高斯扩散模型
高斯扩散模型

实际(浓3度)实际浓度 C=C实+C虚
c( x,
y,
z,
H
)
q
2πu
y
z
exp(
y2
2
2 y
){exp[
(z H
2
2 y
)2
]
exp[
(z H )2
2
2 z
]}
高架连续点源扩散模式的几种变形
地面浓度模式:取z=0代入上式,得
c( x,
y, 0,
H)
q
πu y
z
exp(
有界大气扩散:高架源须考虑到地面对扩散的影响。
按全反射原理,可用 “像源法”处理
(1)实源贡献:P点在以像源为原点的坐标系中的
实源的垂贡直献坐标为(z-H)
q
y2 (z H )2
c( x,
y, zC, H实)
2πu y z
exp[(
2
2 y
2
2 y
)]
源的(贡c垂2()x献直,虚坐y,源z标C,贡虚H为献)(:z2+PπH点u)q在y以z像ex源p[为(原2y点2y2的坐( z标2系Hz2中)2的)]
y2
2
2 y
) exp(
H2
2
2 z
)
地面轴线浓度模式:再取y=0代入上式
c( x, 0, 0,
H
)
q
πu y
z
exp(
H2
2
2 z
)
地面源高斯模式(令H=0):
c( x,
y,
z, 0)
q
πu y z
exp[
高斯扩散模型

xo。再由(x0+x)分布查出σy 和σz,则面源下风向任一处的地面浓度由下式确定:
(5-33) 上式即为点源扩散的高斯模式(5-24),式中 H 取面源的平均高度,m。 如果排放源相对较高,而且高度相差较大,也可假定 z 方向上有一虚拟点源,由源 的最初垂直分布的标准差确定 ,再由 求出 ,由 求出σz,由(x0+x) 求
二、高斯扩散模式
(一)连续点源的扩散 连续点源一般指排放大量污染物的烟囱、放散管、通风口等。排放口安置在地面的 称为地面点源,处于高空位置的称为高架点源。 1. 大空间点源扩散 高斯扩散公式的建立有如下假设:①风的平均流场稳定,风速均匀,风向平直; ②污染物的浓度在 y、z 轴方向符合正态分布;③污染物在输送扩散中质量守恒;④污 染源的源强均匀、连续。 图 5-9 所示为点源的高斯扩散模式示意图。有效源位于坐标原点 o 处,平均风向 与 x 轴平行,并与 x 轴正向同向。假设点源在没有任何障碍物的自由空间扩散,不考虑 下垫面的存在。大气中的扩散是具有 y 与 z 两个坐标方向的二维正态分布,当两坐标方 向的随机变量独立时,分布密度为每个坐标方向的一维正态分布密度函数的乘积。由正 态分布的假设条件②,参照正态分布函数的基本形式式(5-15),取μ=0,则在点源 下风向任一点的浓度分布函数为:
(5-31) 式中,s1=y1/σy,s2=y2/σy,积分值可从正态概率表中查出。 (三)连续面源的扩散
当众多的污染源在一地区内排放时,如城市中家庭炉灶的排放, 可将它们作为面源来处理。因为这些污染源排放量很小但数量很大,若 依点源来处理,将是非常繁杂的计算工作。 常用的面源扩散模式为虚拟点源法,即将城市按污染源的分布和高低不同划分为若 干个正方形,每一正方形视为一个面源单元,边长一般在 0.5~10km 之间选取。这种方 法假设:①有一距离为 x0 的虚拟点源位于面源单元形心的上风处,如图 5-12 所示,它 在面源单元中心线处产生的烟流宽度为 2y0=4.3σy0, 等于面源单元宽度 B; ②面源单元 向下风向扩散的浓度可用虚拟点源在下风向造成的同样的浓度所代替。 根据污染物在面 源范围内的分布状况,可分为以下两种虚拟点源扩散模式: 第一种扩散模式假定污染物排放量集中在各面源单元的形心上。 由假设①可得: (5- 32) 由确定的大气稳定度级别和上式求出的 ,应用 P-G 曲线图(见下节)可查取
高斯扩散模型的适用条件

高斯扩散模型的适用条件1. 高斯扩散模型适用的条件之一就是要有相对稳定的环境呀!就好比在一个平静的湖泊里,水的流动很平稳,这时候高斯扩散模型就能很好地发挥作用啦!比如研究污染物在这样的环境中是怎么扩散的。
2. 它还适用于扩散源比较集中的情况呢!就像一个发光的灯泡,光线从那里散发出来,用高斯扩散模型来分析这种扩散是不是很合适呢?比如火灾中烟雾的扩散。
3. 扩散的物质不能有太奇怪的性质哦!可不是什么都能用高斯扩散模型的,这就像你不能用切菜的方法去绣花呀!比如一些特殊的化学物质可能就不太适用。
4. 要有足够的观测数据支持呀!没有数据就像巧妇难为无米之炊,怎么能让高斯扩散模型大展身手呢?比如对大气中颗粒物扩散的研究就得有大量数据。
5. 时间尺度也很重要呢!如果变化太快或太慢,高斯扩散模型可能就不太好使啦!好比一辆车开得太快或太慢,你都不好判断它的行驶轨迹,比如瞬间爆发的爆炸产生的扩散。
6. 空间范围也得合适呀!太大或太小的空间,高斯扩散模型也会有力不从心的时候呢!就像用小勺子舀大海的水,或者用大桶去装一滴水,比如研究小范围的气味扩散。
7. 系统不能太复杂啦!要是乱七八糟的因素太多,高斯扩散模型可就头疼咯!就像解一团乱麻,得先理清楚呀!比如生态系统中多种生物的相互作用下的物质扩散。
8. 扩散的速度得比较适中呀!太快或太慢,高斯扩散模型就不好把握啦!就像跑步,速度适中你才能更好地观察和分析,比如一些化学反应的扩散速度。
9. 环境不能总是变来变去的呀!一会儿这样一会儿那样,高斯扩散模型也会不知所措的!就像天气一会儿晴一会儿雨,怎么预测呀!比如海洋中水流和温度不断变化时的物质扩散。
10. 边界条件得明确呀!不然高斯扩散模型都不知道该从哪里开始从哪里结束呢!就像跑步没有起点和终点,怎么跑呀!比如研究一个房间内的气体扩散,房间的边界就得清楚。
我的观点结论就是:只有在这些条件满足的情况下,高斯扩散模型才能像一把锋利的宝剑,在研究扩散现象的战场上大显身手呀!。
高斯扩散模型 python

高斯扩散模型 python高斯扩散模型是一种在空间或时间上描述随机现象扩散的模型。
该模型主要考虑了物质分子的运动规律,同时也考虑了物质分子之间的碰撞和相互作用。
在Python中,我们可以利用相关的库和函数来实现高斯扩散模型,下面将从以下几个方面进行介绍:1. 理解高斯分布首先,我们需要了解高斯分布,也称正态分布,表示连续变量的分布情况,常用于对连续变量进行建模和预测。
在Python中,可以使用SciPy库中的stats模块来计算高斯分布。
import numpy as npimport matplotlib.pyplot as pltfrom scipy.stats import norm# 定义均值(mean)和标准差(standard deviation)mu, sigma = 0, 0.1# 构造一些数据s = np.random.normal(mu, sigma, 1000)# 绘制直方图count, bins, ignored = plt.hist(s, 30, density=True)plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *np.exp( - (bins - mu)**2 / (2 * sigma**2) ),linewidth=2, color='r')plt.show()2. 构建高斯扩散模型接下来,我们可以利用高斯分布的概念来构建高斯扩散模型。
在Python中,可以使用NumPy和SciPy库中的函数来进行计算。
import numpy as npimport matplotlib.pyplot as pltfrom scipy.special import erfcdef diffusion(x, t, D):return np.exp(-(x**2)/(4*D*t))/(2*np.sqrt(np.pi*D*t))# 初始化一些变量N = 100000 # 粒子数D = 1.0 # 扩散系数t = 100.0 # 时间bins = 200 # 直方图中的箱子数# 生成位移数据x = np.sqrt(2*D*t)*np.random.randn(N)# 利用扩散函数计算概率密度hist, bins = np.histogram(x, bins=bins, density=True) binCenters = 0.5*(bins[1:] + bins[:-1])theory = diffusion(binCenters, t, D)# 绘制直方图plt.plot(binCenters, hist, label='simulation')plt.plot(binCenters, theory, label='theory')plt.xlabel('x')plt.ylabel('P(x,t)')plt.legend()plt.show()3. 可视化高斯扩散模型的结果为了更直观地了解高斯扩散模型的结果,我们可以使用Matplotlib库中的plot函数来绘制直方图和散点图。
(完整)高斯扩散模型及其适用条件

高斯扩散模型及其适用条件(1)一般表达式根据质量守恒原理和梯度输送理论,污染物在大气中一般运动规律为:(3分)cccc c c c Nu v w k x k y k z S p t x y z x x y y z z p 1C:污染物质平均浓度;X,y,z:三个方向坐标;u,v,w:三个方向速度分量;k x,k y,k z:三个方向扩散系数;t:为污染物扩散时间;3:污染物源、汇强度。
(2)高斯模型的适用条件:①大气流动稳定,表明污染物浓度不随时间改变,即[0 ;②有主导风向,表明u=常数,且v=w=0 ;③污染物在大气中只有物理运动,物化学和生物变化,且预测范围内无其他同类污染的源和汇。
表明S P=0(P=1,2,….n)此时三维的动态模型就可简化为三维的稳态模型,得:u~c k x 工k y,k z」(3 分)x x x y y z z④有主导风情况下,主导风对污染物输送应远远大于湍流运动引起污染物在主导风方向上扩散。
即U」(平流输送作用)远远大于x—k x—(湍流弥散作用)。
x x此时方程又可以简化为:c c Cu k y k z (2分)x y y z z(3)由于y和z方向上污染物浓度不发生变化,故规定k y与y无关,k z与z无关,即:2c k z 2z(4)由质量守恒原,理运用连续点源源强计算方式,按照单元体积(3)简化得到的方程进行积分ucdydz二Q ,结合边界条件x y z 0时,c=x, y, z 时,c=0对方程进行求解。
(2分)(5)设x=ut,令2=2k y t;;=2k z t。
化简求解得到高斯扩散模型的标准形式:c x, y,zQ 1 y2 2 zexp小222 U y z 2 y z(1分)ky y2(1 分)。
大气污染物扩散的高斯模型模拟

9.2.2大气污染物扩散的高斯模型模拟:可视化模拟点源大气污染的扩散9.2.2 Gaussian Atmospheric Dispersion Model突发性大气污染事故时有发生,对大气污染扩散进行模拟和分析,有利于减小事故的危害,减轻人员伤亡和财产损失。
高斯扩散模型是国际原子能机构(IAEA)推荐使用于重气云扩散模拟的数学模型,该模型在非重气云扩散的应用日益广泛。
高斯扩散模型是描述大气对有害气体的输移、扩散和稀释作用的物理或数学模型,是进行灾害预测和救援指挥的有力手段之一。
9.2.2.1高斯扩散模型高斯模型又分为高斯烟团模型和高斯烟羽模型。
大气污染物泄漏分为瞬时泄漏和连续泄漏,瞬时泄漏是指污染物泄放的时间相对于污染物扩散的时间较短如突发泄漏等的情形,连续泄漏则是指污染物泄放的时间较长的情形。
瞬时泄漏采用高斯烟团模型模拟,而连续泄漏采用高斯模型烟羽模型模拟。
高斯模型适用于非重气云气体,包括轻气云和中性气云气体。
要求气体在扩散过程中,风速均匀稳定。
在高斯烟团模型中,选择风向建立坐标系统,即取泄漏源为坐标原点,x 轴指向风向,y 轴表示在水平面内与风向垂直的方向,z 轴则指向与水平面垂直的方向,具体公式见式(9.1):22222222()()()22223/2(,,,)()(2)y x z z y x ut z H z H x y z Q C x y z t e e e e σσσσπσσσ--+----=⋅⋅⋅+⋅…………(9.1)其中:(,,,)C x y z t 为泄漏介质在某位置某时刻的浓度值;Q 为污染物单位时间排放量(mg/s); x σ、y σ、z σ分别x 、y 、z 轴上的扩散系数,需根据大气稳定度选择参数计算得到(m);x 、y 、z 表示x 、y 、z 上的坐标值(m);u 表示平均风速(m/s);t 表示扩散时间(s);H 表示泄漏源的高度(m)。
同理,高斯烟羽模型的表达式如:222222()()222(,,,)()2y z z y z H z H y z Q C x y z t e e e u σσσπσσ-+---=⋅⋅+………………………(9.2)9.2.2.2 技术方法若用高斯模型算出空间每一个点在一个时刻的污染浓度,这个计算量是很大的。
高斯扩散模型假设名词解释

高斯扩散模型假设名词解释
高斯扩散模型是一种用来描述空气污染物在大气中传播和扩散
的数学模型。
它是基于高斯分布的假设,即空气污染物在水平方向上的传播服从正态分布。
在高斯扩散模型中,假设空气污染物在垂直方向上的传播是均匀的,即空气污染物在垂直方向上的浓度是恒定的。
这是基于大气中存在的湍流现象,使得空气混合均匀,污染物被均匀分散在大气中。
另外,高斯扩散模型还假设空气污染物在水平方向上的传播是径向对称的,即从污染源点开始,污染物浓度随着距离的增加呈现出高斯分布的特征。
这是因为在大气中存在着各种影响空气传播的因素,如风速、大气稳定度等,这些因素使得空气污染物向各个方向扩散。
高斯扩散模型可以通过一系列的数学公式来计算空气污染物在不同
位置的浓度分布。
这些公式考虑了污染源的排放强度、环境因素(如风速、大气稳定度等)以及地形特征等因素的影响。
通过模拟和计算,可以预测不同条件下空气污染物的传播范围和浓度分布,从而为环境管理和污染控制提供科学依据。
除了以上提到的假设,高斯扩散模型还可以考虑其他因素的影响,如地形地貌、建筑物的阻挡效应等,以更加准确地描述污染物在大气中
的传播过程。
它是环境科学领域中常用的一种模型,能够帮助我们更好地理解和管理空气污染问题。
扩散模型

2 扩散模型2.1 高斯模型燃气泄漏后会在泄漏源附近形成气团,气团在大气中的扩散计算通常采用高斯模型。
高斯模型的基本形式是在如下的假设条件下推导出来的[1、9]:假定燃气在扩散的过程中没有沉降、化合、分解及地面吸收的发生;燃气连续均匀地排放;扩散空间的风速、大气稳定度都均匀、稳定;在水平和垂直方向上都服从正态分布。
泄漏燃气相对密度小于或接近1的连续泄漏采用高斯烟羽模型。
以泄漏点为原点,风向方向为x轴的空间坐标系中的某一点(x,y,z)处的质量浓度计算公式如下[9]:平均风速>1m/s时:平均风速=0.5~1m/s时:平均风速<0.5m/s时,假设气团围绕泄漏点浓度均匀分布,则距离泄漏点r处的燃气质量浓度为:式中ρd(x,y,z)——扩散燃气在点(x,y,z)处的质量浓度,kg/m3x、y、z——x、y、z方向上距泄漏点的距离,mua——平均风速,m/sδx 、δy、δz——x、y、z方向的扩散系数,mh——泄漏点高度,mρ(r)——距离泄漏点r处的燃气质量浓度,kg/m3dr——空间内任意一点到泄漏点的距离,ma、b——扩散系数,mt——静风持续时间,s,取3600的整数倍扩散系数可查HJ/T 2.2—93《环境影响评价技术导则大气环境》得到。
2.2 重气扩散模型液化石油气密度比空气密度大,属于重气。
该类气体泄漏时在重力的作用下会下沉,这时使用高斯模型计算的结果会使泄漏燃气扩散速度偏大,泄漏源附近的浓度偏小。
为了解决这个问题,可以引入最早由Van Ulden提出,并由M anju Mohan等发展的箱式模型[1]。
箱式模型分为两个阶段:泄漏后的重气扩散阶段和重气效应消失后的被动气体扩散阶段。
重气泄漏后首先是重气扩散阶段。
在这个阶段,重气云团由于重力作用逐渐下沉并不断卷吸周围的空气,在卷吸空气的同时,气云受热,最终当重气云团与空气的密度差<0.001kg/m3时,可认为气云转变成中性状态。
随着重气的继续扩散,气云所受的重力不再是影响扩散的主要因素,而大气湍流扩散逐渐占主要地位,这时便是被动气体扩散阶段,可以应用高斯模型计算泄漏燃气的扩散。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例题:
2、某厂一锅炉的SO2 排放量为10.8kg/h, 其烟囱几何高度为30 米,已知在中性稳定度 情况下,烟羽的抬升高度为15 米。计算中性 稳定度、地面风速2m/s 情况下,距源下风向 500 米处轴线SO2 地面浓度(mg/m3)(不 考虑混合层反射)。提示:在中性情况下, 下风向500 米处:δy=100m,δz=90m, 风廓线指数P=0.2。
y2 z2 c( x, y , z,0) exp[( 2 )] 2 2 y 2 z πu y z q
相当于无界源的2倍(镜像垂直于地面,源强加倍) Nhomakorabea 例题:
1、设有某污染源由烟囱排入大气的SO2 源强为90mg/s,有效源高为60m,烟囱 出口处平均风速为5m/s,当时气象条件 下,正下风向500m 处的δy=18.1m, δz=35.3m,计算x=500m,y=50m 处 的SO2 浓度。
2π u y z
2 y
2 z
(3)实际浓度 实际浓度
C=C实+C虚
q y2 ( z H )2 ( z H )2 c( x, y , z , H ) exp( 2 ){exp[ ] exp[ ]} 2 2 2 y 2 y 2 z 2πu y z
高架连续点源扩散模式的几种变形
有界大气扩散:高架源须考虑到地面对扩散的影响。 按全反射原理,可用 “像源法”处理
(1)实源贡献:P点在以像源为原点的坐标系中的 实源的贡献 垂直坐标为(z-H) q y 2 ( z H )2 c( x, y , zCH ) , exp[ ( 2 )] 2 实 2 y 2 y 2πu y z (2)虚源贡献:P点在以像源为原点的坐标系中的 源的贡献 垂直坐标为(z+H) 2 2 q y (z H ) c( x, y , z, 虚 ) exp[ ( 2 )] CH 2
高斯扩散模式
在大气环境影响评价的实际工作中,大气扩散计 算通常以高斯大气扩散模式为主。 高斯模式是一类简单实用的大气扩散模式。在均 匀、定常的湍流大气中污染物浓度满足正态分布, 由此可导出一系列高斯型扩散公式。
(一) 高斯模式的坐标系
右手坐标系
(食指—x轴;中指—y轴;拇指—z轴),
原点:为无界点源或地面源的排放点,或
者高架源排放点在地面上的投影点;x为
主风向;y为横风向;z为垂直向
(二)高斯模式的四点假设
a.污染物浓度在y、z风向上分布为正态
分布 b.在全部空间中风速均匀稳定 c.源强是连续均匀稳定的 d.扩散中污染物是守恒的(不考虑转化)
(三)高架连续点源扩散模式
2 y2 Q z C ( x, y , z ) exp 2 2 2 y 2 z 2 uyz
地面浓度模式:取z=0代入上式,得
y2 H2 c( x, y ,0, H ) exp( 2 ) exp( 2 ) 2 y 2 z πu y z q
地面轴线浓度模式:再取y=0代入上式
H2 c( x,0,0, H ) exp( 2 ) 2 z πu y z q
地面源高斯模式(令H=0):
地面浓度模式:取z=0代入上式,得
y2 H2 c( x, y ,0, H ) exp( 2 ) exp( 2 ) 2 y 2 z πu y z q
分别将x=500m,y=50m,Q=90mg/s, u=5m/s,δy=18.1m,δz=35.3m, He=60m 代入公式,得到所求浓度为 4.643×10-5mg/m3.