试卷分类汇编_代数几何综合

合集下载

代数几何综合(含答案)

代数几何综合(含答案)

23.(本小题7分)如图,在平面直角坐标系中,A(-3,0),点C 在y 轴的正半轴上,BC ∥x 轴,且BC=5,AB 交y 轴于点D ,OD=23. (1)求出点C 的坐标; (2)过A 、C 、B 三点的抛物线与x 轴交于点E ,连接BE .若动点M 从点A 出发沿x 轴向x 轴正方向运动,同时动点N 从点E 出发,在直线EB 上作匀速运动,两个动点的运动速度均为每秒1个单位长度,请问当运动时间t 为多少秒时,△MON 为直角三角形? 23.解:(1)∵ BC ∥x 轴, ∴ △BCD ∽△AOD .∴ CD BC OD AO=. ∴ 535322CD =⨯=.∴ 53422CO =+=. ∴ C 点的坐标为 (0,4) . ……………………… 1分 (2)如图1,作BF ⊥x 轴于点F ,则BF= 4. 由抛物线的对称性知EF=3.∴BE=5,OE=8,AE=11. ………………………… 2分 根据点N 运动方向,分以下两种情况讨论: ① 点N 在射线EB 上.若∠NMO=90°,如图1,则cos ∠BEF=ME FENE BE=, ∴1135t t -=,解得558t =.……………… 3分 若∠NOM=90°,如图2,则点N 与点G 重合.∵ cos ∠BEF=OE FEGE BE=, ∴ 835t =,解得403t =. …………………… 4分∠ONM=90°的情况不存在. ………………………………………………………… 5分 ② 点N 在射线EB 的反向延长线上.若∠NMO=90°,如图3,则cos ∠NEM= cos ∠BEF ,∴ME FENE BE =. ∴ 1135t t -=,解得552t =. …………………… 6分 而∠NOM=90°和∠ONM=90°的情况不存在.…… 7分 综上,当558t =、403t =或552t =时,△MON 为直角三角形.(第23题图2)D(N)(第23题图3)D(第23题)25.(7分)已知,抛物线22y ax bx =+-与x 轴的两个交点分别为A (1,0),B (4,0),与y 轴的交点为C . (1)求出抛物线的解析式及点C 的坐标;(2)点P 是在直线x=4右侧的抛物线上的一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与△OCB 相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由. 25.(7分)解:(1)据题意,有0164202a b a b =+-⎧⎨=+-⎩, . 解得 1252a b ⎧=-⎪⎪⎨⎪=⎪⎩, . ∴抛物线的解析式为:215222y x x =-+-.点C 的坐标为:(0,-2). ………………………(2)答:存在点P (x ,215222x x -+-),使以A ,P ,M ∵∠COB =∠AMP =90°,∴①当OC OBMP MA =时,△OCB ∽△MAP . ②当OC OB MA MP=时,△OCB ∽△MP A . ①OC MP OB MA =,∴215222241x x x -+=-. 解得:x 1=8,x 2=1(舍). ②OC MA OB MP =,∴221154222x x x -=-+. 解得:x 3=5,x 4=1(舍).综合①,②知,满足条件的点P 为:P 1(8,-14),P 2(5,-2). ……………………… 7分24. 在△ABC 中,∠A =∠B =30°,AB=.把△ABC 放在平面直角坐标系中,使AB 的中点位于坐标原点O (如图),△ABC 可以绕点O 作任意角度的旋转.(1) 当点BB 的横坐标;(2) 如果抛物线2y ax bx c =++(a ≠0)的对称轴经过点C ,请你探究:当a =,12b =-,c =A ,B 两点是否都在这条抛物线上?并说明理由。

中考压轴题目归类总结代数几何综合板块

中考压轴题目归类总结代数几何综合板块

中考压轴题目归类总结代数几何综合板块.doc 中考压轴题目归类总结:代数几何综合板块引言介绍中考压轴题目的重要性代数几何综合板块在中考中的地位归类总结的目的和意义代数几何综合板块概述代数几何综合板块的定义该板块涵盖的主要内容代数方程几何图形函数与图形几何证明代数几何综合题目特点结合代数和几何的解题思路需要综合运用多种数学知识题目通常具有较高的难度和综合性代数几何综合题目解题策略分析题目要求,确定解题方向利用代数方法解决几何问题利用几何直观辅助代数计算综合运用函数、方程、不等式等数学工具代数几何综合板块常见题型题型一:代数方程与几何图形结合例题分析解题步骤易错点提示题型二:几何图形中的代数问题例题分析解题步骤易错点提示题型三:函数与几何图形的结合例题分析解题步骤易错点提示题型四:几何证明中的代数应用例题分析解题步骤易错点提示代数几何综合题目解题技巧转化思想:将几何问题转化为代数问题建模思想:建立数学模型解决实际问题归纳推理:通过已知条件推导未知结论逆向思维:从结论出发,逆向求解代数几何综合板块备考建议系统复习代数和几何基础知识多做综合题目,提高解题能力总结解题规律,形成自己的解题方法培养空间想象能力和逻辑推理能力经典例题解析选取几道历年中考中的代数几何综合题目分步骤解析解题过程总结解题思路和技巧结语强调代数几何综合板块在中考中的重要性鼓励学生通过不断练习提高解题能力表达对学生中考取得优异成绩的祝愿。

初中数学代数与几何综合题

初中数学代数与几何综合题

初中数学代数与⼏何综合题初中数学代数与⼏何综合题代数与⼏何综合题从内容上来说,是把代数中的数与式、⽅程与不等式、函数,⼏何中的三⾓形、四边形、圆等图形的性质,以及解直⾓三⾓形的⽅法、图形的变换、相似等内容有机地结合在⼀起,同时也融⼊了开放性、探究性等问题,如探究条件、探究结论、探究存在性等。

经常考察的题⽬类型主要有坐标系中的⼏何问题(简称坐标⼏何问题),以及图形运动过程中求函数解析式问题等。

解决代数与⼏何综合题,第⼀,需要认真审题,分析、挖掘题⽬的隐含条件,翻译并转化为显性条件;第⼆,要善于将复杂问题分解为基本问题,逐个击破;第三,要善于联想和转化,将以上得到的显性条件进⾏恰当地组合,进⼀步得到新的结论,尤其要注意的是,恰当地使⽤分析综合法及⽅程与函数的思想、转化思想、数⾏结合思想、分类与整合思想等数学思想⽅法,能更有效地解决问题。

第⼀类:与反⽐例函数相关1. (09北京)如图,点 C 为O O 直径AB 上⼀点,过点 C 的直线交O O 于点D 、E 两点,且/ ACD=45°,DF _AB 于点 F ,EG _ AB 于点G .当点C 在AB 上运动时,设 AF =x , DE = y ,下列-a -2、、ab b > 0, a b > 2、、ab ,只有当 a = b 时,等号成⽴.图象中,能表⽰ y 与x 的函数关系的图象⼤致是(经过正⽅形 ABOC 的三个顶点 A 、B 、C3. (09延庆)阅读理解:对于任意正实数 a ,2.如图,在平⾯直⾓坐标系中y结论:在a b > 2 ab ( a , b 均为正实数)中,若 ab 为定值p ,则a b > 2 p ,12(2)探索应⽤:已知A(-3,0) , B(0,_4),点P 为双曲线y (x ■ 0)上的任意⼀点,过点P 作PC _ x 轴于点C , PD _ y 轴于D . 求四边形ABCD ⾯积的最⼩值,并说明此时四边形ABCD 的形状.1 、y x 相交4(m , n )(在A 点左侧)是双曲线y =上的动点.过点B 作xBD // y 轴交x 轴于点D.过N(0, - n)作NC // x 轴交双曲线y ⼆⾊于点E ,交BD 于点C .x(1) 若点D 坐标是(―坐标及k 的值. (2) 若B 是CD 的中点,为4,求直线CM(3) 设直线 AM 、BM 分别与y 轴相交于 P 、Q 两点,且 MA=pMP , MB=qMQ ,求p - q 的值.285. (09.5西城)已知:反⽐例函数y 和y在平⾯直⾓坐标系 xOy 第⼀象限中的图 xx82只有当a =b 时,a - b 有最⼩值2 p .根据上述内容,回答下列问题:(1)若m ,只有当m ⼯时,m ?丄有最⼩值mk4. (08南通)已知双曲线 y 与直线x于A 、B 两点.第⼀象限上的点 Mk 8,0),求A 、B 两点四边形OBCE 的⾯积的解析式?象如图所⽰,点A在y 的图象上,AB // y轴,与y 的图象交于点B, AC、BDx x与x轴平⾏,分别与y=2、y=8的图象交于点C、D.x x(1) 若点A的横坐标为2,求梯形ACBD的对⾓线的交点F的坐标;(2) 若点A的横坐标为m,⽐较△ OBC与⼛ABC的⾯积的⼤⼩;(3) 若⼛ABC与以A、B、D为顶点的三⾓形相似,请直接写出点A的坐标.点F 的坐标为(2,17).5-S ABC . (3)点A 的坐标为(2,4)函数y = m ( x - 0 , m 是常数)的图象经过 A(1,4),xB(a ,b),其中a 1 .过点A 作x 轴垂线,垂⾜为C ,连结 AD ,DC ,CB .(1) 若△ ABD 的⾯积为4,求点B 的坐标; (2) 求证:DC // AB ;(3) 当AD =BC 时,求直线 AB 的函数解析式. 答案: (3)所求直线 AB 的函数解析式是 y = -2x ? 6或y = -x 5⼆、与三⾓形相关7. (07北京)在平⾯直⾓坐标系 xOy 中,抛物线y = mx 2 + 2 .3 mx + n 经过P 「3, 5),A(0, 2)两点.(1)求此抛物线的解析式;(2) 设抛物线的顶点为 B,将直线AB 沿y 轴向下平移两个单位得到直线 I,直线I 与抛物线的对称轴交于C 点,求直线l 的解析式;⑶在⑵的条件下,求到直线OB, OC, BC 距离相等的点的坐标.答案:(1)抛物线的解析式为:y = ^x 2- 3x+ 2 3 3(2) 直线I 的解析式为y =守x(3) ⾄煩线OB 、OC 、BC 距离相等的点的坐标分别为:M 1(-"^, 0)、 M 2 (0, 2)、 M 3(0, -2)、M 4 (-2.3, 0).36.( 07上海)如图,在直⾓坐标平⾯内,(1)点B 的坐标为3,; .3⑺.DC // AB .过点2&(08北京)平⾯直⾓坐标系 xOy 中,抛物线y = x + bx + c 与x 轴交于A, B 两点(点A 在点B 的左侧),与y 轴交于点C,点B 的坐标为(3, 0),将直线y = kx 沿y 轴向上平移3个单位长度后恰好经过 B, C 两点.(1) 求直线BC 及抛物线的解析式;(2) 设抛物线的顶点为 D,点P 在抛物线的对称轴上,且⼄APD =WACB,求点P 的坐标;⑶连结CD,求£OCA 与MOCD 两⾓和的度数.答案:(1)直线BC 的解析式为y = -x + 3.抛物线的解析式为y = x 2 - 4x + 3.(2) 点P 的坐标为(2, 2)或(2, -2). (3) . OCA 与.OCD 两⾓和的度数为 45 ... 2 29. (10.6密云) 已知:如图,抛物线 y = -X mx 2m (m 0)与x 轴交于A 、B 两点,点A 在点B 的左边,C 是抛物线上⼀动点(点C 与点A 、B 不重合),D 是OC 中点,连结BD 并延长,交AC 于点E .(1) 求A 、B 两点的坐标(⽤含 m 的代数式表⽰);CE(2 )求的值;AE物线和直线BE 的解析式.且OB = OC ⼆3OA . (I )求抛物线的解析式;(II) 探究坐标轴上是否存在点 P ,使得以点P,代C 为顶点的三⾓形为直⾓三⾓形?若存在,求出P 点坐标,若不存在,请说明理由;1(III) 直线y x 1交y 轴于D 点,E 为抛物线顶(3)当C 、A 两点到y 轴的距离相等,且SCED答案: (1) A (-m , 0), B ( 2m , 0).(2) CEAE(3) 抛物线的解析式为 y = -X 22x 8 .直线BE 的解析式为4丄16 y x3310.(崇⽂ 09)如图,抛物线y =ax 2bx - 3与x 轴交于A, B 两点,与y 轴交于点C ,求抛3点?若.DBC ⼆:…CBE = ■-,求爲「?的值. 答案:(I )y = x 2-2x-3(II )R(0,1)P 2(9,0) , P 3(0,0)3(IIIDBO EOBC =45 .11. (11.6东城)如图,已知在平⾯直⾓坐标系xOy 中,直⾓梯形 OABC 的边0A 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA = AB = 2, OC = 3,过点B 作BD 丄BC ,交OA于点D .将/ DBC 绕点B 按顺时针⽅向旋转,⾓的两边分别交正半轴于点E 和F .(1) 求经过A 、B 、C 三点的抛物线的解析式; (2) 当BE 经过(1)中抛物线的顶点时,求 CF 的长;(3) 在抛物线的对称轴上取两点 P 、Q (点Q 在点P 的上⽅),且PQ = 1,要使四边形 BCPQ 的周长最⼩,求出 P 、Q 两点的坐标.答案:(1) y - -2x 24x 2 .333⼀ 2(3)点P 的坐标为(1,3、与⾯积有相关12. ( 11.6通县)已知如图, AABC 中,AC =BC , BC 与x 轴平⾏,点 A 在x 轴上,点 C 在y 轴上,抛物线y =ax 2 -5ax - 4经过:ABC 的三个顶点,(1) 求出该抛物线的解析式;(2) 若直线y ⼆kx 7将四边形 ACBD ⾯积平分,求此直线的解析式 .(3) 若直线y =kx b 将四边形ACBD 的周长和⾯积同时分成相等的两部分,请你确定y = kx ? b 中k 的取值范围.2 2 4⑵由 y 「2x 3x 2 =- 2(x-1)2 8 3 3CF = FM + CM y 轴的正半轴、x 轴的。

代数、几何综合题

代数、几何综合题

代数、几何综合题1、(2005年)已知:OE 是⊙E 的半径,以OE 为直径的⊙D 与⊙E 的弦OA 相交于点B ,在如图9所示的直角坐标系中,⊙E 交y 轴于点C ,连结BE AC 、.(至少写出四种不同类型的结论);(2若线段BE OB 、的长是关于x 的方程2(1)0x m x m -++=的两根,且OB BE <,2OE =,求以E 点为顶点且经过点B 的抛物线的解析式;(3)该抛物线上是否存有点P ,使得PBE △是以BE 为直角边的直角三角形?若存有,求出点P 的坐标;若不存有,说明其理由.E2、(2006年)已知:AC 是⊙O ’的直径,点A 、B 、C 、O 在⊙O ’上OA =2。

建立如图所示的直角坐标系。

∠ACO =∠ACB =60°。

(1)求点B 关于x 轴对称的点D 的坐标; (2)求经过三点A 、B 、O 的二次函数的解析式;(3)该抛物线上是否存有在点P ,使四边形P ABO 为梯形?若存有,请求出P 点的坐标;若不存有,请说明理由。

3、(2007年)如图,在平面直角坐标系中,以点C(0,4)为圆心,半径为4的圆交y 轴正半轴于点A ,AB 是⊙C 的切线.动点P 从点A 开始沿AB 方向以每秒1个单位长度的速度运动,点Q 从O点开(第26题图) 图9始沿x 轴正方向以每秒4个单位长度的速度运动,且动点P 、Q 从点A 和点O 同时出发,设运动时间为t (秒).(1)当t =1时,得到P 1、Q 1两点,求经过A 、P 1、Q 1三点的抛物线解析式及对称轴l ;(2)当t 为何值时,直线PQ 与⊙C 相切?并写出此时点P 和点Q 的坐标;(3)在(2)的条件下,抛物线对称轴l 上存有一点N ,使NP +NQ 最小,求出点N 的坐标并说明理由.4、(2008年)如图15,四边形OABC 是矩形,4OA =,8OC =,将矩形OABC 沿直线AC 折叠,使点B 落在D 处,AD 交OC 于E .(1)求OE 的长;(2)求过O D C ,,三点抛物线的解析式;(3)若F 为过O D C ,,三点抛物线的顶点,一动点P 从点A 出发,沿射线AB 以每秒1个单位长度的速度匀速运动,当运动时间t (秒)为何值时,直线PF 把FAC △分成面积之比为1:3的两部分?5、(2009年)如图13,在梯形ABCD 中,24AD BC AD BC ==∥,,,点M 是AD 的中点,MBC △是等边三角形.(第26题图) A B Cx O y lP P 1 Q Q 1(1)求证:梯形ABCD 是等腰梯形;(2)动点P 、Q 分别在线段BC 和MC 上运动,且60MPQ =︒∠保持不变.设PC x MQ y ==,,求y 与x 的函数关系式;(3)在(2)中:①当动点P 、Q 运动到何处时,以点P 、M 和点A 、B 、C 、D 中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;②当y 取最小值时,判断PQC △的形状,并说明理由.6、(2010年)(本小题满分12分)如图,四边形ABCO 是平行四边形,AB=4,OB=2,抛物线过A 、B 、C 三点,与x 轴交于另一点D .一动点P 以每秒1个单位长度的速度从B 点出发沿BA 向点A 运动,运动到点A 停止,同时一动点Q 从点D 出发,以每秒3个单位长度的速度沿DC 向点C 运动,与点P 同时停止.(1)求抛物线的解析式;(2)若抛物线的对称轴与AB 交于点E ,与x 轴交于点F ,当点P 运动时间t 为何值时,四边形POQE 是等腰梯形?(3)当t 为何值时,以P 、B 、O 为顶点的三角形与以点Q 、B 、O 为顶点的三角形相似?7、(2011年)如图10,在平面直角坐标系xoy 中,AB 在x 轴上,AB =10,以AB 为直径的⊙O ′与y轴正半轴交于点C ,连接BC ,AC . CD 是⊙O ′的切线,AD ⊥CD 于点D ,tan ∠CAD =12,抛物线 A D C B P M Q 60图13y=ax2+bx+c过A,B,C三点.(1) 求证:∠CAD=∠CAB;(2) ①求抛物线的解析式;②判断抛物线的顶点E是否在直线CD上,并说明理由;(3) 在抛物线上是否存有一点P,使四边形PBCA是直角梯形. 若存有,直接写出点P的坐标(不写求解过程);若不存有,请说明理由.8、(2012年)如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线2y ax bx c=++经过O,D,C三点.(1)求AD的长及抛物线的解析式;(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?(3)点N在抛物线对称轴上,点M在抛物线上,是否存有这样的点M与点N,使以M,N,C,E为顶点的四边形是平行四边形?若存有,请直接写出点M与点N的坐标(不写求解过程);若不存有,请说明理由.。

2021年全国中考数学真题分类汇编:代数几何综合压轴题(含答案)

2021年全国中考数学真题分类汇编:代数几何综合压轴题(含答案)

2021年全国中考数学真题分类汇编:代数几何综合压轴题(含答案)2019年中考数学真题分类汇编:代数几何综合压轴题一、选择题1.矩形OABC在平面直角坐标系中的位置如图所示,已知B(2,2),点A在x轴上,点C在y轴上,P是对角线OB上一动点(不与原点重合),连接PC,过点P作PD⊥PC,交x轴于点D.下列结论:①OA=BC=2;②当点D运动到OA的中点处时,PC2+PD2=7;③在运动过程中,∠CDP是一个定值;④当△ODP为等腰三角形时,点D的坐标为(,0 ).其中正确结论的个数是()A.1个B.2个C.3个D.4个二、解答题1.已知抛物线的对称轴为直线x=1,其图像与轴相交于、两点,与轴交于点。

(1)求,的值;(2)直线l与轴交于点。

①如图1,若l∥轴,且与线段及抛物线分别相交于点、,点关于直线的对称点为,求四边形面积的最大值;②如图2,若直线l与线段相交于点,当△PCQ∽△CAP时,求直线l的表达式。

2.如图①,抛物线y=﹣x2+x+4与y轴交于点A,与x轴交于点B,C,将直线AB绕点A逆时针旋转90°,所得直线与x轴交于点D.(1)求直线AD的函数解析式;(2)如图②,若点P是直线AD上方抛物线上的一个动点①当点P到直线AD的距离最大时,求点P的坐标和最大距离;②当点P到直线AD的距离为时,求sin∠PAD的值.3.如图,抛物线与x轴交于A,B两点,与y轴交于点C(0,﹣2),点A的坐标是(2,0),P 为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC 于点E,抛物线的对称轴是直线x=﹣1.(1)求抛物线的函数表达式;(2)若点P在第二象限内,且PE=OD,求△PBE的面积.(3)在(2)的条件下,若M为直线BC上一点,在x轴的上方,是否存在点M,使△BDM是以BD为腰的等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.4.已知抛物线y=ax2+x+4的对称轴是直线x=3,与x轴相交于A,B两点(点B在点A右侧),与y轴交于点C.(1)求抛物线的解析式和A,B两点的坐标;(2)如图1,若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),是否存在点P,使四边形PBOC的面积最大?若存在,求点P的坐标及四边形PBOC 面积的最大值;若不存在,请说明理由;(3)如图2,若点M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求点M的坐标.5.如图1,已知抛物线y=﹣x2+bx+c过点A(1,0),B(﹣3,0).(1)求抛物线的解析式及其顶点C的坐标;(2)设点D是x轴上一点,当tan(∠CAO+∠CDO)=4时,求点D 的坐标;(3)如图2.抛物线与y轴交于点E,点P是该抛物线上位于第二象限的点,线段PA交BE于点M,交y轴于点N,△BMP和△EMN的面积分别为m、n,求m﹣n的最大值.6.如图,抛物线y=﹣x2+bx+c过点A(3,2),且与直线y=﹣x+交于B、C两点,点B的坐标为(4,m).(1)求抛物线的解析式;(2)点D为抛物线上位于直线BC上方的一点,过点D作DE⊥x轴交直线BC于点E,点P为对称轴上一动点,当线段DE的长度最大时,求PD+PA的最小值;(3)设点M为抛物线的顶点,在y轴上是否存在点Q,使∠AQM=45°?若存在,求点Q的坐标;若不存在,请说明理由.7.如图①,抛物线与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C,已知的面积为6.(1)求的值;(2)求外接圆圆心的坐标;(3)如图②,P是抛物线上一点,点Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线BP同侧的不同两点,若点P到x轴的距离为d,的面积为,且,求点Q的坐标.(图①)(图②)8.已知抛物线y=a (x﹣2)2+c经过点A(2,0)和C(0,),与x轴交于另一点B,顶点为D.(1)求抛物线的解析式,并写出D点的坐标;(2)如图,点E,F分别在线段AB,BD上(E点不与A,B重合),且∠DEF=∠A,则△DEF能否为等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)若点P在抛物线上,且=m,试确定满足条件的点P的个数.9.如图,已知抛物线y=ax2+bx+c经过点A(﹣3,0)、B(9,0)和C(0,4),CD垂直于y轴,交抛物线于点D,DE垂直于x轴,垂足为E,直线l是该抛物线的对称轴,点F 是抛物线的顶点.(1)求出该二次函数的表达式及点D的坐标;(2)若Rt△AOC沿x轴向右平移,使其直角边OC与对称轴l重合,再沿对称轴l向上平移到点C与点F重合,得到Rt△A1O1F,求此时Rt△A1 O1F与矩形OCDE重叠部分图形的面积;(3)若Rt△AOC沿x 轴向右平移t个单位长度(0<t≤6)得到Rt△A2O2C2,Rt△A2O2C2与Rt△OED重叠部分图形的面积记为S,求S与t之间的函数表达式,并写出自变量t的取值范围.10.如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y 轴交于点C.(1)求二次函数的解析式;(2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A、B、P、F为顶点的四边形为平行四边形,求点P的坐标;(3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD面积的最大值及此时点E的坐标.11.如图,已知抛物线y=﹣x2+bx+c与x轴交于A、B两点,AB=4,交y轴于点C,对称轴是直线x=1.(1)求抛物线的解析式及点C的坐标;(2)连接BC,E是线段OC上一点,E关于直线x=1的对称点F正好落在BC上,求点F的坐标;(3)动点M从点O出发,以每秒2个单位长度的速度向点B运动,过M作x轴的垂线交抛物线于点N,交线段BC于点Q.设运动时间为t(t >0)秒.①若△AO C与△BMN相似,请直接写出t的值;②△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.12.如图,在平面直角坐标系中,平行四边形OABC的顶点A,C的坐标分别为(6,0),(4,3),经过B,C两点的抛物线与x轴的一个交点D的坐标为(1,0).(1)求该抛物线的解析式;(2)若∠AOC的平分线交BC于点E,交抛物线的对称轴于点F,点P是x轴上一动点,当PE+PF的值最小时,求点P的坐标;(3)在(2)的条件下,过点A作OE的垂线交BC于点H,点M,N分别为抛物线及其对称轴上的动点,是否存在这样的点M,N,使得以点M,N,H,E为顶点的四边形为平行四边形?若存在,直接写出点M的坐标,若不存在,说明理由.13.如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+c与y轴交于点A(0,6),与x轴交于点B(-2,0),C(6,0).(1)直接写出抛物线的解析式及其对称轴;(2)如图2,连接AB,AC,设点P(m,n)是抛物线上位于第一象限内的一动点,且在对称轴右侧,过点P作PD⊥AC于点E,交x轴于点D,过点P 作PG∥AB交AC于点F,交x轴于点G.设线段DG的长为d,求d与m的函数关系式,并注明m的取值范围;(3)在(2)的条件下,若△PDG的面积为,①求点P的坐标;②设M为直线AP上一动点,连接OM交直线AC于点S,则点M在运动过程中,在抛物线上是否存在点R,使得△ARS为等腰直角三角形?若存在,请直接写出点M及其对应的点R 的坐标;若不存在,请说明理由.14.如图,在直角坐标系中,直线y =﹣x+3与x轴,y轴分别交于点B,点C,对称轴为x=1的抛物线过B,C两点,且交x轴于另一点A,连接AC.(1)直接写出点A,点B,点C的坐标和抛物线的解析式;(2)已知点P为第一象限内抛物线上一点,当点P到直线BC的距离最大时,求点P的坐标;(3)抛物线上是否存在一点Q(点C除外),使以点Q,A,B为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.15.如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y 轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,点P的横坐标为m.(1)求此抛物线的表达式;(2)过点P 作PM⊥x轴,垂足为点M,PM交BC于点Q.试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标,若不存在,请说明理由;(3)过点P作PN⊥BC,垂足为点N.请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?16.抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,顶点为C,对称轴交x轴于点D,点P为抛物线对称轴CD上的一动点(点P不与C,D重合).过点C作直线PB的垂线交PB于点E,交x轴于点F.(1)求抛物线的解析式;(2)当△PCF的面积为5时,求点P的坐标;(3)当△PCF为等腰三角形时,请直接写出点P的坐标.17.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+2(a≠0)与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,连接BC.(1)求该抛物线的解析式,并写出它的对称轴;(2)点D为抛物线对称轴上一点,连接CD、BD,若∠DCB=∠CBD,求点D的坐标;(3)已知F(1,1),若E(x,y)是抛物线上一个动点(其中1<x<2 ),连接CE、CF、EF,求△CEF面积的最大值及此时点E的坐标.(4)若点N为抛物线对称轴上一点,抛物线上是否存在点M,使得以B,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M的坐标;若不存在,请说明理由.18.已知,如图,抛物线y=ax2+bx+c(a≠0)的顶点为M(1,9),经过抛物线上的两点A(﹣3,﹣7)和B(3,m)的直线交抛物线的对称轴于点C .(1)求抛物线的解析式和直线AB的解析式.(2)在抛物线上A、M两点之间的部分(不包含A、M两点),是否存在点D,使得S△DAC=2S△DCM?若存在,求出点D的坐标;若不存在,请说明理由.(3)若点P在抛物线上,点Q在x轴上,当以点A,M,P,Q 为顶点的四边形是平行四边形时,直接写出满足条件的点P的坐标.19.如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣1,0),B(4,0),C(0,4)三点.(1)求抛物线的解析式及顶点D 的坐标;(2)将(1)中的抛物线向下平移个单位长度,再向左平移h(h>0)个单位长度,得到新抛物线.若新抛物线的顶点D′在△ABC 内,求h的取值范围;(3)点P为线段BC上一动点(点P不与点B,C重合),过点P作x轴的垂线交(1)中的抛物线于点Q,当△PQC 与△ABC相似时,求△PQC的面积.20.如图,已知抛物线y=ax2 +bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x轴的另一个交点为C,顶点为D,连结CD.(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.21.已知:如图,抛物线y=ax2+bx +3与坐标轴分别交于点A,B(﹣3,0),C(1,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线解析式;(2)当点P运动到什么位置时,△PAB的面积最大?(3)过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E,连接DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求点P的坐标;若不存在,说明理由.答案1.【考点】矩形的性质、锐角三角函数、相似三角形的判定和性质、勾股定理、等腰三角形的性质【解答】解:①∵四边形OABC是矩形,B(2,2),∴OA=BC=2;故①正确;②∵点D为OA的中点,∴OD=OA=,∴PC2+PD2=CD2=OC2+OD2=22+()2=7,故②正确;③如图,过点P作PF⊥OA 于F,FP的延长线交BC于E,∴PE⊥BC,四边形OFEC是矩形,∴EF=OC=2,设PE=a,则PF=EF﹣PE=2﹣a,在Rt△BEP中,tan∠CBO===,∴BE=PE=a,∴CE=BC﹣BE=2﹣a=(2﹣a),∵PD⊥PC,∴∠CPE+∠FPD=90°,∵∠CPE+∠PCE=90°,∴∠FPD=∠ECP,∵∠CEP=∠PFD=90°,∴△CEP∽△PFD,∴=,∴=,∴FD=,∴tan∠PDC===,∴∠PDC=60°,故③正确;④∵B(2,2),四边形OABC是矩形,∴OA=2,AB=2,∵tan∠AOB==,∴∠AOB=30°,当△ODP为等腰三角形时,Ⅰ、OD=PD,∴∠DOP=∠DPO=30°,∴∠ODP=60°,∴∠ODC=60°,∴OD=OC=,Ⅱ、OP=OD,∴∠ODP=∠OPD=75°,∵∠COD=∠CPD=90°,∴∠OCP=105°>90°,故不合题意舍去;Ⅲ、OP=PD,∴∠POD=∠PDO=30°,∴∠OCP=150°>90°故不合题意舍去,∴当△ODP为等腰三角形时,点D的坐标为(,0).故④正确,故选:D.2.【考点】二次函数极值问题、三角函数、相似三角形【解答】解:(1)由题可知解得(2)①由题可知,∴由(1)可知,∴:设,则∴∴∴当时,四边形的面积最大,最大值为②由(1)可知由∽可得∴∴由,可得∴作于点,设,则∴,∴即解得∴∴l:3.【考点】待定系数法、二次函数极值问题、三角函数、分类讨论思想【解答】解:(1)当x=0时,y=4,则点A的坐标为(0,4),当y=0时,0=﹣x2+x+4,解得,x1=﹣4,x2=8,则点B的坐标为(﹣4,0),点C的坐标为(8,0),∴OA=OB=4,∴∠OBA=∠OAB=45°,∵将直线AB绕点A逆时针旋转90°得到直线AD,∴∠BAD=90°,∴OAD=45°,∴∠ODA=45°,∴OA=OD,∴点D的坐标为(4,0),设直线AD的函数解析式为y=kx+b,,得,即直线AD的函数解析式为y=﹣x+4;(2)作PN⊥x轴交直线AD于点N,如右图①所示,设点P的坐标为(t,﹣t2+t+4),则点N的坐标为(t,﹣t+4),∴PN=(﹣t2+t+4)﹣(﹣t+4)=﹣t2+t,∴PN⊥x轴,∴PN∥y轴,∴∠OAD=∠PNH=45°,作PH⊥AD于点H,则∠PHN=90°,∴PH==(﹣t2+t)=t=﹣(t﹣6)2+,∴当t=6时,PH取得最大值,此时点P的坐标为(6,),即当点P到直线AD的距离最大时,点P的坐标是(6,),最大距离是;②当点P到直线AD的距离为时,如右图②所示,则t=,解得,t1=2,t2=10,则P1的坐标为(2,),P2的坐标为(10,﹣),当P1的坐标为(2,),则P1A==,∴sin∠P1AD==;当P2的坐标为(10,﹣),则P2A==,∴sin∠P2AD==;由上可得,sin∠PAD的值是或.4.【考点】待定系数法、面积问题、三角函数、探究等腰三角形问题【解答】解:(1)点A的坐标是(2,0),抛物线的对称轴是直线x =﹣1,则点B(﹣4,0),则函数的表达式为:y=a(x﹣2)(x+4)=a (x2+2x﹣8),即:﹣8a=﹣2,解得:a=,故抛物线的表达式为:y=x2+x﹣2;(2)将点B、C的坐标代入一次函数表达式:y=mx+n并解得:直线BC的表达式为:y=﹣x﹣2,则tan∠ABC=,则sin∠ABC=,设点D(x,0),则点P(x,x2+x﹣2),点E(x,x﹣2),∵PE=OD,∴PE=(x2+x﹣2﹣x+2)=(﹣x),解得:x=0或﹣5(舍去x=0),即点D (﹣5,0)S△PBE=×PE×BD=(x2+x﹣2﹣x+2)(﹣4﹣x)=;(3)由题意得:△BDM是以BD为腰的等腰三角形,只存在:BD=BM的情况,BD=1=BM,则yM=﹣BMsin∠AB C=﹣1×=﹣,则xM=﹣,故点M(﹣,﹣).5.【考点】待定系数法、二次函数极值问题、点的存在性问题、一元二次方程、分类讨论【解答】解:(1)∵抛物线的对称轴是直线x=3,∴﹣=3,解得a =﹣,∴抛物线的解析式为:y=﹣x2+x+4.当y=0时,﹣x2+x +4=0,解得x1=﹣2,x2=8,∴点A的坐标为(﹣2,0),点B的坐标为(8,0).答:抛物线的解析式为:y=﹣x2+x+4;点A的坐标为(﹣2,0),点B的坐标为(8,0).(2)当x=0时,y=﹣x2+x+4=4,∴点C的坐标为(0,4).设直线BC的解析式为y=kx+b(k≠0),将B(8,0),C(0,4)代入y=kx+b得,解得,∴直线BC的解析式为y=﹣x+4.假设存在点P,使四边形PBOC的面积最大,设点P的坐标为(x,﹣x2+x+4),如图所示,过点P作PD∥y轴,交直线BC于点D,则点D的坐标为(x,﹣x+4),则PD=﹣x2+x+4﹣(﹣x+4)=﹣x2+2x,∴S四边形PBOC=S△BOC+S△PBC=×8×4+PDOB=16+×8(﹣x2+2x)=﹣x2+8x+16=﹣(x﹣4)2+32∴当x=4时,四边形PBOC的面积最大,最大值是32∵0<x<8,∴存在点P(4,6),使得四边形PBOC的面积最大.答:存在点P,使四边形PBOC的面积最大;点P的坐标为(4,6),四边形PBOC面积的最大值为32.(3)设点M的坐标为(m,﹣++4)则点N的坐标为(m,﹣),∴MN=|﹣++4﹣(﹣)|=|﹣+2m|,又∵MN=3,∴|﹣+2m|=3,当0<m<8时,﹣+2m﹣3=0,解得m1=2,m2=6,∴点M的坐标为(2,6)或(6,4);当m<0或m>8时,﹣+2m+3=0,解得m3=4﹣2,m4=4+2,∴点M的坐标为(4﹣2,﹣1)或(4+2,﹣﹣1).答:点M的坐标为(2,6)、(6,4)、(4﹣2,﹣1)或(4+2,﹣﹣1).6.【考点】待定系数法、二次函数极值问题、相似三角形、分类讨论【解答】解:(1)由题意把点(1,0),(﹣3,0)代入y=﹣x2+bx+c,得,,解得b=﹣2,c=3,∴y=﹣x 2﹣2x+3=﹣(x+1)2+4,∴此抛物线解析式为:y=﹣x2﹣2x+3,顶点C的坐标为(﹣1,4);(2)∵抛物线顶点C(﹣1 ,4),∴抛物线对称轴为直线x=﹣1,设抛物线对称轴与x轴交于点H,则H(﹣1,0),在Rt△CHO中,CH=4,OH=1,∴tan∠COH==4,∵∠COH=∠CAO+∠ACO,∴当∠ACO=∠CDO 时,tan(∠CAO+∠CDO)=tan∠COH=4,如图1,当点D在对称轴左侧时,∵∠ACO=∠CDO,∠CAO=∠CAO,∴△AOC∽△ACD,∴=,∵AC==2,AO=1,∴=,∴AD=20,∴OD=19,∴D(﹣19,0);当点D在对称轴右侧时,点D关于直线x=1的对称点D''的坐标为(17,0),∴点D的坐标为(﹣19,0)或(17,0);(3)设P(a,﹣a2﹣2a+3),将P(a,﹣a2﹣2a+3),A(1,0)代入y=kx+b,得,,解得,k=﹣a﹣3,b=a+3,∴yPA=(﹣a﹣3)x+a+3,当x=0时,y=a+3,∴N(0,a+3),如图2,∵S△BPM=S△BPA﹣S四边形BMNO﹣S△AON,S△EMN=S△EBO﹣S 四边形BMNO,∴S△BPM﹣S△EMN=S△BPA﹣S△EBO﹣S△AON=×4×(﹣a2﹣2a+3)﹣×3×3﹣×1×(a+3)=﹣2a2﹣a=﹣2(a+)2+,由二次函数的性质知,当a=﹣时,S△BPM﹣S△EMN有最大值,∵△BMP和△EMN的面积分别为m、n,∴m﹣n的最大值为.7.【考点】待定系数法、二次函数极值问题、距离和最短问题、探究特殊角问题【解答】解:(1)将点B的坐标为(4,m)代入y=﹣x+,m=﹣4+=﹣,∴B的坐标为(4,﹣),将A(3,2),B(4,﹣)代入y=﹣x2+bx+c,解得b=1,c=,∴抛物线的解析式y=;(2)设D(m,),则E(m,﹣m+),DE=()﹣(﹣m+)==﹣(m﹣2)2+2,∴当m=2时,DE有最大值为2,此时D(2,),作点A关于对称轴的对称点A'',连接A''D,与对称轴交于点P.PD+PA=PD+PA''=A''D,此时PD+PA最小,∵A(3,2),∴A''(﹣1,2),A''D==,即PD+PA的最小值为;(3)作AH⊥y轴于点H,连接AM、AQ、MQ、HA、HQ,∵抛物线的解析式y=,∴M(1 ,4),∵A(3,2),∴AH=MH=2,H(1,2)∵∠AQM=45°,∠AHM=90°,∴∠AQM=∠AHM,可知△AQM外接圆的圆心为H,∴QH=HA=HM=2设Q(0,t),则=2,t=2+或2﹣∴符合题意的点Q的坐标:Q1(0,2﹣)、Q2(0,2).8.【考点】待定系数法、二次函数嵌圆类问题【解答】(1)解:由题意得由图知:所以A(),,=6∴(2)由(1)得A(),,∴直线AC得解析式为:AC中点坐标为∴AC的垂直平分线为:又∵AB的垂直平分线为:∴得外接圆圆心的坐标(-1,1).(3)解:过点P做PD⊥x轴由题意得:PD=d,∴=2d∵的面积为∴,即A、D两点到PB得距离相等∴设PB直线解析式为;过点∴∴易得所以P(-4,-5),由题意及易得:∴BQ=AP=设Q(m,-1)()∴∴Q9.【考点】待定系数法、全等三角形的判定和性质、相似三角形的判定和性质、等腰三角形的判定和性质、分类讨论思想【解答】解:(1)由题意:,解得,∴抛物线的解析式为y=﹣(x﹣2)2+3,∴顶点D坐标(2,3).(2)可能.如图1,∵A(﹣2,0),D(2,3),B(6,0),∴AB=8,AD=BD=5,①当D E=DF时,∠DFE=∠DEF=∠ABD,∴EF∥AB,此时E与B重合,与条件矛盾,不成立.②当DE=EF时,又∵△BEF∽△AED,∴△BEF≌△AED,∴BE=AD=5③当DF=EF时,∠EDF=∠DEF =∠DAB=∠DBA,△FDE∽△DAB,∴=,∴==,∵△AEF∽△BCE∴==,∴EB=AD=,答:当BE的长为5或时,△CFE为等腰三角形.(3)如图2中,连接BD,当点P在线段BD的右侧时,作DH⊥AB于H,连接PD,PH,PB.设P[n,﹣(n﹣2)2+3],则S△PBD=S△PBH+S△PDH﹣S△BDH=×4×[﹣(n﹣2)2+3]+×3×(n﹣2)﹣×4×3=﹣(n﹣4)2+,∵﹣<0,∴n=4时,△PBD的面积的最大值为,∵=m,∴当点P在BD的右侧时,m的最大值==,观察图象可知:当0<m<时,满足条件的点P的个数有4个,当m=时,满足条件的点P的个数有3个,当m>时,满足条件的点P的个数有2个(此时点P在BD的左侧).10.【考点】待定系数法、相似三角形的判定和性质、探究面积问题、分类讨论思想【解答】解:(1)∵抛抛线y=ax2+bx+c经过点A(﹣3,0)、B(9,0)和C(0,4),∴抛物线的解析式为y=a(x+3)(x﹣9),∵点C(0,4)在抛物线上,∴4=﹣27a,∴a=﹣,∴抛物线的解析式为:y=﹣(x+3)(x﹣9)=﹣x2+x+4,∵CD垂直于y轴,C(0,4),令﹣x2+x+4=4,解得,x=0或x=6,∴点D的坐标为(6,4);(2)如图1所示,设A1F交CD于点G,O1F交CD于点H,∵点F是抛物线y=﹣x2+x+4的顶点,∴F(3,),∴FH=﹣4=,∵GH∥A1O1,∴△FGH∽△FA1O1,∴,∴,解得,GH=1,∵Rt△A1O1F与矩形OCDE重叠部分的图形是梯形A1O1HG ,∴S重叠部分=﹣S△FGH=A1O1?O1F﹣GH?FH==;(3)①当0<t≤3时,如图2所示,设O2C2交OD于点M,∵C2 O2∥DE,∴△OO2M∽△OED,∴,∴,∴O2M=t,∴S==OO2×O2M=t×t=t2;②当3<t≤6时,如图3所示,设A 2C2交OD于点M,O2C2交OD于点N,将点D(6,4)代入y=kx,得,k=,∴yOD=x,将点(t﹣3,0),(t,4)代入y=kx+b,得,,解得,k=,b=﹣t+4,∴直线A2C2的解析式为:y=x﹣t+4,联立yOD=x与y=x﹣t+4,得,x=x﹣t+4,解得,x=﹣6+2t,∴两直线交点M坐标为(﹣6+2t,﹣4+t),故点M到O2C2的距离为6﹣t,∵C2N∥OC,∴△DC2N∽△DCO,∴,∴,∴C2N=(6﹣t),∴S==﹣=OA?OC ﹣C2N(6﹣t)=×3×4﹣×(6﹣t)(6﹣t)=﹣t2+4t﹣6;∴S与t的函数关系式为:S=.11.【考点】待定系数法、探究特殊四边形问题、分类讨论思想、二次函数极值问题【解答】解:(1)用交点式函数表达式得:y=(x﹣1)(x﹣3)=x2﹣4x+3;故二次函数表达式为:y=x2﹣4x+3;(2)①当AB为平行四边形一条边时,如图1,则AB=PE=2,则点P坐标为(4,3),当点P在对称轴左侧时,即点C的位置,点A、B、P、F为顶点的四边形为平行四边形,故:点P(4,3)或(0,3);②当AB是四边形的对角线时,如图2,AB中点坐标为(2,0)设点P的横坐标为m,点F的横坐标为2,其中点横坐标为,即:=2,解得:m=2,故点P(2,﹣1);故:点P(4,3)或(0,3)或(2,﹣1);(3 )直线BC的表达式为:y=﹣x+3,设点E坐标为(x,x2﹣4x+3),则点D(x,﹣x+3),S四边形AEBD=AB(yD﹣yE )=﹣x+3﹣x2+4x﹣3=﹣x2+3x,∵﹣1<0,故四边形AEBD 面积有最大值,当x=,其最大值为,此时点E(,﹣).12.【考点】待定系数法、探究相似三角形问题、分类讨论思想、探究等腰三角形问题【解答】解:(1))∵点A、B关于直线x=1对称,AB=4,∴A(﹣1,0),B(3,0),代入y=﹣x2+bx+c中,得:,解得,∴抛物线的解析式为y=﹣x2+2x+3,∴C点坐标为(0,3);(2)设直线BC的解析式为y=mx+n,则有:,解得,∴直线BC的解析式为y=﹣x+3,∵点E、F关于直线x=1对称,又E到对称轴的距离为1,∴EF=2,∴F点的横坐标为2,将x=2代入y=﹣x+3中,得:y=﹣2+3=1,∴F(2,1);(3)①如下图,MN=﹣4t2+4t+3,MB=3﹣2t,△AOC与△BMN相似,则,即:,解得:t=或﹣或3或1(舍去、﹣、3),故:t=1;②∵M(2t,0),MN⊥x轴,∴Q(2t,3﹣2t),∵△BOQ 为等腰三角形,∴分三种情况讨论,第一种,当OQ=BQ时,∵Q M⊥OB∴OM=MB∴2t=3﹣2t∴t=;第二种,当BO=BQ时,在Rt△BMQ中∵∠OBQ=45°,∴BQ=,∴BO=,即3=,∴t=;第三种,当OQ=OB时,则点Q、C重合,此时t=0而t>0,故不符合题意综上述,当t=或秒时,△BOQ为等腰三角形.13 .【考点】待定系数法、探究矩离和最短问题、分类讨论思想、探究特殊四边形问题【解答】解:(1)∵平行四边形OABC中,A(6,0),C(4,3)∴BC=OA=6,BC∥x轴∴xB=xC+6=10,yB=yC =3,即B(10,3)设抛物线y=ax2+bx+c经过点B、C、D(1,0)∴解得:∴抛物线解析式为y=﹣x2+x﹣(2)如图1,作点E关于x轴的对称点E'',连接E''F交x轴于点P∵C(4,3)∴OC=∵BC∥OA∴∠OEC=∠AOE∵OE平分∠AOC∴∠AOE=∠COE∴∠OEC=∠COE∴CE=OC=5∴xE=xC+5=9,即E(9,3)∴直线OE解析式为y=x∵直线OE交抛物线对称轴于点F,对称轴为直线:x=﹣7∴F(7,)∵点E与点E''关于x轴对称,点P在x轴上∴E''(9,﹣3),PE=PE''∴当点F、P、E''在同一直线上时,PE+PF=PE''+PF=FE''最小设直线E''F解析式为y=kx+h∴解得:∴直线E''F:y=﹣x+21当﹣x+21=0时,解得:x=∴当PE+PF的值最小时,点P坐标为(,0).(3)存在满足条件的点M,N,使得以点M,N,H,E为顶点的四边形为平行四边形.设AH与OE相交于点G(t,t),如图2∵AH⊥OE于点G,A(6,0)∴∠AGO=90°∴AG2+OG2=OA2∴(6﹣t)2+(t)2+t2+(t)2=62 ∴解得:t1=0(舍去),t2=∴G(,)设直线AG解析式为y=dx+e∴解得:∴直线AG:y=﹣3x+18当y=3时,﹣3x+ 18=3,解得:x=5∴H(5,3)∴HE=9﹣5=4,点H、E关于直线x=7对称①当HE为以点M,N,H,E为顶点的平行四边形的边时,如图2则HE∥MN,MN=HE=4∵点N在抛物线对称轴:直线x=7上∴xM=7+4或7﹣4,即xM=11或3当x=3时,yM =﹣×9+×9﹣=∴M(3,)或(11,)②当HE为以点M,N,H,E为顶点的平行四边形的对角线时,如图3则HE、MN互相平分∵直线x=7平分HE,点F在直线x=7上∴点M在直线x=7上,即M为抛物线顶点∴yM=﹣×49+×7﹣=4∴M(7,4)综上所述,点M坐标为(3,)、(11,)或(7,4).14.【考点】二次函数的图象与性质,等腰直角三角形的性质,相似三角形的判定和性质,一元二次方程的解法,一次函数的图象与性质,二元一次方程组的解法【解答】解:(1)∵抛物线与x轴交于点B(-2,0),C(6,0)∴设交点式y=a(x+2)(x-6)∵抛物线过点A(0,6)∴-12a=6∴a=-∴抛物线解析式为y=-(x+2)(x-6)=-x2+2x+6=-(x-2)2+8∴抛物线对称轴为直线x=2.(2)过点P作PH⊥x轴于点H,如图1∴∠PHD=90°∵点P(m,n)是抛物线上位于第一象限内的一动点且在对称轴右侧∴2<m<6,PH=n=-m2+2m+6,n>0∵OA=OC=6,∠AOC=90°∴∠AC O=45°∵PD⊥AC于点E∴∠CED=90°∴∠CDE=90°-∠ACO=45°∴DH=PH=n∵PG∥AB∴∠PGH=∠ABO∴△PGH∽△ABO∴∴GH=n∴d=DH-GH=n-n=n=(-m2+2m+6)=-m2+m+4(2<m<6)(3)①∵S△PDG=DG?PH=∴n?n=解得:n1=,n2=-(舍去)∴-m2+2m+6=解得:m1=-1(舍去),m2=5∴点P坐标为(5,)②在抛物线上存在点R,使得△ARS为等腰直角三角形.设直线AP解析式为y=kx+6把点P代入得:5k+6=∴k=-∴直线AP:y= -x+6i)若∠RAS=90°,如图2∵直线AC解析式为y=-x+6∴直线AR解析式为y=x+6?解得:(即点A)∴R(2,8)∵∠ASR=∠OAC=45°∴RS∥y轴∴xS=xR=2∴S(2,4)∴直线OM:y=2x∵?解得:∴M(,)ii)若∠ASR=90°,如图3∴∠SAR=∠ACO=45°∴AR∥x轴∴R(4,6)∵S在AR的垂直平分线上∴S(2,4)∴M(,)iii)若∠ARS=90°,如图4,∴∠SAR=∠ACO=45°,RS∥y轴∴AR∥x轴∴R(4,6)∴S(4,2)∴直线OM:y=x∵?解得:∴M(6,3)综上所述,M1(,),R1(2,8);M2(,),R2(4,6);M3(6,3),R3(4,6).15.【考点】二次函数的图象与性质、二次函数极值问题、探究等腰三角形问题、分类讨论与数形结合思想【解答】解:(1)由二次函数交点式表达式得:y=a(x+3)(x﹣4)=a(x2﹣x﹣12),即:﹣12a=4,解得:a=﹣,则抛物线的表达式为y=﹣x2+x+4;(2)存在,理由:点A、B、C的坐标分别为(﹣3,0)、(4,0)、(0,4),则AC=5,AB=7,BC=4,∠OAB=∠OBA=45°,将点B、C 的坐标代入一次函数表达式:y=kx+b并解得:y=﹣x+4…①,同理可得直线AC的表达式为:y=x+4,设直线AC的中点为M(﹣,4),过点M与CA垂直直线的表达式中的k值为﹣,同理可得过点M与直线AC垂直直线的表达式为:y=﹣x+…②,①当AC=AQ 时,如图1,则AC=AQ=5,设:QM=MB=n,则AM=7﹣n,由勾股定理得:(7﹣n)2+n2=25,解得:n=3或4(舍去4),故点Q(1,3);②当AC=CQ时,如图1,CQ=5,则BQ=BC﹣CQ=4﹣5,则QM=MB=,故点Q(,);③当CQ=AQ时,联立①②并解得:x=(舍去);故点Q的坐标为:Q(1,3)或(,);(3)设点P(m,﹣m2+m+4),则点Q(m,﹣m+4),∵OB=OC,∴∠ABC=∠OCB=45°=∠PQN,PN=PQsin∠PQN=(﹣m2+m+4+m﹣4)=﹣m2+m,∵﹣<0,∴PN有最大值,当m=时,PN的最大值为:.17.【考点】二次函数的图象与性质、二次函面积问题、探究等腰三角形问题、分类讨论与数形结合思想【解答】解:(1)函数的表达式为:y=(x+1)(x﹣5)=﹣x2+x+;(2)抛物线的对称轴为x=1,则点C(2,2),设点P(2,m),将点P、B的坐标代入一次函数表达式:y=sx+t并解得:函数PB的表达式为:y=﹣mx+…①,∵CE⊥PE,故直线C E表达式中的k值为,将点C的坐标代入一次函数表达式,同理可得直线CE的表达式为:y=…②,联立①②并解得:x=2﹣,故点F (2﹣,0),S△PCF=×PC×DF=(2﹣m)(2﹣﹣2)=5,解得:m =5或﹣3(舍去5),故点P(2,﹣3);(3)由(2)确定的点F的坐标得:CP2=(2﹣m)2,CF2=()2+4,PF2=()2+m2,①当CP=CF时,即:(2﹣m)=()2+4,解得:m=0或(均舍去),②当CP=PF时,(2﹣m)2=()2+m2,解得:m=或3(舍去3),③当CF=PF时,同理可得:m=±2(舍去2),故点P(2,)或(2,﹣2).18.【考点】二次函数的图象与性质、二次函极值问题、探究平行四边形问题、分类讨论与数形结合思想【解答】解:(1)将点A(﹣1,0),B(3,0)代入y =ax2+bx+2,可得a=﹣,b=,∴y=﹣x2+x+2;∴对称轴x=1;(2)如图1:过点D作DG⊥y轴于G,作DH⊥x轴于H,设点D(1,y),∵C(0,2),B(3,0),∴在R t△CGD中,CD2=CG2+GD2=(2﹣y)2+1,∴在Rt△BHD中,BD2=BH2+HD2=4+y2,在△BCD中,∵∠DCB=∠CBD,∴CD=BD,∴CD2=BD2,∴(2﹣y)2+1=4+y2,∴y=,∴D(1,);(3)如图2:过点E作EQ⊥y轴于点Q,过点F作直线FR⊥y轴于R,过点E作FP⊥FR于P,∴∠EQR=∠QRP=∠RPE=90°,∴四边形QRPE是矩形,∵S△CEF=S 矩形QRPE﹣S△CRF﹣S△EFP,∵E(x,y),C(0,2),F(1,1),∴S△CEF=EQ?QR﹣×EQ?QC﹣CR?RF﹣FP?EP,∴S△CEF=x(y﹣1)﹣x(y﹣2)﹣×1×1﹣(x﹣1)(y﹣1),∵y=﹣x2+x+2,∴S△CEF=﹣x2+x,∴当x=时,面积有最大值是,此时E(,);(4)存在点M使得以B,C,M,N为顶点的四边形是平行四边形,设N(1,n),M(x,y),①四边形CMNB是平行四边形时,=,∴x=﹣2,∴M(﹣2,﹣);②四边形CNBM时平行四边形时,=,∴x=2,∴M(2,2);③四边形CNNB时平行四边形时,=,∴x=4,∴M(4,﹣);综上所述:M(2,2)或M(4,﹣)或M(﹣2,﹣);19 .【考点】二次函数的图象与性质、探究面积问题、探究平行四边形问题、分类讨论与数形结合思想【解答】解:(1)二次函数表达式为:y=a(x﹣1)2+9,将点A的坐标代入上式并解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+8…①,则点B(3,5),将点A、B的坐标代入一次函数表达式并解得:直线AB的表达式为:y=2x﹣1;(2)存在,理由:二次函数对称轴为:x=1,则点C(1,1),过点D作y轴的平行线交AB于点H,设点D(x,﹣x2+2x+8),点H(x,2x﹣1),∵S△DAC=2S△DCM,则S△DAC=DH(xC﹣xA)=(﹣x2+2x+8﹣2x+1)(1+3)=(9﹣1)(1﹣x)×2,解得:x=﹣1或5(舍去5),故点D(﹣1 ,5);(3)设点Q(m,0)、点P(s,t),t=﹣s2+2s+8,①当AM是平行四边形的一条边时,点M向左平移4个单位向下平移16个单位得到A,同理,点Q(m,0)向左平移4个单位向下平移16个单位为(m﹣4,﹣16),即为点P,即:m﹣4=s,﹣6=t,而t=﹣s2+2s+8,解得:s=6或﹣4,故点P(6,﹣16)或(﹣4,﹣16);②当AM是平行四边形的对角线时,由中点公式得:m+s=﹣2,t=2,而t=﹣s2+2s+8,解得:s=1,故点P(1,2)或(1﹣,2);综上,点P(6,﹣16)或(﹣4,﹣1 6)或(1,2)或(1﹣,2).20.【考点】二次函数的图象与性质、探究相似三角形问题、分类讨论与数形结合思想【解答】解:(1)函数表达式为:y=a(x+1)(x﹣4)=a(x2﹣3x﹣4),即﹣4a=4,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+3x +4,函数顶点D(,);(2)物线向下平移个单位长度,再向左平移h(h>0)个单位长度,得到新抛物线的顶点D′(﹣h,1),将点AC的坐标代入一次函数表达式并解得:直线AC的表达式为:y=4x+4,将点D′坐标代入直线AC的表达式得:1=4(﹣h)+4,解得:h=,故:0<h;(3)过点P作y轴的平行线交抛物线和x轴于点Q、H∵OB=OC=4,∴∠PBA=∠OCB=45°=∠QPC,直线BC的表达式为:y=﹣x+4,则AB=5,BC=4,AC=,S△ABC =×5×4=10,设点Q(m,﹣m2+3m+4),点P(m,﹣m+4),CP=m,PQ=﹣m2+3m+4+m﹣4=﹣m2+4m,①当△CPQ∽△CBA,,即,解得:m=,相似比为:,②当△CPQ∽△ABC,同理可得:相似比为:,利用面积比等于相似比的平方可得:S△PQC=10×()2=或S△PQC=10×()2=.21 .【考点】二次函数的图象与性质、二次函数极值问题、分类讨论与数形结合思想【解答】解:(1)将点A、B坐标代入二次函数表达式得:,解得:,故抛物线的表达式为:y=x2+6x+5…①,令y=0,则x =﹣1或﹣5,即点C(﹣1,0);(2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1…②,设点G(t,t+1),则点P (t,t2+6t+5),S△PBC=PG(xC﹣xB)=(t+1﹣t2﹣6t﹣5)=﹣t2﹣t﹣6,∵<0,∴S△PBC有最大值,当t=﹣时,其最大值为;②设直线BP与CD交于点H,当点P在直线BC下方时,∵∠PBC=∠BCD,∴点H在BC的中垂线上,线段BC的中点坐标为(﹣,﹣),过该点与BC垂直的直线的k值为﹣1,设BC中垂线的表达式为:y=﹣x+m,将点(﹣,﹣)代入上式并解得:直线BC中垂线的表达式为:y=﹣x﹣4…③,同理直线CD的表达式为:y=2x+2…④,联立③④并解得:x=﹣2,即点H(﹣2,﹣2),同理可得直线BH的表达式为:y=x﹣1…⑤,联立①⑤并解得:x=﹣或﹣4(舍去﹣4),故点P(﹣,﹣);当点P(P′)在直线BC上方时,∵∠PBC=∠BCD,∴BP′∥CD,则直线BP′的表达式为:y=2x+s,将点B坐标代入上式并解得:s=5,即直线BP′的表达式为:y=2x+5…⑥,联立①⑥并解得:x=0或﹣4(舍去﹣4),故点P(0,5);故点P的坐标为P (﹣,﹣)或(0,5).22.【考点】待定系数法、二次函数的图象与性质、二次函数极值问题、探究特殊三角形问题、分类讨论与数形结合思想【解答】解:(1)∵抛物线y=ax2+bx+3过点B(﹣3,0),C(1,0)∴解得:∴抛物线解析式为y=﹣x2﹣2x+3(2)过点P作PH⊥x轴于点H,交AB于点F∵x=0时,y=﹣x2﹣2x+3=3∴A(0,3)∴直线AB解析式为y=x+3∵点P在线段AB上方抛物线上∴设P (t,﹣t2﹣2t+3)(﹣3<t<0)∴F(t,t+3)∴PF=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t∴S△PAB=S△PAF+S△PBF=PF?OH+PF?BH=PF?OB=(﹣t2﹣3t)=﹣(t+)2+∴点P运动到坐标为(﹣,),△PAB面积最大(3)存在点P使△PDE为等腰直角三角形设P(t,﹣t2﹣2t+3)(﹣3<t<0),则D(t,t+3)∴PD=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t∵抛物线y=﹣x2﹣2x+3=﹣(x+1)2+4∴对称轴为直线x=﹣1∵PE∥x轴交抛物线于点E∴yE=yP,即点E、P关于对称轴对称∴=﹣1∴xE=﹣2﹣xP=﹣2﹣t∴PE=|xE﹣xP|=|﹣2﹣2t|∵△P DE为等腰直角三角形,∠DPE=90°∴PD=PE①当﹣3<t≤﹣1时,PE=﹣2﹣2t∴﹣t2﹣3t=﹣2﹣2t解得:t1=1(舍去),t2=﹣2∴P(﹣2,3)②当﹣1<t<0时,PE=2+2t∴﹣t2﹣3t=2+2t解得:t1=,t2=(舍去)∴P(,)综上所述,点P坐标为(﹣2,3)或(,)时使△PDE为等腰直角三角形.。

2014中考数学代数几何综合试卷分类汇编

2014中考数学代数几何综合试卷分类汇编

2014中考数学代数几何综合试卷分类汇编
中考数学代数几何综合试卷分类汇编,主要是汇总了2013年中考数学试题中关于代数几何的综合题型,这类题型主要考查了二次函数解析式的确定,函数图象交点及图形面积的求法,三角形的相似,函数图象的平移,一元二次方程的解法等知识,难度较大。

1、(2013年潍坊市压轴题)如图,抛物线y=ax2+bx+cy关于直线x=1对称,与坐标轴交于A、
B、C三点,且AB=4,点D
在抛物线上,直线是一次函数y=kx-2(k 0)的图象,点O是坐标原点。

&nbsp;
(1)求抛物线的解析式;
(2)若直线平分四边形OBDC的面积,求K的值;
(3)把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线交于M、N两点,问在y轴正半轴上是否存在一定点P,使得不论K取何值,直线PM与PN总是关于y轴对称?若存在,求出P点坐标;若不存在,请说明理由。

相关推荐
2013年中考数学关于函数与四边形的模拟汇编&nbsp;&nbsp;
2013年中考模拟数学关于实数运算的试卷分类汇编&nbsp;&nbsp;
&nbsp;
标签:模拟题汇编。

2013中考试卷分类汇编代数几何综合

2013中考试卷分类汇编代数几何综合

2013中考试卷分类汇编代数几何综合1、(2013年潍坊市压轴题)如图,抛物线c bx ax y ++=2关于直线1=x 对称,与坐标轴交于C B A 、、三点,且4=AB ,点⎪⎭⎫ ⎝⎛232,D 在抛物线上,直线是一次函数()02≠-=k kx y 的图象,点O 是坐标原点.(1)求抛物线的解析式;(2)若直线平分四边形OBDC 的面积,求k 的值.(3)把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线交于N M 、两点,问在y 轴正半轴上是否存在一定点P ,使得不论k 取何值,直线PM 与PN 总是关于y 轴对称?若存在,求出P 点坐标;若不存在,请说明理由.答案:(1)因为抛物线关于直线x=1对称,AB=4,所以A(-1,0),B(3,0), 由点D(2,1.5)在抛物线上,所以⎩⎨⎧=++=+-5.1240c b a c b a ,所以3a+3b=1.5,即a+b=0.5,又12=-a b ,即b=-2a,代入上式解得a =-0.5,b =1,从而c=1.5,所以23212++-=x x y . (2)由(1)知23212++-=x x y ,令x=0,得c(0,1.5),所以CD//AB,令kx -2=1.5,得l 与CD 的交点F(23,27k ),令kx -2=0,得l 与x 轴的交点E(0,2k),根据S 四边形OEFC =S 四边形EBDF 得:OE+CF=DF+BE,即:,511),272()23(272=-+-=+k k k k k 解得 (3)由(1)知,2)1(21232122+--=++-=x x x y所以把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为221x y -= 假设在y 轴上存在一点P(0,t),t >0,使直线PM 与PN 关于y 轴对称,过点M 、N 分别向y 轴作垂线MM 1、NN 1,垂足分别为M 1、N 1,因为∠MPO=∠NPO,所以Rt △MPM 1∽Rt △NPN 1,所以1111PN PM NN MM =,………………(1) 不妨设M(x M ,y M )在点N(x N ,y N )的左侧,因为P 点在y 轴正半轴上, 则(1)式变为NMN M y t y t x x --=-,又y M =k x M -2, y N =k x N -2, 所以(t+2)(x M +x N )=2k x M x N,……(2) 把y=kx-2(k ≠0)代入221x y -=中,整理得x 2+2kx-4=0, 所以x M +x N =-2k, x M x N =-4,代入(2)得t=2,符合条件,故在y 轴上存在一点P (0,2),使直线PM 与PN 总是关于y 轴对称.考点:本题是一道与二次函数相关的压轴题,综合考查了考查了二次函数解析式的确定,函数图象交点及图形面积的求法,三角形的相似,函数图象的平移,一元二次方程的解法等知识,难度较大.点评:本题是一道集一元二次方程、二次函数解析式的求法、相似三角形的条件与性质以及质点运动问题、分类讨论思想于一体的综合题,能够较好地考查了同学们灵活应用所学知识,解决实际问题的能力。

7代数几何综合题(含答案)

7代数几何综合题(含答案)

代数几何综合题Ⅰ、综合问题精讲:代数几何综合题是初中数学中覆盖面最广、综合性最强的题型,近几年中考试题中的综合题大多以代数几何综合题的形式出现,其解题关键点是借助几何直观解题,运用方程、函数的思想解题,灵活运用数形结合,由形导数,以数促形,综合运用代数和几何知识解题.Ⅱ、典型例题剖析【例1】(2005,温州,12分)如图,已知四边形ABCD 内接于⊙O,A 是 BD C 的中点,AE⊥AC 于A ,与⊙O 及CB 的延长线分别交于点F 、E ,且 BF AD =,EM 切⊙O 于M 。

⑴ △ADC∽△EBA ;⑵ AC2=12 BC·CE;⑶如果AB =2,EM =3,求cot∠CAD 的值。

解:⑴∵四边形ABCD 内接于⊙O,∴∠CDA=∠ABE, ∵ BF AD =,∴∠DCA=∠BAE,∴△CAD∽△AEB⑵ 过A 作AH⊥BC 于H(如图)∵A 是 BD C 中点,∴HC=HB =12BC , ∵∠CAE=900,∴AC 2=CH·CE=12BC·CE⑶∵A 是 BD C 中点,AB =2,∴AC=AB =2, ∵EM 是⊙O 的切线,∴EB·EC=EM 2 ① ∵AC 2=12 BC·CE,BC·CE=8 ②①+②得:EC(EB +BC)=17,∴EC 2=17 ∵EC 2=AC 2+AE 2,∴AE=17-22=13 ∵△CAD∽△ABE,∴∠CAD=∠AEC, ∴cot∠CAD=cot∠AEC=AE AC =132点拨:此题的关键是树立转化思想,将未知的转化为已知的.此题表现的非常突出.如,将∠CAD 转化为∠AEC 就非常关键.【例2】(2005,自贡)如图 2-5-2所示,已知直线y=2x+2分别与x 轴、y 轴交于点A 、B ,以线段AB 为直角边在第一象限内作等腰直角△ABC ,∠BAC=90○。

过C 作CD ⊥x 轴,D 为垂足. (1)求点 A 、B 的坐标和AD 的长;(2)求过B 、A 、C 三点的抛物线的解析式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

代数几何综合一、选择题1. (2012浙江义乌3分)一个正方形的面积是15,估计它的边长大小在【 】 A .2与3之间 B .3与4之间 C .4与5之间 D .5与6之间 【答案】B 。

【考点】算术平方根,估算无理数的大小。

【分析】∵一个正方形的面积是15,∵9<15<16<4。

故选B 。

2. (2012浙江杭州3分)已知抛物线()3y k x 1x k ⎛⎫=+ ⎪⎝⎭-与x 轴交于点A ,B ,与y 轴交于点C ,则能使△ABC 为等腰三角形的抛物线的条数是【 】 A .2 B .3 C .4 D .5 【答案】B 。

【考点】抛物线与x 轴的交点。

【分析】根据抛物线的解析式可得C (0,﹣3),再表示出抛物线与x 轴的两个交点的横坐标,再根据ABC 是等腰三角形分三种情况讨论,求得k 的值,即可求出答案:根据题意,得C (0,﹣3). 令y=0,则()3k x 1x 0k ⎛⎫+= ⎪⎝⎭-,解得x=﹣1或x=3k 。

设A 点的坐标为(﹣1,0),则B (3k,0), ①当AC=BC 时,OA=OB=1,B 点的坐标为(1,0),∴3k=1,k=3; ②当AC=AB 时,点B 在点A 的右面时,∵AC =B 1,0),∴31,k k ==③当AC=AB 时,点B 在点A 的左面时,B 0),∴3k k == 。

∴能使△ABC 为等腰三角形的抛物线的条数是3条。

故选B 。

3. (2012浙江湖州3分)如图,已知点A (4,0),O 为坐标原点,P 是线段OA 上任意一点(不含端点O ,A ),过P 、O 两点的二次函数y 1和过P 、A 两点的二次函数y 2的图象开口均向下,它们的顶点分别为B 、C ,射线OB 与AC 相交于点D .当OD=AD=3时,这两个二次函数的最大值之和等于【 】A C .3 D .4 【答案】A 。

【考点】二次函数的性质,等腰三角形的性质,勾股定理,相似三角形的判定和性质。

【分析】过B 作BF⊥OA 于F ,过D 作DE⊥OA 于E ,过C 作CM⊥OA 于M ,∵BF⊥OA,DE⊥OA,CM⊥OA,∴BF∥DE∥CM。

∵OD=AD=3,DE⊥OA,∴OE=EA=12OA=2。

由勾股定理得:设P (2x ,0),根据二次函数的对称性得出OF=PF=x , ∵BF∥DE∥CM,∴△OBF∽△ODE,△ACM∽△ADE。

∴BF OF CM AMDE OE DE AE== ,,即F C M2x 22-,解得:)2x BF CM 2-==,。

A 。

4. (2012浙江嘉兴、舟山4分)已知△ABC 中,∠B 是∠A 的2倍,∠C 比∠A 大20°,则∠A 等于【 】 A . 40° B . 60°C . 80°D .90° 【答案】A 。

【考点】一元一次方程的应用(几何问题),三角形内角和定理。

【分析】设∠A=x,则∠B=2x,∠C=x+20°,则x+2x+x+20°=180°,解得x=40°,即∠A=40°。

故选A 。

5. (2012江苏苏州3分)已知在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点B 1在y 轴上,点C 1、E 1、E 2、C 2、E 3、E 4、C 3在x 轴上.若正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O=60°, B 1C 1∥B 2C 2∥B 3C 3,则点A 3到x 轴的距离是【 】D. 【答案】D 。

【考点】正方形的性质,平行的性质,三角形内角和定理,解直角三角形,锐角三角函数定义,特殊角的三角函数值。

【分析】过小正方形的一个顶点W 作FQ⊥x 轴于点Q ,过点A 3F⊥FQ 于点F ,∵正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O=60°,B 1C 1∥B 2C 2∥B 3C 3,∴∠B 3C 3 E 4=60°,∠D 1C 1E 1=30°,∠E 2B 2C 2=30°。

∴D 1E 1=12D 1C 1=12。

∴D 1E 1=B 2E 2=12。

∴222222B E 1cos30B C 2B C ︒===。

解得:B 2C 2。

∴B 3E 4。

∴343333B E cos30B C ︒=,解得:B 3C 3=13。

∴WC 3=13。

根据题意得出:∠WC 3 Q=30°,∠C 3 WQ=60°,∠A 3 WF=30°,∴WQ=111=236⨯,FW=WA 3•cos30°=13 ∴点A 3到x 轴的距离为:FW+WQ=16D 。

6. (2012湖南永州3分)下列说法正确的是【 】 AB .32a a a a 0-⋅=≠()C .不等式2﹣x >1的解集为x >1D .当x >0时,反比例函数ky=x的函数值y 随自变量x 取值的增大而减小7. (2012湖南张家界3分)下列不是必然事件的是【 】 A . 角平分线上的点到角两边的距离相等 B . 三角形任意两边之和大于第三边 C . 面积相等的两个三角形全等 D . 三角形内心到三边距离相等 【答案】C 。

【考点】随机事件,必然事件。

【分析】A .为必然事件,不符合题意;B .为必然事件,不符合题意;C .为不确定事件,面积相等的三角形不一定全等,符合题意;D .为必然事件,不符合题意。

故选C 。

8. (2012四川资阳3分)下列计算或化简正确的是【 】A .235a +a =aB 3± D .11=x+1x 1--- 【答案】D 。

【考点】合并同类项,二次根式的化简,算术平方根,分式的基本性质。

【分析】根据合并同类项和二次根式的化简的运算法则,算术平方根的概念和分式的基本性质逐一判断:A 、a 2和a 3不是同类项,不可以全并,此选项错误;BC ,此选项错误;D 、()111==x+1x 1x 1------,此选项正确。

故选D 。

9. (2012四川南充3分)下列计算正确的是【 】(A )x 3+ x 3=x 6(B )m 2·m 3=m 6(C )3-2=3 (D )14×7=72【答案】D 。

【考点】合并同类项,同底数幂的乘法,二次根式的加减法,次根式的乘法。

【分析】对每一项分别进行解答,得出正确的结果,最后选出本题的答案即可:A 、x3+x3=2x3,故此选项错误;B 、m2•m3=m5,故此选项错误;C 、D ==项正确。

故选D 。

10. (2012四川攀枝花3分)下列运算正确的是【 】A .2-B .3±C . (ab )2=ab 2D . (﹣a 2)3=a 6【答案】A 。

【考点】立方根,算术平方根,幂的乘方与积的乘方。

【分析】根据立方根,算术平方根,幂的乘方与积的乘方的知识,对各选项分析判断后利用排除法求解,即可求得答案:A 2-,故本选项正确;B ,故本选项错误;C .(ab )2=a 2b 2,故本选项错误;D .(﹣a 2)3=﹣a 6,故本选项错误。

故选A 。

11. (2012四川泸州2分)已知三角形两边的长分别是3和6,第三边的长是方程x 2- 6x + 8 = 0的根,则这个三角形的周长等于【 】A 、13B 、11C 、11 或13D 、12或15【答案】A 。

【考点】因式分解法解一元二次方程,三角形三边关系。

【分析】首先由方程x 2-6x +8=0,确定第三边的边长为2或4;其次考查2,3,6或4,3,6能否构成三角形,从而求出三角形的周长:解方程x 2-6x +8=0,得:x 1=2或x 2=4。

当第三边是2时,2+3<6,不能构成三角形,应舍去; 当第三边是4时,三角形的周长为4+3+6=13。

故选A 。

12. (2012四川广元3分) 一组数据2,3,6,8,x 的众数是x ,其中x 又是不等式组240x 70x ->⎧⎨-<⎩的整数解,则这组数据的中位数可能是【 】A. 3B. 4C. 6D. 3或6 【答案】D 。

【考点】一元一次不等式组的整数解,众数,中位数。

【分析】先求出不等式组 2x-4>0x-7<0 的整数解,再根据众数、中位数的定义可求2x 40x 70><-⎧⎨-⎩①②, 解不等式①得x >2,解不等式②得x <7,∴不等式组的解为2<x <7。

∴不等式组的整数解为3,4,5,6。

∵一组数据2、3、6、8、x 的众数是x ,∴x=3或6。

如果x=3,排序后该组数据为2,3,3,6,8,则中位数为3;如果x=6,排序后该组数据为2,3,6,6,8,则中位数为6。

故选D 。

13. (2012辽宁本溪3分)已知一元二次方程x 2-8x +15=0 的两个解恰好分别是等腰△ABC 的底边长和腰长,则△ABC 的周长为【 】:]A 、13B 、11或13C 、11D 、12 【答案】B 。

【考点】因式分解法解一元二次方程,等腰三角形的性质,三角形三边关系。

【分析】∵x 2-8x +15=0 ,∴(x -3)(x -5)=0。

∴x-3=0或x -5=0,即x 1=3,x 2=5。

∵一元二次方程x 2-8x +15=0 的两个解恰好分别是等腰△ABC 的底边长和腰长, ∴当底边长和腰长分别为3和5时,3+3>5,∴△ABC 的周长为:3+3+5=11; ∴当底边长和腰长分别为5和3时,3+5>5,∴△ABC 的周长为:3+5+5=13。

∴△ABC 的周长为:11或13。

故选B 。

14. (2012辽宁朝阳3分)如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数2k +4k+1y=x的图象上,若点A 的坐标为(-2,-3),则k的值为【 】A.1B. -5C. 4D. 1或-5 【答案】D 。

【考点】矩形的性质,反比例函数图象上点的坐标特征。

【分析】如图:∵四边形ABCD 、HBEO 、OECF 、GOFD 为矩形,又∵BO 为四边形HBEO 的对角线,OD 为四边形OGDF 的对角线, ∴BEO BHO OFD OGD CBD ADB S S S S S S ∆∆∆∆∆∆===,,。

∴CBD BEO OFD ADB BHO OGD S S S S S S ∆∆∆∆∆∆--=--。

∴CEOF HAGO S S 236==⨯=四形四形边边。

∴xy=k 2+4k+1=6,解得,k=1或k=-5。

故选D 。

--15. (2012贵州黔西南4分)三角形的两边长分别为2和6,第三边是方程2x10x+21=0的解,则第三边的长为【】(A)7 (B)3 (C)7或3 (D)无法确定【答案】A。

相关文档
最新文档