勾股定理应用优秀教案
勾股定理优秀教案

勾股定理优秀教案【篇一:探索勾股定理优秀教案】—1——2——3—1.1探索勾股定理1.小明用火柴棒摆直角三角形,已知他摆两条直角边分别用了6根和8根火柴棒,他摆完这个直角三角形共用火柴棒()根a.20 b. 14 c. 24 d. 30 2.在rt△abc中,斜边ab=1,则ab2+bc2+ac2=()a.2 b. 4 c. 6d. 8 3.如图,阴影部分是一个正方形,则此正方形的面积为()a.8 b. 64 c. 16 d. 324.直角三角形的两条直角边的比为3:4,斜边长25cm,则斜边上的高为()a.10cm b. 12cm c. 15cmd. 20cm15 第3题—4—【篇二:勾股定理教学设计与反思】教学设计【篇三:《勾股定理》教学设计】《勾股定理》教学设计创新整合点本节课采用探究发现式教学,由浅入深,由特殊到一般地提出问题,鼓励学生采用观察分析、自主探索、合作交流的学习方法,让学生经历数学知识的形成与应用过程。
教材分析这节课是苏科版《义务教育课程标准实验教科书》八年级(下)教材《勾股定理》第一节的内容。
勾股定理的内容是全章内容的重点、难点,它的地位作用体现在以下三个方面:1、勾股定理是学习锐角三角函数与解直角三角形的基础,学生只有正确掌握了勾股定理的内容,才能熟练地运用它去解决生活中的测量问题。
2、本章“勾股定理”的内容在本册书中占有十分重要的地位,它是学习斜三角形、三角函数的基础,在知识结构上它起到了承上启下的作用,为学生的终生学习奠定良好的基础。
3、解直角三角形内容在航空、航海、工程建筑、机械制造、工农业生产等各个方面都有着广泛的应用,并与生活息息相关。
学情分析学生对几何图形的观察,几何图形的分析能力已初步形成。
部分学生解题思维能力比较高,能够正确归纳所学知识,通过学习小组讨论交流,能够形成解决问题的思路。
现在的学生已经厌倦教师单独的说教方式,希望教师设计便于他们进行观察的几何环境,给他们自己探索、发表自己见解和展示自己才华的机会;更希望教师满足他们的创造愿望。
勾股定理的应用教学设计5篇

勾股定理的应用教学设计5篇第一篇:《勾股定理的应用》教学设计《勾股定理的应用》教学设计——解决立体图形外表上最短路线的问题__县第_中学李政法一、内容及内容解析1、内容勾股定理的应用——解决立体图形外表上最短路线的问题。
2、内容解析本节课是勾股定理在立体图形中的一个拓展,在初中阶段,勾股定理在求两点间的距离时,沟通了几何图形和数量关系,发挥了重要的作用,在中考中有席之地。
启发学生对空间的认知,为将来学习空间几何奠定根底。
二、教学目标1、能把立体图形依据需要局部展开成平面图形,再建立直角三角形,利用两点间线段最短勾股定理求最短路径径问题。
2、学会观看图形,勇于探究图形间的关系,培养学生的空间观念;在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。
3、通过有趣的问题提高学习数学的兴趣;在解决实际问题的过程中,培养学生的合作交流能力,体验数学学习的有用性,增强自信心,呈现成功感。
三、教学重难点【重点】:探究、发觉立体图形展开成平面图形,利用两点间线段最短勾股定理求最短路径径问题。
【难点】:查找长方体中最短路线。
四、教学方法本课采纳学生自主探究归纳教学法。
教学中,学生充分运用多媒体资源及大量的实物教具和学具,通过观看、思考、操作,归纳。
五、教学过程【复习回忆】右图是湿地公园长方形草坪一角,有人避开拐角在草坪内走出了一条小路,问这么走的理论依据是什么?若两步为1m,他们仅仅少走了几步?目的:1、复习两点之间线段最短及勾股定理,为新课做预备;2、激起学生爱护环境意识和对核心价值观“文明、友善”的践行。
思考:如图,立体图形中从点A到点B处,怎样找到最短路线呢?目的:引出课题。
【台阶中的最值问题】三级台阶示意图如图,每级台阶的长、宽、高分别为5dm、3dm和1dm,请你想一想,一只蚂蚁从点A动身,沿着台阶面爬行到点B,爬行的最短路线是多少?老师活动:假如A、B两点在同一个平面上,直接连接两点即可求出最短路。
1.3勾股定理的应用(教案)

(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《勾股定理的应用》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要测量距离或高度,却无法直接测量的情况?”比如,我们想测量学校旗杆的高度,却无法直接到达顶部。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索勾股定理在解决实际问题中的奥秘。
五、教学反思
在今天的课堂中,我尝试通过生活实例导入勾股定理的应用,希望让学生感受到数学与生活的紧密联系。从学生的反应来看,这个话题确实引起了他们的兴趣,但在讲解过程中,我意识到有些学生对定理的理解还不够深入,需要我在教学中更加细致地引导。
在理论介绍环节,我尽力用简洁明了的语言解释勾股定理的概念,并通过案例让学生看到定理在解决问题中的具体应用。然而,我也发现有些学生在转换实际问题时,还是不太会灵活运用勾股定理。这让我认识到,在今后的教学中,需要加强学生对定理应用场景的识别和问题转化能力的培养。
实践活动环节,学生分组讨论和实验操作进行得如火如荼,他们积极参与,热烈讨论。但从成果展示来看,部分小组在解决问题时还是存在一定的困难,尤其是在单位换算和实际操作中。这说明我在教学中还要加强对这些方面的讲解和练习。
学生小组讨论环节,大家围绕勾股定理在实际生活中的应用展开了热烈的讨论。我在一旁观察,适时引导,发现学生在互相交流中碰撞出了不少思维的火花。但也有一些学生在讨论中显得较为被动,可能是因为他们对定理的理解还不够自信。为此,我计划在后续的教学中,多关注这些学生,鼓励他们大胆表达自己的想法。
-在实际问题中,能够准确地识别出直角三角形,并将问题简化为勾股定理的应用;
-掌握在勾股定理应用中的单位换算,如长度单位、角度单位等,确保计算准确无误。
勾股定理的教学设计(热门14篇)

勾股定理的教学设计(热门14篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理的教学设计(热门14篇)勾股定理的教学设计(1)1、知识目标:(1)掌握勾股定理;(2)学会利用勾股定理进行计算、证明与作图;(3)了解有关勾股定理的历史。
勾股定理教学设计(优秀3篇)

勾股定理教学设计(优秀3篇)《勾股定理》教学设计篇一教学目标具体要求:1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。
2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。
3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。
重点:勾股定理的应用难点:勾股定理的应用教案设计一、知识点讲解知识点1:(已知两边求第三边)1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。
2.已知直角三角形的两边长为3、4,则另一条边长是______________。
3.三角形ABC中,AB=10,AC=一qi,BC边上的高线AD=8,求BC的长?知识点2:利用方程求线段长1、如图,公路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=壹五km,CB=10km,现在要在公路AB上建一车站E,(1)使得C,D两村到E站的距离相等,E站建在离A站多少km处?(2)DE与CE的位置关系(3)使得C,D两村到E站的距离最短,E站建在离A站多少km处?利用方程解决翻折问题2、如图,用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?3、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。
4.如图,将一个边长分别为4、8的矩形形纸片ABCD折叠,使C点与A点重合,则EF 的长是多少?5、折叠矩形ABCD的一边AD,折痕为AE,且使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,以B点为原点,BC为x轴,BA为y轴建立平面直角坐标系。
求点F和点E坐标。
6、边长为8和4的矩形OABC的两边分别在直角坐标系的x轴和y轴上,若沿对角线AC折叠后,点B落在第四象限B1处,设B1C交x轴于点D,求(1)三角形ADC的面积,(2)点B1的坐标,(3)AB1所在的直线解析式。
勾股定理的优秀教案5篇

勾股定理的优秀教案5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、讲话致辞、条据文书、合同协议、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, speeches, written documents, contract agreements, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理的优秀教案5篇教案的制定可以帮助教师思考教学策略和方法是否合理,激发学生的学习兴趣和积极参与,写好教案帮助教师评估学生的学习情况和教学效果,及时调整教学计划和教学内容,以下是本店铺精心为您推荐的勾股定理的优秀教案5篇,供大家参考。
17.1勾股定理的应用最短路径问题(教案)

在今天的教学中,我重点关注了勾股定理在实际问题中的应用,尤其是最短路径问题的求解。通过这节课的教学,我发现以下几点值得反思:
1.学生对勾股定理的理解程度。在授课过程中,我发现部分学生对勾股定理的理解还不够深入,导致在实际问题中不知如何运用。针对这个问题,我需要在今后的教学中加强对勾股定理原理的讲解,让学生真正理解并掌握这个定理。
4.学生参与度。在课堂教学中,我注意到部分学生的参与度不高,可能是因为他们对课程内容不感兴趣或跟不上教学进度。为了提高学生的参与度,我需要关注每一个学生,及时了解他们的需求和困惑,调整教学节奏和策略。
5.课堂氛围的营造。在今天的教学中,课堂氛围较为活跃,学生们积极讨论、互动。我认为这是一个好的现象,说明学生们对课程内容感兴趣。在今后的教学中,我需要继续保持这种氛围,让学生在轻松愉快的氛围中学习。
17.1勾股定理的应用最短路径问题(教案)
一、教学内容
本节课选自教材第十七章第一节,主要围绕勾股定理的应用——最短路径问题展开。内容包括:
1.勾股定理的复习与巩固:引导学生回顾勾股定理的内容及其证明,理解直角三角形边长之间的数量关系。
2.最短路径问题引入:通过实际生活中的例子(如城市规划、园林设计等),引出最短路径问题,激发学生兴趣。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解勾股定理的基本概念。勾股定理是指在直角三角形中,直角边的平方和等于斜边的平方。它是解决最短路径问题的关键工具,广泛应用于建筑、工程等领域。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何利用勾股定理在实际中找到两点之间的最短路径,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调勾股定理的运用和最短路径问题的求解方法这两个重点。对于难点部分,我会通过具体例题和图示来帮助大家理解。
勾股定理培优(教案)

(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“勾股定理在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解勾股定理的基本概念。勾股定理指的是直角三角形中,斜边的平方等于两个直角边平方和的数学关系。它是解决直角三角形相关问题的重要工具,广泛应用于建筑、工程等领域。
2.案例分析:接下来,我们来看一个具体的案例。通过测量三角形形的边长,应用勾股定理计算斜边长度,展示其在实际中的应用。
五、教学反思
在上完这节勾股定理培优课后,我对教学过程进行了深入的思考。首先,我发现学生在理解勾股定理的推导和应用过程中存在一定难度。在今后的教学中,我需要更加注重引导学生从具体的实例中抽象出数学规律,帮助他们理解并掌握勾股定理。
在讲授新课的过程中,我尝试通过生动的案例和实际操作,让学生感受勾股定理在实际生活中的应用。这种教学方法得到了学生的积极响应,他们表现出浓厚的兴趣。但同时,我也发现部分学生在将理论知识应用到实际问题解决时仍显得有些吃力。针对这一点,我计划在接下来的教学中,增加一些更具挑战性的实际问题,让学生在解决问题的过程中,提高勾股定理的应用能力。
三、教学难点与重点
1.教学重点
(1)勾股定理的表述及证明:让学生掌握勾股定理的表述,理解其证明过程,并能够运用定理解决相关问题。
举例:a² + b² = c²,其中c为直角三角形的斜边,a、b为两个直角边。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理应用优秀教案
勾股定理应用优秀教案
教学课题:勾股定理的应用
教学时间(日期、课时):
教材分析:
学情分析:
教学目标:
能运用勾股定理及直角三角形的判定条件解决实际问题.
在运用勾股定理解决实际问题的过程中,感受数学的“转化”思想(把解斜三角形问题转化为解直角三角形的问题),进一步发展有条理思考和有条理表达的能力,体会数学的应用价值.
教学准备
《数学学与练》
集体备课意见和主要参考资料
页边批注
教学过程
一.新课导入
本课时的教学内容是勾股定理在实际中的应用。
除课本提供的情境外,教学中可以根据实际情况另行设计一些具体情境,也利用课本提供的素材组织数学活动。
比如,把课本例2改编为开放式的问题情境:
一架长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m.如果梯子的顶端下滑0.5m,你认为梯子的底端会发生什么变化?与同学交流.
创设学生身边的问题情境,为每一个学生提供探索的空间,有利于发挥学生的主体性;这样的问题学生常常会从自己的生活经验出发,产生不同的思考方法和结论(教学中学生可能的结论有:底端也
滑动0.5m;如果梯子的顶端滑到地面上,梯子的顶端则滑动8m,估
计梯子底端的滑动小于8m,所以梯子的顶端下滑0.5m,它的底端的
滑动小于0.5m;构造直角三角形,运用勾股定理计算梯子滑动前、
后底端到墙的垂直距离的'差,得出梯子底端滑动约0.61m的结论等);通过与同学交流,完善各自的想法,有利于学生主动地把实际
问题转化为数学问题,从中感受用数学的眼光审视客观世界的乐趣.
二.新课讲授
问题一在上面的情境中,如果梯子的顶端下滑1m,那么梯子的
底端滑动多少米?
组织学生尝试用勾股定理解决问题,对有困难的学生教师给予及时的帮助和指导.
问题二从上面所获得的信息中,你对梯子下滑的变化过程有进一步的思考吗?与同学交流.
设计问题二促使学生能主动积极地从数学的角度思考实际问题.教学中学生可能会有多种思考.比如,①这个变化过程中,梯
子底端滑动的距离总比顶端下滑的距离大;②因为梯子顶端下滑到
地面时,顶端下滑了8m,而底端只滑动4m,所以这个变化过程中,
梯子底端滑动的距离不一定比顶端下滑的距离大;③由勾股数可知,当梯子顶端下滑到离地面的垂直距离为6m,即顶端下滑2m时,底
端到墙的垂直距离是8m,即底端电滑动2m等。
教学中不要把寻找
规律作为这个探索活动的目标,应让学生进行充分的交流,使学生
逐步学会运用数学的眼光去审视客观世界,从不同的角度去思考问题,获得一些研究问题的经验和方法.
3.例题教学
课本的例1是勾股定理的简单应用,教学中可根据教学的实际情况补充一些实际应用问题,把课本习题2.7第4题作为补充例
题.通过这个问题的讨论,把“32+b2=c2”看作一个方程,设折断
处离地面x尺,依据问题给出的条件就把它转化为熟悉的会解的一
元二次方程32+x2=(10—x)2,从中可以让学生感受数学的“转化”
思想,进一步了解勾股定理的悠久历史和我国古代人民的聪明才智.
三.巩固练习
1.甲、乙两人同时从同一地点出发,甲往东走了4km,乙往南走
了6km,这时甲、乙两人相距__________km.
2.如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点
B处吃食,要爬行的最短路程(取3)是().
(A)20cm(B)10cm(C)14cm(D)无法确定
3.如图,一块草坪的形状为四边形ABCD,其中∠B=90°,AB=3m,BC=4m,•CD=•12m,AD=13m.求这块草坪的面积.
四.小结
我们知道勾股定理揭示了直角三角形的三边之间的数量关系,已知直角三角形中的任意两边就可以依据勾股定理求出第三边.从应
用勾股定理解决实际问题中,我们进一步认识到把直角三角形中三
边关系“a2+b2=c2”看成一个方程,只要依据问题的条件把它转化
为我们会解的方程,就把解实际问题转化为解方程.。