n +1)【答案】A=,=所以==的等差数列,(1)n =-(n =+所以22(1)n a n =+.故选A.4.等差数列{a n }中,a 4+a 8=10,a 10=6,则公差d 等于( )A .14B .12C .2D .-12【答案】A【解析】在等差数列{a n }中,由a 4+a 8=10,得2a 6=10,a 6=5. 又a 10=6,则10665110644a a d --===-.故选A .5.在数列{}n a 中,12a =,1221n n a a +-=,则101a 的值为( )A .52B .51C .50D .49【答案】A【解析】由题意,数列{}n a 满足1221n n a a +-=,即112n n a a +-=,又由12a =,所以数列{}n a 首项为2,公差为12的等差数列, 所以101111002100522a a d =+=+⨯=, 故选A .6.等差数列{}n a 中,2nna a 是一个与n 无关的常数,则该常数的可能值的集合为( ) A .{}1B .112⎧⎫⎨⎬⎩⎭,C .12⎧⎫⎨⎬⎩⎭D .10,,12⎧⎫⎨⎬⎩⎭【答案】B【解析】设公差为d ,211n n n n na a n a a nd d a ==++ 显然d =0时,是一个与n 无关的常数,等于1;0d ≠时,需使n n a 是一个与n 无关的常数;即对于任意n ∈+N n na 等于同一个常数;则必有,n a dn =212n n a a =. 故选B7.下列说法中正确的是( )A .若a ,b ,c 成等差数列,则222,,a b c 成等差数列B .若a ,b ,c 成等差数列,则222log ,log ,log a b c 成等差数列C .若a ,b ,c 成等差数列,则a +2,b +2,c +2成等差数列D .若a ,b ,c 成等差数列,则2,2,2a b c 成等差数列【答案】C【解析】对于A 选项,1,2,3成等差数列,但1,4,9不成等差数列;对于B 选项,1,2,3成等差数列,但222log 1,log 2,log 3为20,1,log 3不成等差数列.对于D 选项, 1,2,3成等差数列,但232,2,2不成等差数列. 故选C.8.一个等差数列的前4项是a ,x ,b ,2x ,则ab等于( ) A .14B .12C .13D .23【答案】C【解析】∵等差数列的前4项是a ,x ,b ,2x ,∴b x x a +=+2,解得a b x -=. 又()()a b a b a x a a x a b 32222-=-+-=+-=-+=.∴a b 3=,∴31=b a . 故选C .9.已知无穷数列{}n a 和{}n b 都是等差数列,其公差分别为k 和h ,若数列{}n n a b 也是等差数列,则( )A .220h k +=B .0hk =C .h k ,可以是任何实数D .不存在满足条件的实数h 和k【答案】B【解析】因为无穷数列{}n a 和{}n b 都是等差数列,其公差分别为k 和h ,且数列{}n n a b 也是等差数列,所以2211332a b a b a b =+,即1111112()()(2)(2)a k b h a b a k b h ++=+++,整理得111111112222224a b a h b k kh a b a h b k hk +++=+++,即0hk =, 故选B .10.在等差数列{}n a 中,如果123440,60a a a a +=+=,那么78a a +=( )A .95B .100C .135D .80【答案】B【解析】由等差数列的性质可知:1234a a a a ++,,56a a +,78a a +构成新的等差数列,()()()()781234124140320100a a a a a a a a ⎡⎤∴+=++-+-+=+⨯=⎣⎦故选B11.若函数y =f (x )满足:集合A ={f (n )|n ∈N *}中至少有三个不同的数成等差数列,则称函数f (x )是“等差源函数”,则下列四个函数中,“等差源函数”的个数是( )①y =2x +1;②y =log 2x ;③y =2x +1;④y =sin44x ππ+() A .1B .2C .3D .4【答案】C【解析】①y =2x +1,n ∈N *,是等差源函数;②因为log 21,log 22,log 24构成等差数列,所以y =log 2x 是等差源函数;③y =2x +1不是等差源函数,因为若是,则2(2p +1)=(2m +1)+(2n +1),则2p +1=2m +2n ,所以2p +1-n =2m -n +1,左边是偶数,右边是奇数,故y =2x +1不是等差源函数;④y =sin 44x ππ⎛⎫+⎪⎝⎭是周期函数,显然是等差源函数.故选C.12.已知数列{}n a 中,11a =,230a =,1122n n n a a a +-=++(*n N ∈且2n ≥),则数列{}n a 的最大项的值是( )A .225B .226C .75D .76【答案】B【解析】1122n n n a a a +-=++,∴11()()2n n n n a a a a +----=-,数列1{}n n a a +-是公差为2-的等差数列,121,30a a ==,2129a a ∴-=,161529(151)(2)10a a ∴-=+-⨯-=>,1716a a -=29(161)(2)10+-⨯-=-<,又数列1{}n n a a +-是单调递减数列,∴数列1{}n n a a +-的前15项和最大,即2132161516()()()1a a a a a a a -+-++-=-最大,∴数列{}n a 的最大项是第16项16a ,又16151411529(2)2252a ⨯-=⨯+⨯-=,16226a ∴=, ∴数列{}n a 的最大项的值是226,故选B .二、填空题13.ABC 的三个内角A ,B ,C 的大小成等差数列,则B =______.【答案】60︒【解析】因为三角形三内角,,A B C 成等差数列,所以218060A C B B B ︒︒+==-⇒= , 故填60︒.14.在等差数列{}n a 中,已知311a =,85a =,则n a =______.【答案】67355n -+ 【解析】依题意得1121175a d a d +=⎧⎨+=⎩,解得1676,55a d ==-,故数列的通项公式为67355n a n =-+. 故填67355n -+ 15.设数列{}n a ,{}n b 都是等差数列,且110a =,190b =,22100a b +=,那么数列{}n n a b +的第2018项为______。
人教A版高中数学选择性必修第二册4.2等差数列 经典例题及配套练习题

4.2 等差数列4.2.1等差数列的概念例1(1)已知等差数列*a n+的通项公式为a n=5−2n,求*a n+的公差和首项;(2)求等差数列8,5,2,…的第20项.分析:(1)已知等差数列的通项公式,只要根据等差数列的定义,由a n−a n;1=d即可求出公差d;(2)可以先根据数列的两个已知项求出通项公式,再利用通项公式求数列的第20项.解:(1)当n⩾2时,由*a n+的通项公式a n=5−2n,可得a n;1=5−2(n−1)=7−2n.于是d=a n−a n;1=(5−2n)−(7−2n)=−2.把n=1代入通项公式a n=5−2n,得a1=5−2×1=3.所以,*a n+的公差为−2,首项为3.(2)由已知条件,得d=5−8=−3.把a1=8,d=−3代入a n=a1+(n−1)d,得a n=8−3(n−1)=11−3n.把n=20代入上式,得a20=11−3×20=−49.所以,这个数列的第20项是−49.例2 −401是不是等差数列−5,−9,−13,……的项?如果是,是第几项?分析:先求出数列的通项公式,它是一个关于n的方程,再看−401是否能使这个方程有正整数解.解:由a1=−5,d=−9−(−5)=−4,得这个数列的通项公式为a n=−5−4(n−1)=−4n−1.令−4n−1=−401,解这个关于n的方程,得n=100.所以,−401是这个数列的项,是第100项.练习1.判断下列数列是否是等差数列.如果是,写出它的公差.(1)95,82,69,56,43,30;(2)1,1.1,1.11,1.111,1.1111,1.11111;(3)1,-2,3,-4,5,-6;(4)1,1112,56,34,23,712,12.【答案】(1)是等差数列,公差为−13;(2)不是等差数列;(3)不是等差数列;(4)是等差数列,公差为−112.【分析】根据等差数列的定义对(1)、(2)、(3)、(4)逐个分析即可求解.【详解】解:(1)由82−95=69−82=56−69=43−56=30−43=−13,即该数列从第二项起,每一项与前一项之差为同一个常数−13,所以由等差数列的定义知该数列为等差数列,公差为−13;(2)通过观察可知,1.1−1=0.1,1.11−1.1=0.01,⋯该数列从第二项起,每一项与前一项之差不是同一个常数,所以由等差数列的定义知该数列不是等差数列;(3)通过观察可知,−2−1=−3,3−(−2)=5,⋯该数列从第二项起,每一项与前一项之差不是同一个常数,所以由等差数列的定义知该数列不是等差数列;(4)由1112−1=56−1112=34−56=23−34=712−23=12−712=−112,即该数列从第二项起,每一项与前一项之差为同一个常数−112,所以由等差数列的定义知该数列为等差数列,公差为−112.2.求下列各组数的等差中项:(1)647和895;(2)−1213和2435.【答案】(1)771;(2)9215.【分析】由等差中项的定义直接求解即可.【详解】(1)设647和895的等差中项为a,则a=647:8952=771,故647和895的等差中项为771;(2)设−1213和2435的等差中项为b,则b=;1213:24352=9215,故−1213和2435的等差中项为9215.3.已知在等差数列*a n+中,a4+a8=20,a7=12.求a4.【答案】a4=6【分析】设等差数列的公差为d,由等差数列通项公式性质知a4+a8=2a6,求得a6=10,进而求得公差d,即可得解.【详解】设等差数列的公差为d,则在等差数列*a n+中,a 4+a 8=2a 6=20,∴a 6=10∴d =a 7−a 6=12−10=2 ∴a 4=a 7−3d =12−6=64.在7和21中插入3个数,使这5个数成等差数列. 【答案】10.5,14,17.5【分析】利用等差数列通项公式能求出插入的这3个数.【详解】解:∵在7和21之间插入3个数,使这5个数成等差数列, ∴ {a 1=7a 5=a 1+4d =21 ,解得d =3.5, ∴a 2=7+3.5=10.5, a 3=7+2×3.5=14, a 4=7+3×3.5=17.5,∴插入的这3个数为10.5,14,17.5.例3 某公司购置了一台价值为220万元的设备,随着设备在使用过程中老化,其价值会逐年减少.经验表明,每经过一年其价值就会减少d (d 为正常数)万元.已知这台设备的使用年限为10年,超过10年,它的价值将低于购进价值的5%,设备将报废.请确定d 的取值范围.分析:这台设备使用n 年后的价值构成一个数列*a n +.由题意可知,10年之内(含10年),这台设备的价值应不小于(220×5%=)11万元;而10年后,这台设备的价值应小于11万元.可以利用*a n +的通项公式列不等式求解.解:设使用n 年后,这台设备的价值为a n 万元,则可得数列*a n +.由已知条件,得 a n =a n;1−d(n ⩾2).由于d 是与n 无关的常数,所以数列*a n +是一个公差为−d 的等差数列.因为购进设备的价值为220万元,所以a 1=220−d ,于是 a n =a 1+(n −1)(−d)=220−nd . 根据题意,得{a 10⩾11,a 11<11,即{220−10d ⩾11,220−11d <11,解这个不等式组,得19<d⩽20.9.所以,d的取值范围为19<d⩽20.9.例4已知等差数列*a n+的首项a1=2,公差d=8,在*a n+中每相邻两项之间都插入3个数,使它们和原数列的数一起构成一个新的等差数列*b n+.(1)求数列*b n+的通项公式.(2)b29是不是数列*a n+的项?若是,它是*a n+的第几项?若不是,说明理由.分析:(1)*a n+是一个确定的数列,只要把a1,a2表示为*b n+中的项,就可以利用等差数列的定义得出*b n+的通项公式;(2)设*a n+中的第n项是*b n+中的第c n项,根据条件可以求出n 与c n的关系式,由此即可判断b29是否为*a n+的项.解:(1)设数列*b n+的公差为d′.由题意可知,b1=a1,b5=a2,于是b5−b1=a2−a1=8.因为b5−b1=4d′,所以4d′=8,所以d′=2.所以b n=2+(n−1)×2=2n.所以,数列*b n+的通项公式是b n=2n.(2)数列*a n+的各项依次是数列*b n+的第1,5,9,13,…项,这些下标构成一个首项为1,公差为4的等差数列*c n+,则c n=4n−3.令4n−3=29,解得n=8.所以,b29是数列*a n+的第8项.例5 已知数列*a n+是等差数列,p,q,s,t∈N∗,且p+q=s+t.求证a p+a q=a s+a t. 分析:只要根据等差数列的定义写出a p,a q,a s,a t,再利用已知条件即可得证.证明:设数列*a n+的公差为d,则a p=a1+(p−1)d,a q=a1+(q−1)d,a s=a1+(s−1)d,a t=a1+(t−1)d.所以a p+a q=2a1+(p+q−2)d,a s+a t=2a1+(s+t−2)d.因为p+q=s+t,所以a p+a q=a s+a t.练习5.某体育场一角看台的座位是这样排列的:第1排有15个座位,从第2排起每一排都比前一排多2个座位.你能用a n表示第n排的座位数吗?第10排有多少个座位?【答案】a n=2n+13;a10=33【分析】可将每排座位数看成等差数列,列出通项公式.【详解】由条件可知,每排的座位数,看成等差数列,首项a1=15,d=2,则a n=15+(n−1)×2=2n+13,a10=2×10+13=33.综上可知,a n=2n+13,第10排的座位数a10=33个.6.画出数列a n={18,n=1a n;1−3,1<n≤6的图象,并求通过图象上所有点的直线的斜率. 【答案】图象见解析,−3【分析】由递推关系a n={18,n=1a n;1−3,1<n≤6,求出a n(1≤n≤6)值,然后再作出图象,在根据斜率公式即可求出通过图象上所有点的直线的斜率.【详解】根据递推关系a n={18,n=1a n;1−3,1<n≤6,可知a1=18,a2=15,a3=12,a4= 9,a5=6,a6=3,作出数列a n={18,n=1a n;1−3,1<n≤6的图象,如下图所示:通过图象上所有点的直线的斜率a6;a16;1=3;185=−3.7.在等差数列*a n+中,a n=m,a m=n,且n≠m,求a m;n.【答案】2n【分析】利用等差数列的通项公式,解出a1、d,代入a m;n即可. 【详解】设等差数列*a n+的公差为d则{a n=a1+(n−1)d=ma m=a1+(m−1)d=n ⇒{a1=m+n−1d=−1所以a m;n=a1+(m−n−1)d=m+n−1−m+n+1=2n8.已知数列*a n+,*b n+都是等差数列,公差分别为d1,d2,数列*c n+满足c n=a n+2b n.(1)数列*c n+是否是等差数列?若是,证明你的结论;若不是,请说明理由.(2)若*a n+,*b n+的公差都等于2,a1=b1=1,求数列*c n+的通项公式.【答案】(1)数列*c n+是等差数列,证明见解析;(2)c n=6n−3.【分析】(1)根据等差数列的定义即可证得结论;(2)由等差数列的通项公式运算即可得解.【详解】(1)数列*c n+是等差数列,证明:因为数列*a n+,*b n+都是等差数列,公差分别为d1,d2,所以a n=a1+(n−1)d1,b n=b1+(n−1)d2,又因为c n=a n+2b n=(a1+2b1)+(n−1)(d1+2d2),故c n:1−c n=,(a1+2b1)+n(d1+2d2)-−,(a1+2b1)+(n−1)(d1+2d2)-=d1+2d2,而c1=a1+2b1,所以数列*c n+是以a1+2b1为首项,d1+2d2为公差的等差数列.(2)由(1)知:数列*c n+是以a1+2b1为首项,d1+2d2为公差的等差数列,而c1=a1+2b1=3,d1+2d2=6,所以c n=3+6(n−1)=6n−3.9.已知一个无穷等差数列*a n+的首项为a1,公差为d.(1)将数列中的前m项去掉,其余各项组成一个新的数列,这个新数列是等差数列吗?如果是,它的首项和公差分别是多少?(2)取出数列中的所有奇数项,组成一个新的数列,这个新数列是等差数列吗?如果是,它的首项和公差分别是多少?(3)取出数列中所有序号为7的倍数的项,组成一个新的数列,它是等差数列吗?你能根据得到的结论作出一个猜想吗?【答案】(1)是等差数列,首项为a1+md,公差为d;(2)是等差数列,首项为首项为a1,公差为2d;(3)是等差数列,首项为a1+6d,公差为7d;猜想:等差数列每隔一定距离抽取一项后所组成的新数列仍是等差数列.【分析】(1)由题意可知,新的数列为:a m:1, a m:2, a m:3,⋯,可知新等差数列的首项及公差;(2)由题意可知,新的数列为:a1, a3, a5,⋯,a2n:1,⋯,可知新等差数列的首项及公差;(3)由题意可知,新的数列为:a7, a14, a21,⋯,a7n,⋯,可知新等差数列的首项及公差,进而得到猜想.【详解】(1)由题意可知,将无穷等差数列*a n+的前m项去掉,其余各项组成一个新的数列为:a m:1, a m:2, a m:3,⋯,这个新数列是等差数列,首项为a m:1=a1+md,公差为d.(2)由题意可知,取出无穷等差数列*a n+中的所有奇数项,组成一个新的数列为:a1, a3, a5,⋯,a2n:1,⋯,这个新数列是等差数列,首项为a1,公差为2d.(3)由题意可知,取出无穷等差数列*a n+中所有序号为7的倍数的项,组成一个新的数列为:a7, a14, a21,⋯,a7n,⋯,这个新数列是等差数列,首项为a7=a1+6d,公差为a14−a7=7d. 猜想:等差数列每隔一定距离抽取一项后所组成的新数列仍是等差数列.4.2.2等差数列的前n项和公式例6 已知数列*a n+是等差数列.(1)若a1=7,a50=101,求S50;(2)若a1=2,a2=52,求S10;(3)若a1=12,d=−16,S n=−5,求n.分析:对于(1),可以直接利用公式S n=n(a1:a n)2求和;在(2)中,可以先利用a1和a2的值求出d,再利用公式S n=na1+n(n;1)2d求和;(3)已知公式S n=na1+n(n;1)2d中的a1,d和S n,解方程即可求得n.解:(1)因为a1=7,a50=101,根据公式S n=n(a1:a n)2,可得S50=50×(7:101)2=2700.(2)因为a1=2,a2=52,所以d=12.根据公式S n=na1+n(n;1)2d,可得S10=10×2+10×(10;1)2×12=852.(3)把a1=12,d=−16,S n=−5代入S n=na1+n(n;1)2d,得−5=12n+n(n;1)2×.−16/.整理,得n2−7n−60=0.解得n=12,或n=−5(舍去).所以n=12.例7已知一个等差数列*a n+前10项的和是310,前20项的和是1220.由这些条件能确定这个等差数列的首项和公差吗?分析:把已知条件代入等差数列前n项和的公式(2)后,可得到两个关于a1与d的二元一次方程.解这两个二元一次方程所组成的方程组,就可以求得a1和d.解:由题意,知S10=310,S20=1240.。
高中数学选择性必修二 4 2 1第一课时等差数列的概念及通项公式(作业)(含答案)

4.2.1 第一课时等差数列的概念及通项公式[A级基础巩固]1.在等差数列{a n}中,a2=2,a3=4,则a10=()A.12B.14C.16 D.18解析:选D由题意知,公差d=4-2=2,则a1=0,所以a10=a1+9d=18.故选D.2.若等差数列{a n}中,已知a1=13,a2+a5=4,a n=35,则n=()A.50 B.51 C.52 D.53解析:选D依题意,a2+a5=a1+d+a1+4d=4,代入a1=13,得d=23.所以a n=a1+(n-1)d=13+(n-1)×23=23n-13,令a n=35,解得n=53.3.(多选)设x是a与b的等差中项,x2是a2与-b2的等差中项,则a,b的关系正确的是() A.a=-b B.a=3bC.a=b或a=-3b D.a=b=0解析:选AB由等差中项的定义知:x=a+b 2,x2=a2-b2 2,∴a2-b22=⎝⎛⎭⎫a+b22,即a2-2ab-3b2=0.故a=-b或a=3b.4.数列{a n}中,a1=2,2a n+1=2a n+1,则a2 021的值是() A.1 000 B.1 013C .1 011D .1 012解析:选D 由2a n +1=2a n +1,得a n +1-a n =12,所以{a n }是等差数列,首项a 1=2,公差d =12,所以a n =2+12(n -1)=n +32,所以a 2 021=2 021+32=1 012.5.已知数列3,9,15,…,3(2n -1),…,那么81是数列的( ) A .第12项 B .第13项 C .第14项D .第15项解析:选C a n =3(2n -1)=6n -3,由6n -3=81,得n =14. 6.已知等差数列{a n },a n =2-3n ,则数列的公差d =________. 解析:根据等差数列的概念,d =a n +1-a n =-3. 答案:-37.在等差数列{a n }中,a 3=7,a 5=a 2+6,则a 1=________,a 6=________. 解析:设等差数列{a n }的公差为d ,由题意,得⎩⎪⎨⎪⎧a 1+2d =7,a 1+4d =a 1+d +6.解得⎩⎪⎨⎪⎧a 1=3,d =2.∴a n =a 1+(n -1)d =3+(n -1)×2=2n +1. ∴a 6=2×6+1=13. 答案:3 138.数列{a n }是首项为2,公差为3的等差数列,数列{b n }是首项为-2,公差为4的等差数列.若a n =b n ,则n 的值为________.解析:a n =2+(n -1)×3=3n -1,b n =-2+(n -1)×4=4n -6, 令a n =b n ,得3n -1=4n -6,∴n =5. 答案:59.已知数列{a n }满足a 1=2,a n +1=2a na n +2,则数列⎩⎨⎧⎭⎬⎫1a n 是否为等差数列?说明理由.解:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,理由如下:因为a 1=2,a n +1=2a na n +2, 所以1a n +1=a n +22a n =12+1a n , 所以1a n +1-1a n =12(常数).所以⎩⎨⎧⎭⎬⎫1a n 是以1a 1=12为首项,公差为12的等差数列.10.若1b +c ,1a +c ,1a +b是等差数列,求证:a 2,b 2,c 2成等差数列. 证明:由已知得1b +c +1a +b =2a +c ,通分有2b +a +c (b +c )(a +b )=2a +c.进一步变形有2(b +c )(a +b )=(2b +a +c )(a +c ),整理,得a 2+c 2=2b 2, 所以a 2,b 2,c 2成等差数列.[B 级 综合运用]11.(多选)如果a 1,a 2,…,a 8为各项都大于零的等差数列,且公差d ≠0,则( ) A .a 3a 6>a 4a 5 B .a 3a 6<a 4a 5 C .a 3+a 6=a 4+a 5D .a 3a 6=a 4a 5解析:选BC 由通项公式,得a 3=a 1+2d ,a 6=a 1+5d ,那么a 3+a 6=2a 1+7d ,a 3a 6=(a 1+2d )(a 1+5d )=a 21+7a 1d +10d 2,同理a 4+a 5=2a 1+7d ,a 4a 5=a 21+7a 1d +12d 2,显然a 3a 6-a 4a 5=-2d 2<0,故选B 、C.12.已知x ≠y ,且两个数列x ,a 1,a 2,…,a m ,y 与x ,b 1,b 2,…,b n ,y 各自都成等差数列,则a 2-a 1b 2-b 1等于( ) A.m n D .m +1n +1 C.n mD .n +1m +1解析:选D 设这两个等差数列公差分别是d 1,d 2, 则a 2-a 1=d 1,b 2-b 1=d 2.第一个数列共(m +2)项, ∴d 1=y -x m +1;第二个数列共(n +2)项,∴d 2=y -xn +1. 这样可求出a 2-a 1b 2-b 1=d 1d 2=n +1m +1.13.下表中的数阵为“森德拉姆素数筛”,其特点是每行每列都成等差数列,记第i 行第j 列的数为a i ,j (i ,j ∈N *),则a 9,9=______,数82共出现______次.解析:根据题意得,第i 行的等差数列的公差为i ,第j 列等差数列的公差为j ,所以数列{a 1,j }是以2为首项,1为公差的等差数列,可得a 1,j =2+(j -1)×1=j +1,又因为第j 列数组成的数列{a i ,j }是以a 1,j 为首项,j 为公差的等差数列,所以a i ,j =a 1,j +(i -1)j =(j +1)+(i -1)×j =ij +1,所以a 9,9=9×9+1=82.因为a i ,j =ij +1=82,所以ij =81,所以i =81且j =1或i =1且j =81或i =3且j =27或i =27且j =3或i =j =9,所以可得数82共出现5次.答案:82 514.已知数列{a n }满足a 1=1,且a n =2a n -1+2n (n ≥2,且∈N *). (1)求a 2,a 3;(2)证明:数列⎩⎨⎧⎭⎬⎫a n 2n 是等差数列;(3)求数列{a n }的通项公式a n .解:(1)a 2=2a 1+22=6,a 3=2a 2+23=20. (2)证明:∵a n =2a n -1+2n (n ≥2,且n ∈N *), ∴a n 2n =a n -12n -1+1(n ≥2,且n ∈N *), 即a n 2n -a n -12n -1=1(n ≥2,且n ∈N *), ∴数列⎩⎨⎧⎭⎬⎫a n 2n 是首项为a 121=12,公差d =1的等差数列.(3)由(2),得a n 2n =12+(n -1)×1=n -12,∴a n =⎝⎛⎭⎫n -12·2n . [C 级 拓展探究]15.数列{a n }满足a 1=2,a n +1=(λ-3)a n +2n (n ∈N *). (1)当a 2=-1时,求λ及a 3的值;(2)是否存在λ的值,使数列{a n }为等差数列?若存在求其通项公式;若不存在说明理由. 解:(1)∵a 1=2,a 2=-1,a 2=(λ-3)a 1+2,∴λ=32.∴a 3=-32a 2+22,∴a 3=112.(2)不存在λ的值,理由如下: ∵a 1=2,a n +1=(λ-3)a n +2n ,∴a2=(λ-3)a1+2=2λ-4.a3=(λ-3)a2+4=2λ2-10λ+16.若数列{a n}为等差数列,则a1+a3=2a2.即λ2-7λ+13=0.∵Δ=49-4×13<0,∴方程无实数解.∴λ值不存在.∴不存在λ的值使{a n}成等差数列.。
人教版高中数学选择性必修第二册等差数列的前n项和公式第3课时 同步作业(含解析)

人教版高中数学选择性必修第二册4.2.2等差数列的前n 项和公式第3课时同步作业(原卷版)1.等差数列{a n }的前n 项和为S n ,若S 3=-6,S 18-S 15=18,则S 18=()A .36B .18C .72D .92.数列{a n }为等差数列,它的前n 项和为S n ,若S n =(n +1)2+λ,则λ=()A .-2B .-1C .0D .13.一个等差数列的项数为2n ,若a 1+a 3+…+a 2n -1=90,a 2+a 4+…+a 2n =72,且a 1-a 2n =33,则该数列的公差是()A .3B .-3C .-2D .-14.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5=()A .1B .-1C .2D.125.(高考真题·全国Ⅰ)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和.若S 8=4S 4,则a 10=()A.172B.192C .10D .126.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k =()A .9B .8C .7D .67.已知等差数列{a n }的前n 项和为S n ,若a 3+a 7+a 11=6,则S 13=()A .24B .25C .26D .278.已知等差数列{a n }中,a 32+a 82+2a 3a 8=9,且a n <0,则S 10=()A .-1B .-11C .-13D .-159.已知等差数列{a n}中,a2=6,a5=15.若b n=a2n,则数列{b n}的前5项和T n=() A.30B.45C.90D.18610.已知{a n}是等差数列,S n是其前n项和.若a1+a22=-3,S5=10,则a9=________.11.在小于100的自然数中,所有被7除余2的数之和为()A.765B.665C.763D.66312.【多选题】已知在等差数列{a n}中,|a3|=|a9|,公差d<0,S n是数列{a n}的前n项和,则()A.S5>S6B.S5<S6C.a6=0D.S5=S613.设等差数列{a n}满足a3=5,a10=-9.(1)求{a n}的通项公式;(2)求{a n}的前n项和S n及使得S n值最大的n的值.14.数列{a n}中,a1=8,a4=2,且满足a n+2-2a n+1+a n=0(n∈N*).(1)求数列{a n}的通项公式;(2)设S n=|a1|+|a2|+…+|a n|,求S n.15.等差数列{a n}的首项a1=-5,它的前11项的平均值为5,若从中抽去一项,余下的10项的平均值为4.6,则抽出的是()A.a6B.a8C.a9D.a1016.现有200根相同的钢管,把它们堆放成正三角形垛(如图所示),要使剩余的钢管尽可能少,那么剩余钢管的根数为()A.9B.10C.19D.2917.设a1,d为实数,首项为a1公差为d的等差数列{a n}的前n项和为S n,满足S5S6+15=0,则d的取值范围是________.1.设S n为等差数列{a n}的前n项和,若a4=1,S5=10,则当S n取得最大值时,n的值是________.2.已知数列{a n}的前n项和公式为S n=2n2-30n.(1)求数列{a n}的通项公式;(2)求S n的最小值及对应的n值.人教版高中数学选择性必修第二册4.2.2等差数列的前n 项和公式第3课时同步作业(解析版)1.等差数列{a n }的前n 项和为S n ,若S 3=-6,S 18-S 15=18,则S 18=()A .36B .18C .72D .9答案A解析由S 3,S 6-S 3,…,S 18-S 15成等差数列知S 18=S 3+(S 6-S 3)+(S 9-S 6)+…+(S 18-S 15)=6×(-6+18)2=36.2.数列{a n }为等差数列,它的前n 项和为S n ,若S n =(n +1)2+λ,则λ=()A .-2B .-1C .0D .1答案B3.一个等差数列的项数为2n ,若a 1+a 3+…+a 2n -1=90,a 2+a 4+…+a 2n =72,且a 1-a 2n =33,则该数列的公差是()A .3B .-3C .-2D .-1答案B4.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S9S 5=()A .1B .-1C .2 D.12答案A5.(高考真题·全国Ⅰ)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和.若S 8=4S 4,则a 10=()A.172B.192C .10D .12答案B解析由S 8=4S 4得8a 1+8×72×1=4×(4a 1+4×32×1),解得a 1=12,∴a 10=a 1+9d =192.故选B.6.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k =()A .9B .8C .7D .6答案B7.已知等差数列{a n }的前n 项和为S n ,若a 3+a 7+a 11=6,则S 13=()A .24B .25C .26D .27答案C8.已知等差数列{a n }中,a 32+a 82+2a 3a 8=9,且a n <0,则S 10=()A .-1B .-11C .-13D .-15答案D9.已知等差数列{a n }中,a 2=6,a 5=15.若b n =a 2n ,则数列{b n }的前5项和T n =()A .30B .45C .90D .186答案C解析2=a 1+d =6,5=a 1+4d =15,∴a 1=3,d =3,又b n =a 2n =a 1+(2n -1)d =6n ,故S 5=5(b 1+b 5)2=5(6+6×5)2=90.选C.10.已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9=________.答案20解析设等差数列{a n }的公差为d ,则a 1+a 22=a 1+(a 1+d)2=-3,S 5=5a 1+10d =10,解得a 1=-4,d =3,则a 9=a 1+8d =-4+24=20.11.在小于100的自然数中,所有被7除余2的数之和为()A .765B .665C .763D .663答案B12.【多选题】已知在等差数列{a n }中,|a 3|=|a 9|,公差d<0,S n 是数列{a n }的前n 项和,则()A .S 5>S 6B .S 5<S 6C .a 6=0D .S 5=S 6答案CD解析∵d<0,|a3|=|a9|,∴a3>0,a9<0,且a3+a9=2a6=0.∴a6=0,a5>0,a7<0.∴S5=S6.故选CD.13.设等差数列{a n}满足a3=5,a10=-9.(1)求{a n}的通项公式;(2)求{a n}的前n项和S n及使得S n值最大的n的值.解析(1)由a n=a1+(n-1)d及a3=5,a10=-9,得1+2d=5,1+9d=-9,1=9,=-2.所以数列{a n}的通项公式为a n=11-2n.(2)由(1)知,S n=na1+n(n-1)2d=10n-n2.因为S n=-(n-5)2+25,所以当n=5时,S n取得最大值.14.数列{a n}中,a1=8,a4=2,且满足a n+2-2a n+1+a n=0(n∈N*).(1)求数列{a n}的通项公式;(2)设S n=|a1|+|a2|+…+|a n|,求S n.解析(1)由题意,得a n+2-a n+1=a n+1-a n.∴{a n}为等差数列.设公差为d,由题意得2=8+3d⇒d=-2.∴a n=8-2(n-1)=10-2n.(2)若10-2n≥0,则n≤5,当n≤5时,S n=|a1|+|a2|+…+|a n|=a1+a2+…+a n=8+10-2n2×n=9n-n2;当n≥6时,S n=a1+a2+…+a5-a6-a7-…-a n=S5-(S n-S5)=2S5-S n=n2-9n+40.故S n-n2,n≤5,2-9n+40,n≥6.15.等差数列{a n}的首项a1=-5,它的前11项的平均值为5,若从中抽去一项,余下的10项的平均值为4.6,则抽出的是()A.a6B.a8C.a9D.a10答案B解析方法一:据题意S11=55=11a6,∴a6=5.又a 1=-5,∴公差d =5-(-5)6-1=2.设抽出的一项为a n ,则a n =55-46=9.由9=-5+(n -1)·2,得n =8.方法二:∵S 11=5×11=55,又∵S 11=11a 1+11×102d =55d -55,∴55d -55=55,∴d =2,由S 11-a n =4.6×10,得a n =9,又a 1=-5,∴9=-5+2(n -1),得n =8.16.现有200根相同的钢管,把它们堆放成正三角形垛(如图所示),要使剩余的钢管尽可能少,那么剩余钢管的根数为()A .9B .10C .19D .29答案B17.设a 1,d 为实数,首项为a 1公差为d 的等差数列{a n }的前n 项和为S n ,满足S 5S 6+15=0,则d 的取值范围是________.答案(-∞,-22]∪[22,+∞)解析∵S 5S 6+15=0,∴(5a 1+10d)·(6a 1+15d)+15=0,即2a 12+9da 1+10d 2+1=0,故(4a 1+9d)2=d 2-8,∴d 2≥8.则d 的取值范围是(-∞,-22]∪[22,+∞).1.设S n 为等差数列{a n }的前n 项和,若a 4=1,S 5=10,则当S n 取得最大值时,n 的值是________.答案4或52.已知数列{a n }的前n 项和公式为S n =2n 2-30n.(1)求数列{a n }的通项公式;(2)求S n 的最小值及对应的n 值.解析(1)∵S n =2n 2-30n ,∴当n =1时,a 1=S 1=-28;当n ≥2时,a n =S n -S n -1=(2n 2-30n)-[2(n -1)2-30(n -1)]=4n -32.又a 1=-28满足上式,∴a n =4n -32,n ∈N +.(2)S n =2n 2-30n =-2252,∴当n =7或8时,S n 最小,且最小值为S 7=S 8=-112.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题4.2 等差数列知识储备知识点一 等差数列的概念 思考1 给出以下三个数列: (1)0,5,10,15,20. (2)4,4,4,4,…. (3)18,15.5,13,10.5,8,5.5. 它们有什么共同的特征?【答案】从第2项起,每项与它的前一项的差是同一个常数. 思考2 你能从上面几个具体例子中抽象出一般等差数列的定义吗?【答案】如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示,可正可负可为零. 知识点二 等差中项的概念思考1 观察如下的两个数之间,插入一个什么数后三个数就会成为一个等差数列: (1)2,4;(2)-1,5;(3)a ,b ;(4)0,0. 【答案】插入的数分别为3,2,a +b2,0.思考2 如果三个数x ,A ,y 组成等差数列,那么A 叫做x 和y 的等差中项,试用x ,y 表示A . 【答案】∵x ,A ,y 组成等差数列, ∴A -x =y -A ,∴2A =x +y , ∴A =x +y 2.知识点三 等差数列的通项公式思考1 对于等差数列2,4,6,8,…,有a 2-a 1=2,即a 2=a 1+2;a 3-a 2=2,即a 3=a 2+d =a 1+2×2;a 4-a 3=2,即a 4=a 3+d =a 1+3×2. 试猜想a n =a 1+( )×2. 【答案】n -1思考2 若一个等差数列{a n },首项是a 1,公差为d ,你能用a 1和d 表示a n 吗? 【答案】a n =a 1+(n -1)d .知识点四 等差数列通项公式的推广思考1 已知等差数列{a n }的首项a 1和公差d 能表示出通项a n =a 1+(n -1)d ,如果已知第m 项a m 和公差d ,又如何表示通项a n?【答案】设等差数列的首项为a 1,则a m =a 1+(m -1)d , 变形得a 1=a m -(m -1)d ,则a n =a 1+(n -1)d =a m -(m -1)d +(n -1)d =a m +(n -m )d .思考2 由思考1可得d =a n -a 1n -1,d =a n -a mn -m ,你能联系直线的斜率解释一下这两个式子的几何意义吗?【答案】等差数列通项公式可变形为a n =dn +(a 1-d ),其图象为一条直线上孤立的一系列点,(1,a 1),(n ,a n ),(m ,a m )都是这条直线上的点.d 为直线的斜率,故两点(1,a 1),(n ,a n )连线的斜率d =a n -a 1n -1.当两点为(n ,a n ),(m ,a m )时,有d =a n -a mn -m . 知识点五 等差数列的性质思考1 还记得高斯怎么计算1+2+3+…+100的吗? 【答案】利用1+100=2+99=….思考2 推广到一般的等差数列,你有什么猜想?【答案】在有穷等差数列中,与首末两项“等距离”的两项之和等于首项与末项的和.即a 1+a n =a 2+a n -1=a 3+a n -2=….注意到上式中的序号1+n =2+(n -1)=…,有:在等差数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q .特别地,若m +n =2p ,则a n +a m =2a p .知识点六 由等差数列衍生的新数列思考 利用等差数列的定义,尝试证明下列结论: 若{a n }、{b n }分别是公差为d ,d ′的等差数列,则有此处以{a n +a n +k (a n +1+a n +k +1)-(a n +a n +k )=a n +1-a n +a n +k +1-a n +k =2d . ∴{a n +a n +k }是公差为2d 的等差数列.能力检测注意事项:本试卷满分100分,考试时间45分钟,试题共16题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置. 一、单选题1.在项数为2n +1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n 等于( ) A .9 B .10 C .11 D .12【答案】B 【解析】∵1=S n S n+奇偶,∴1651=150n n +.∴n =10,故选B. 2.数列{a n }为等差数列,它的前n 项和为S n ,若S n =(n +1)2+λ,则λ的值是( ) A .-2 B .-1 C .0 D .1【答案】B【解析】等差数列前n 项和S n 的形式为S n =an 2+bn ,∴λ=-1.3.已知等差数列{a n }的前n 项和为S n ,若1200OB a OA a OC =+,且A ,B ,C 三点共线(该直线不过点O ),则S 200等于( ) A .100 B .101 C .200 D .201【答案】A【解析】由A ,B ,C 三点共线得a 1+a 200=1, ∴S 200=2002(a 1+a 200)=100. 4.若数列{a n }的前n 项和为S n =n 2-4n +2,则|a 1|+|a 2|+…+|a 10|等于( ) A .15 B .35 C .66 D .100【答案】C 【解析】易得a n =1,1,25, 2.n n n -=⎧⎨-≥⎩|a 1|=1,|a 2|=1,|a 3|=1, 令a n >0则2n -5>0,∴n ≥3. ∴|a 1|+|a 2|+…+|a 10| =1+1+a 3+…+a 10 =2+(S 10-S 2)=2+[(102-4×10+2)-(22-4×2+2)]=66.5.设数列{a n }是等差数列,若a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,则使S n 达到最大值的n 是( ) A .18B .19C .20D .21【答案】C【解析】∵a 1+a 3+a 5=105=3a 3, ∴a 3=35,∵a 2+a 4+a 6=99=3a 4, ∴a 4=33, ∴d =a 4-a 3=-2,∴a n =a 3+(n -3)d =41-2n , 令a n >0,∴41-2n >0, ∴n <412, ∴n ≤20.6.设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m 等于( ) A .3 B .4 C .5 D .6【答案】C【解析】a m =S m -S m -1=2,a m +1=S m +1-S m =3,所以公差d =a m +1-a m =1,由S m =1()2m m a a +=0,得a 1=-2,所以a m =-2+(m -1)·1=2,解得m =5,故选C.7.现有200根相同的钢管,把它们堆成一个正三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为( ) A .9 B .10 C .19 D .29 【答案】B【解析】钢管排列方式是从上到下各层钢管数组成了一个等差数列,最上面一层钢管数为1,逐层增加1个.∴钢管总数为:1+2+3+…+n =(1)2n n +. 当n =19时,S 19=190.当n =20时,S 20=210>200.∴n =19时,剩余钢管根数最少,为10根. 8.已知命题:“在等差数列{a n }中,若4a 2+a 10+a ( )=24,则S 11为定值”为真命题,由于印刷问题,括号处的数模糊不清,可推得括号内的数为( ) A .15 B .24 C .18 D .28【答案】C【解析】设括号内的数为n ,则4a 2+a 10+a (n )=24, 即6a 1+(n +12)d =24.又因为S 11=11a 1+55d =11(a 1+5d )为定值, 所以a 1+5d 为定值. 所以126n +=5,解得n =18. 二、多选题9.设等差数列{a n }的前n 项和为S n ,公差为d .已知a 3=12,S 12>0,a 7<0,则( ) A .a 6>0 B .-247<d <-3 C .S n <0时,n 的最小值为13 D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项 【答案】ABCD【解析】依题意得a 3=a 1+2d =12,a 1=12-2d ,S 12=1122a a +×12=6(a 6+a 7).而a 7<0,所以a 6>0,a 1>0,d <0,A 选项正确.且716167161240,51230,2112470,a a d d a a d d a a a d d =+=+<⎧⎪=+=+>⎨⎪+=+=+>⎩ 解得-247<d <-3,B 选项正确. 由于S 13=1132a a +×13=13a 7<0,而S 12>0,所以S n <0时,n 的最小值为13.由上述分析可知,n ∈[1,6]时,a n >0,n ≥7时,a n <0;当n ∈[1,12]时,S n >0,当n ≥13时,S n <0.所以当n ∈[7,12]时,a n <0,S n >0,nnS a <0,且当n ∈[7,12]时,|a n |为递增数列,S n 为正数且为递减数列,所以数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项.故选A 、B 、C 、D.10.已知等差数列{a n }的前n 项和为S n ,若S 7=a 4,则( ) A .a 1+a 3=0 B .a 3+a 5=0 C .S 3=S 4 D .S 4=S 5【答案】BC 【解析】由S 7=177()2a a +=7a 4=a 4,得a 4=0,所以a 3+a 5=2a 4=0,S 3=S 4,故选B 、C. 11.等差数列{}n a 是递增数列,满足753a a =,前n 项和为n S ,下列选项正确的是( )A .0d >B .10a <C .当5n =时n S 最小D .0n S >时n 的最小值为8【答案】ABD【解析】由题意,设等差数列{}n a 的公差为d ,因为753a a =,可得1163(4)a d a d +=+,解得13a d =-,又由等差数列{}n a 是递增数列,可知0d >,则10a <,故A 、B 正确; 因为2217()2222n d d d d S n a n n n =+-=-, 由7722dn d -=-=可知,当3n =或4时n S 最小,故C 错误,令27022n d d S n n =->,解得0n <或7n >,即0n S >时n 的最小值为8,故D 正确. 故选:ABD .12.在等差数列{}n a 中每相邻两项之间都插入()*k k ∈N个数,使它们和原数列的数一起构成一个新的等差数列{}n b .若9b 是数列{}n a 的项,则k 的值可能为( ) A .1 B .3C .5D .7【答案】ABD【解析】由题意得:插入()*k k ∈N个数,则11ab =,22k a b +=,323k a b +=,434k a b +=⋅⋅⋅所以等差数列{}n a 中的项在新的等差数列{}n b 中间隔排列,且角标是以1为首项,k +1为公差的等差数列,所以1(1)(1)n n k a b +-+=, 因为9b 是数列{}n a 的项,所以令**1(1)(1)9,,n k n N k N +-+=∈∈,当2n =时,解得7k =, 当3n =时,解得3k =, 当5n =时,解得1k =,故k 的值可能为1,3,7,故选:ABD三、填空题13.已知等差数列{a n }中,S n 为其前n 项和,已知S 3=9,a 4+a 5+a 6=7,则S 9-S 6=________.【答案】5【解析】∵S 3,S 6-S 3,S 9-S 6成等差数列,而S 3=9,S 6-S 3=a 4+a 5+a 6=7,∴S 9-S 6=5. 14.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k =________. 【答案】8 【解析】∵a n =11(1),(2),nn S n S S n -=⎧⎨-≥⎩∴a n =2n -10.由5<2k -10<8,得7.5<k <9,又k ∈N *,∴k =8.15.若数列{a n }是等差数列,首项a 1<0,a 203+a 204>0,a 203·a 204<0,则使前n 项和S n <0的最大自然数n 是________. 【答案】405【解析】由a 203+a 204>0知a 1+a 406>0,即S 406>0,又由a 1<0且a 203·a 204<0,知a 203<0,a 204>0,所以公差d >0,则数列{a n }的前203项都是负数,那么2a 203=a 1+a 405<0,所以S 405<0,所以使前n 项和S n <0的最大自然数n =405.16. 已知等差数列{a n }的公差d >0,前n 项和为S n ,且a 2a 3=45,S 4=28. (1)则数列{a n }的通项公式为a n =________; (2)若b n =nS n c+ (c 为非零常数),且数列{b n }也是等差数列,则c =________. 【答案】(1)4n -3 (2)-12【解析】(1)∵S 4=28,∴14()42a a +⨯=28,a 1+a 4=14,a 2+a 3=14,又∵a 2a 3=45,公差d >0, ∴a 2<a 3,∴a 2=5,a 3=9, ∴115,29,a d a d +=⎧⎨+=⎩解得11,4,a d =⎧⎨=⎩∴a n =4n -3.(2)由(1),知S n =2n 2-n ,∴b n =n S n c+=22n nn c -+,∴b 1=11c +,b 2=62c+,b 3=153c +.又∵{b n }也是等差数列, ∴b 1+b 3=2b 2, 即2×62c +=11c++153c +,解得c =-12(c =0舍去). 四、解答题17.若等差数列{a n }的首项a 1=13,d =-4,记T n =|a 1|+|a 2|+…+|a n |,求T n . 【解析】∵a 1=13,d =-4,∴a n =17-4n . 当n ≤4时,T n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a n =na 1+(1)2n n -d =13n +(1)2n n -×(-4) =15n -2n 2;当n ≥5时,T n =|a 1|+|a 2|+…+|a n | =(a 1+a 2+a 3+a 4)-(a 5+a 6+…+a n ) =S 4-(S n -S 4)=2S 4-S n =2×(131)42+⨯-(15n -2n 2) =2n 2-15n +56.∴T n =22152(4),21556(5).n n n n n n ⎧-≤⎪⎨-+≥⎪⎩18.在等差数列{a n }中,a 10=23,a 25=-22. (1)数列{a n }前多少项和最大? (2)求{|a n |}的前n 项和S n . 【解析】(1)由11923,2422,a d a d +=⎧⎨+=-⎩得150,3,a d =⎧⎨=-⎩∴a n =a 1+(n -1)d =-3n +53. 令a n >0,得n <533, ∴当n ≤17,n ∈N *时,a n >0; 当n ≥18,n ∈N *时,a n <0, ∴{a n }的前17项和最大. (2)当n ≤17,n ∈N *时,|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =na 1+(1)2n n -d =-32n 2+1032n . 当n ≥18,n ∈N *时,|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 17-a 18-a 19-…-a n =2(a 1+a 2+…+a 17)-(a 1+a 2+…+a n ) =2223103310317172222n n ⎛⎫⎛⎫-⨯+⨯--+ ⎪ ⎪⎝⎭⎝⎭=32n 2-1032n +884. ∴S n =223103,17,*,223103884,18,*,22n n n n N n n n n N ⎧-+≤∈⎪⎪⎨⎪-+≥∈⎪⎩19.已知数列{a n }的前n 项和为S n ,数列{a n }为等差数列,a 1=12,d =-2. (1)求S n ,并画出{S n }(1≤n ≤13)的图象;(2)分别求{S n }单调递增、单调递减的n 的取值范围,并求{S n }的最大(或最小)的项; (3){S n }有多少项大于零? 【解析】(1)S n =na 1+(1)2n n - d =12n +(1)2n n -×(-2)=-n 2+13n .图象如图.(2)S n =-n 2+13n =-2132n ⎛⎫- ⎪⎝⎭+1694,n ∈N *,∴当n =6或n =7时,S n 最大;当1≤n ≤6时,{S n }单调递增;当n ≥7时,{S n }单调递减.{S n }有最大值,最大项是S 6,S 7,S 6=S 7=42. (3)由图象得{S n } 中有12项大于零.20.已知等差数列{a n }的前n 项和S n =n 2-2n ,求a 2+a 3-a 4+a 5+a 6. 【解析】∵S n =n 2-2n , ∴当n ≥2时,a n =S n -S n -1 =n 2-2n -[(n -1)2-2(n -1)]=n 2-2n -(n -1)2+2(n -1)=2n -3, ∴a 2+a 3-a 4+a 5+a 6 =(a 2+a 6)+(a 3+a 5)-a 4 =2a 4+2a 4-a 4=3a 4 =3×(2×4-3)=15.21.设S n是数列{a n}的前n项和且n∈N*,所有项a n>0,且S n=14a2n+12a n-34.(1)证明:{a n}是等差数列;(2)求数列{a n}的通项公式.【解析】(1)证明:当n=1时,a1=S1=14a21+12a1-34,解得a1=3或a1=-1(舍去).当n≥2时,a n=S n-S n-1=14(a2n+2a n-3)-14(a2n-1+2a n-1-3).所以4a n=a2n-a2n-1+2a n-2a n-1,即(a n+a n-1)(a n-a n-1-2)=0,因为a n+a n-1>0,所以a n-a n-1=2(n≥2).所以数列{a n}是以3为首项,2为公差的等差数列.(2)由(1)知a n=3+2(n-1)=2n+1.22.求等差数列{4n+1}(1≤n≤200)与{6m-3}(1≤m≤200)的公共项之和.【解析】由4n+1=6m-3(m,n∈N*且1≤m≤200,1≤n≤200),可得2,31,m tn t=⎧⎨=-⎩(t∈N*且23≤t≤67).则等差数列{4n+1}(1≤n≤200),{6m-3}(1≤m≤200)的公共项按从小到大的顺序组成的数列是等差数列{4(3t-1)+1}(t∈N*且23≤t≤67),即{12t-3}(t∈N*且23≤t≤67),各项之和为67×9+67662⨯×12=27 135.。