高中数学-函数的基本性质——单调性

合集下载

函数的基本性质-单调性教案

函数的基本性质-单调性教案

函数的基本性质——单调性教案教学目标:1. 理解单调性的概念,掌握单调增函数和单调减函数的定义。

2. 学会判断函数的单调性,并能运用单调性解决实际问题。

3. 理解单调性在数学分析中的重要性,培养学生的逻辑思维能力。

教学内容:第一章:单调性的概念1.1 单调增函数1.2 单调减函数1.3 单调性的判断方法第二章:单调性的性质2.1 单调增函数的性质2.2 单调减函数的性质2.3 单调性与其他函数性质的关系第三章:单调性与最值3.1 单调性与函数最值的关系3.2 利用单调性求函数最值3.3 单调性在优化问题中的应用第四章:单调性与方程的解4.1 单调性与方程解的关系4.2 利用单调性求方程解4.3 单调性在实际问题中的应用第五章:单调性的应用5.1 利用单调性证明不等式5.2 单调性在实际问题中的应用案例分析5.3 单调性在数学竞赛中的应用教学过程:一、导入(5分钟)1. 引入单调性的概念,引导学生思考为什么需要研究单调性。

2. 举例说明单调性在实际问题中的应用,激发学生的学习兴趣。

二、新课讲解(20分钟)1. 讲解单调增函数和单调减函数的定义,引导学生理解单调性的本质。

2. 通过示例,讲解单调性的判断方法,让学生学会如何判断函数的单调性。

三、案例分析(15分钟)1. 分析单调性与函数最值的关系,引导学生学会利用单调性求函数最值。

2. 分析单调性与方程解的关系,让学生学会利用单调性求方程解。

四、课堂练习(10分钟)1. 针对本节课的内容,设计一些练习题,让学生巩固所学知识。

2. 引导学生思考单调性在实际问题中的应用,培养学生的应用能力。

2. 鼓励学生思考单调性在其他领域的应用,激发学生的创新意识。

教学评价:1. 通过课堂讲解、案例分析和课堂练习,评价学生对单调性的理解和掌握程度。

2. 关注学生在实际问题中运用单调性的能力,评价学生的应用水平。

3. 鼓励学生反思单调性在其他领域的应用,评价学生的创新意识。

函数的基本性质之单调性

函数的基本性质之单调性

函数的基本性质之单调性1.增函数:y随x的增大而增大的函数,即对任意的x1,x2属于定义域,若x1>x2,有f(x1)>f(x2)2.减函数:y随x的增大而减小的函数,即对任意的x1,x2属于定义域,若x1>x2,有f(x1)<f(x2)3.单调性:如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数f(x)在区间D上具有(严格的)单调性,区间D称为单调区间考点一:用定义证明函数的单调性方法:取值变形例:证明:函数y=x+在(0,上是减函数练:在上例中,若定义域换为(3,),那么函数的单调性如何?且画出在(0,)上的大致图像。

考点二:求单调区间方法:化简函数解析式画出函数图像确定单调区间例:指出函数y=-++3的单调区间练:指出函数y=-+3x+3的单调区间考点三:利用单调性确定参数指导思想:若y=f(x)在区间(a,b)上递增(减)就等价于(a,b)是增区间(减区间)的一个子集例:已知函数f(x)=+2(a-1)x+2在区间(-,上是减函数,求实数a的取值范围练:已知函数f(x)=+2(a-1)x+2的单调递减区间是(-,,求实数a的取值范围4.函数的最大值:一般的,设函数y=f(x)的定义域为I,如果存在M满足,对于任意的x I,都有f(x)M,且存在x0I,使得,f(x0)=M,那么称M是函数y=f(x)的最大值5.函数的最小值:一般的,设函数y=f(x)的定义域为I,如果存在M满足,对于任意的x I,都有f(x)M,且存在x0I,使得,f(x0)=M,那么称M是函数y=f(x)的最小值考点四:利用图像求函数最值例:已知函数f(x)=3-12x+5,当自变量x在下列范围内取值时,求函数的最大值,最小值:(1)x R;(2)x;(3)x考点五:利用单调性求函数最值方法:定义法证明函数单调性求最值例:求函数f(x)=x+在x上的最大值及最小值。

练:求函数f(x)=x+在x上的最值。

新教材:3.2.1函数的单调性

新教材:3.2.1函数的单调性

3.2 函数的基本性质3.2.1 函数的单调性【知识梳理】1.函数单调性的定义:一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的两个自变量的值x1,x2,(1)当x1<x2时,都有,那么就说函数f(x)在区间D上是增函数;(2)当x1<x2时,都有,那么就说函数f (x )在区间D上是减函数.2.单调区间的定义若函数f(x)在区间D上是或,则称函数f(x)在这一区间上具有(严格的)单调性,区间D 叫做f(x)的单调区间.3.两种形式设任意x1,x2∈[a,b]且x1<x2,那么(1) ⇔f (x )在[a ,b ]上是增函数; ⇔f (x )在[a ,b ]上是减函数. (2) ⇔f (x )在[a ,b ]上是增函数; ⇔f (x )在[a ,b ]上是减函数. 4.函数单调性的判断(1)定义法:取值、作差、变形、定号、下结论.(2)复合法:同增异减,即内外函数的单调性相同时,为增函数,不同时为减函数. (3)图象法:利用图象研究函数的单调性. 5.函数的最值(2)开区间上的“单峰”函数一定存在最大(小)值.【考点分类精讲】考点1:函数单调性的判断与证明【考题1】求证:函数1)(3+-=x x f 在R 上是减函数。

【举一反三】求证:函数x x f -=)(在定义域上是减函数.【考题2】求证:函数1)(2++=x x x f 在区间),(+∞-∞上是单调递增函数.【举一反三】求证:函数x x x f -+=1)(2在其定义域上是减函数.【考题3】判断函数xax x f +=)((0>a )的单调性,并作出当1=a 时函数的图像.【考题4】判断函数1)(2-=x x f 在定义域上的单调性.【举一反三】(选做)已知228)(x x x f -+=,如果)2()(2x f x g -=,求)(x g 的单调区间.考点2 函数的单调区间【考题5】写出下列函数的单调区间. (1)2()|23|f x x x =--(2)3||2)(2--=x x x f(3)223)(-+=x x x f(4)4444)(22++++-=x x x x x f【举一反三】求函数22311)(xx x f ---=的单调递减区间.考点3 函数的最值【考题6】设ax x x f -+=1)(2,其中1≥a ,求函数)(x f 在[a ,)∞+上的最值.【举一反三】 1.求函数1)(-=x xx f 在区间2[,]5上的最大值与最下值.2.设max {a ,b }表示两个数a 与b 的最大值,则max {|1|+x ,|2|-x }的最小值.3.已知函数f (x )=xax x ++22,[)1,x ∈+∞,(1)当12a =时,求函数f (x )的最小值; (2)若对任意[)1,x ∈+∞,()0f x >恒成立,试求实数a 的取值范围.【考题7】求函数12)(2--=ax x x f 在闭区间]2,0[上的最大值与最小值.【举一反三】1.已知函数2()22f x x ax =++,求()f x 在[]5,5-上的最大值与最小值.2.已知函数32)(2+-=x x x f ,当t x [∈,]1+t 时,求)(x f 的最大值与最小值.3.已知函数3)1(2)(2--+=x a ax x f )0(≠a 在区间23[-,]2上的最大值是1,求实数a 的值.考点4 函数单调性的应用【考题7】函数y =x -5x -a -2在(-1,+∞)上单调递增,则a 的取值范围是( )A .a =-3B .a <3C .a ≤-3D .a ≥-3【举一反三】1.已知函数)0()(2>+=a xax x f 在),2(+∞上递增,则实数a 的取值范围是 . 2.若函数⎩⎨⎧≤-+->-+-=)()0,)2(0(,1)12()(2x x b x x b x b x f 在R 上是增函数,则实数b 的取值范围是 .3.若函数n mx x x f ++=2)(,对任意x 都有)2()2(x f x f +=-成立,试比较)1(-f ,)2(f ,)4(f 的大小关系.【考题8】定义在R 上的函数)(x f y =,0)0(≠f ,当0x >时,1)(>x f ,且对任意的,a b R ∈,有()()()f a b f a f b +=.(1)求证:(0)1f =;(2)求证:对任意的x R ∈,恒有()0f x >; (3)求证:()f x 是R 上的增函数;(4)若()2()21f x f x x ->,求x 的取值范围.【举一反三】1.已知函数)(x f 对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23.(1)求证:)(x f 在R 上是减函数; (2)求)(x f 在[-3,3]上的最大值和最小值.1.设二次函数a ax x x f ++=2)(,方程0)(=-x x f 的两个实根1x 和2x 满足1021<<<x x . (1)求实数a 的取值范围; (2)试比较)0()1()0(f f f -与161的大小关系,并说明理由.3.设a ,b ,c 都是大于0的实数,且c b a >+,求证:ccb b a a +>+++111.【题型优化测训】一、选择题1.函数2()2f x x ax a =-+在区间(,1)-∞上有最小值,则a 的取值范围是( ) A .1a <B .1a ≤C .1a >D . 1a ≥2.函数54)(2+-=mx x x f 在),2[+∞-上是增函数,则)1(f 的取值范围是( )A .25)1(≥fB .25)1(=fC .25)1(≤fD .25)1(>f3.若()ax x x f 22+-=与()1+=x ax g 在区间[]2,1上都是减函数,则a 的取值范围是( ) A .()()1,00,1-⋃B .()1,0C .(]1,0D .()(]1,00,1-⋃4.设()22f x x =-,若0a b <<,且()()f a f b =,则ab 的取值范围 ( ) A .()0,2B .(]0,2C .(]0,4D .()0,45.已知函数()x f 是R 上的增函数,()1,0-A ,)1,3(B 是其图象上的两点,那么不等式()11<+x f 的解集的补集是 ( )A .(][),14,-∞⋃+∞B .()1,2-C .()1,4D .(][),12,-∞-⋃+∞6.定义在R 上的函数()y f x =在(),2-∞上是增函数,且()2y f x =+图象的对称轴是0x = 则( ) A .()()13f f -<B .()()03f f >C .()()13f f -=-D .()()23f f <7.用min {a ,b ,c }表示三个数a ,b ,c 中的最小值,设=)(x f min {x 2,x -10,2+x },则)(x f 的最大值是( ) A .4B .5C .6D .78.已知()x f 在区间R 内是减函数,又0,,≤+∈∈b a R b R a ,则有( ) A .()()()()b f a f b f a f --≤+ B .()()()()b f a f b f a f -+-≤+ C .()()()()b f a f b f a f --≥+ D .()()()()b f a f b f a f -+-≥+二、填空题9.若函数2()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是____________.10.函数f (x )在(0,+∞)上为减函数,比较f (a 2-a +1) )43(f (填“>” 或“<”或“≥” 或“≤”). 11.函数f (x )=2x 2-mx +3在[-2,+∞)上为增函数,在(-∞,-2)上为减函数,则m = .12.设函数()f x x =-在[]3,0x ∈-上的最大值a ,最小值为b ,则a b +=________.13.设()f x 是R 上的增函数,且)()(2x a f x x f ->+对∀R x ∈都成立,则a 的取值范围是 . 三、解答题14.已知()f x 是定义在[]1,1-上的增函数,且2(1)(1)f x f x -<-,求x 的取值范围.15.已知函数()f x 对任意,a b R ∈,都有()()()1f a b f a f b +=+-,且当0x >时,()1f x >, 求证:()f x 是R 上的增函数.16.对R x ∈∀,)(x f 表示3+-x ,2123+x ,342+-x x 的最大者,写出)(x f 的解析式并求其最小值.17.已知函数)(x f 的定义域为0(,)∞+,且当1>x 时,0)(>x f 且)()()(y f x f y x f +=⋅. (1)求)1(f 的值;(3)解不等式0)]21([<-x x f .18.已知定义在区间(0,+∞)上的函数)(x f 满足)()()(2121x f x f x x f -=,且当1>x 时,0)(<x f . (1)求)1(f 的值; (2)判断)(x f 的单调性;(3)若1)3(-=f ,求)(x f 在[2,9]上的最小值; (4)若1)3(-=f ,解不等式2|)(|-<x f。

函数的基本性质单调性教案

函数的基本性质单调性教案

函数的基本性质——单调性教案一、教学目标1. 知识与技能:(1)理解函数单调性的概念,掌握判断函数单调性的方法;(2)能够运用单调性解决实际问题,如求函数的最值等。

2. 过程与方法:(1)通过观察实例,引导学生发现函数单调性的规律;(2)利用数形结合,让学生理解函数单调性的几何意义。

3. 情感态度与价值观:培养学生对数学的兴趣,提高学生分析问题和解决问题的能力。

二、教学重点与难点1. 教学重点:(1)函数单调性的概念及其判断方法;(2)单调性在实际问题中的应用。

2. 教学难点:(1)理解函数单调性的几何意义;(2)如何运用单调性解决实际问题。

三、教学过程1. 导入:通过实例引入函数单调性的概念,激发学生的兴趣。

2. 新课讲解:(1)介绍函数单调性的定义及判断方法;(2)利用数形结合,讲解函数单调性的几何意义。

3. 案例分析:分析具体案例,让学生学会运用单调性解决实际问题。

4. 练习巩固:布置练习题,让学生独立完成,检验对单调性的掌握程度。

5. 课堂小结:总结本节课的主要内容,强调单调性在数学中的重要性。

四、课后作业1. 完成练习册的相关题目;2. 选取一个实际问题,运用单调性进行解决。

五、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高学生对函数单调性的理解和运用能力。

关注学生在学习过程中的情感态度,激发学生对数学的兴趣。

六、教学活动设计1. 互动环节:学生分组讨论,举例判断给定函数的单调性;2. 探究活动:学生自主研究,分析函数单调性在实际问题中的应用;3. 小组合作:学生分组完成课后作业,相互检查,共同提高。

七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,评价学生的学习状态;2. 练习完成情况:检查学生课后作业的完成质量,评价学生对单调性的掌握程度;3. 实际问题解决:评估学生在探究活动中的成果,检验学生运用单调性解决问题的能力。

高一数学必修一函数的基本性质(单调性)精品PPT课件

高一数学必修一函数的基本性质(单调性)精品PPT课件
图像在定义域内呈上升趋势; 图像经过原点。
观察图像变化规律
图像在对称轴左边呈下降, 在对称轴后边呈下降趋势。
x
y
O
x
y
O
x
y
O
自变量递增,函数递减
x
y
O
x
y
O
x
y
O
自变量递增,函数递增
增函数、减函数的概念:
增函数、减函数的概念:
一般地,设函数f(x)的定义域为I.
1.如果对于定义域I内的某个区间上的任意 两个自变量的值x1, x2,当x1<x2时,都有 f(x1)<f(x2),那么就说f(x)在这个区间上是 增函数.
2.两种方法:
判断函数单调性的方法 有图象法、定义法. 下一课时我们会重点练习
课堂小结
1.阅读教材P.27 -P.30; 2.教材课后练习:1、2、3.
课后作业
谢谢欣赏
一般地,设函数f(x)的定义域为I.
增函数、减函数的概念:
函数最大值→图像最高点
一般地,设函数y=f(x)的定义域为I,如果存在实数M满足: (1)对于任意的x∈I,都有f(x)≤M (2)存在x0∈I,使得f(x0)=M. 那么我们称M是函数y=f(x)的最大值 .
函数最小值→图像最低点
一般地,设函数y=f(x)的定义域为I,如果存在实数M满足: (1)对于任意的x∈I,都有f(x)≥M (2)存在x0∈I,使得f(x0)=M. 那么我们称M是函数y=f(x)的最小值 .
-2
3
2
1
-1
y
-3
-4
4
O
x
2
-2
3
1
-3
-1

函数的基本性质

函数的基本性质

函数的基本性质一.函数的单调性:1. 定义:设D 为函数)(x f 定义域的子集。

对任意的D ,21∈x x 且21x x <时,都有⇔>--⇔>--⇔<0)](()([0)()()()(1212121221)x x x f x f x x x f x f x f x f 函数)(x f y =在D 上是增加的。

对任意的D ,21∈x x 且21x x <时,都有⇔<--⇔<--⇔>0)](()([0)()()()(1212121221)x x x f x f x x x f x f x f x f 函数)(x f y =在D 上是减少的。

2. 图像特点:自左向右看图像是上升的。

(图像在此区间上是增加的) 自左向右看图像是下降的。

(图像在此区间上是减少的)3.判断函数单调性的方法:(1)图像法:作出函数图像,由图像直观判断求解,只能用于判断。

(数形结合) 解题程序:解析式-----图像-----单调区间(2)性质法:需要先记清基本初等函数的单调性。

高中基本初等函数:一次函数:)0(≠+=k b kx y ,二次函数:)0(2≠++=a c bc ax y 反比例函数:)0(≠=k x k y ,简单幂函数:3,2,21,1,1)(-=∈=αααR x y 指数函数:)10(≠>=a a a y x 且,对数函数:)10(log ≠>=a a x y a 且, “对勾”函数:)0(>+=a x ax y①a x f y +=)(与)(x f y =的单调性相同。

②当0>a 时,函数)(x af y =与)(x f y =的单调性相同;当0<a 时,函数)(x af y =与)(x f y =的单调性相反;③在公共定义域内,增函数)(x f +增函数)(x g 是增函数, 减函数)(x f +减函数)(x g 是减函数;增函数)(x f -减函数)(x g 是增函数,减函数)(x f -增函数)(x g是减函数;④两函数积的单调性:当)(x f ,)(x g 在公共区间上都是增(减)函数。

函数的基本性质(单调性、奇偶性、周期性)(含答案)

函数的基本性质(单调性、奇偶性、周期性)(含答案)

函数的基本性质一、知识点1.对函数单调性的理解(1)函数的单调性只能在函数的定义域内来讨论,所以求函数的单调区间,必须先求函数的定义域;(2) 一些单调性的判断规则:①若f (x)与g(x)在定义域内都是增函数(减函数),那么f (x) + g(x)在其公共定义域内是增函数(减函数)即“同加异减”减时和第一个单调性相同。

②复合函数的单调性规则是“同增异减”。

2.函数的奇偶性的定义:(1)对于函数f (x)的定义域内任意一个x,都有f (-x) = —f (x),则称f (x)为.奇函数的图象关于对称。

(2)对于函数f (x)的定义域内任意一个x,都有f (-x) = f (x),则称f (x)为.偶函数的图象关于对称。

(3)通常采用图像或定义判断函数的奇偶性. 具有奇偶性的函数,其定义域原点关于对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称)。

3.奇偶函数图象的对称性(1)若y = f (a + x)是偶函数,则 f (a + x) = f (a - x) o f (2a - x) = f (x) o f (x)的图象关于直线x= a对称;(2)若y = f (b + x)是偶函数,则 f (b - x) = - f (b + x) o f (2b - x) = - f (x) o f (x)的图象关于点(b,0)中心对称;4.若函数满足f Q + a)= f Q),则函数的周期为T=a。

二、例题讲解1.下列函数中,既是偶函数,又是在区间(0,+ 8)上单调递减的函数是()A. y = 2|x|B. y = x3C. y = -x2+1D. y=cosx【答案】C【解析】试题分析:偶函数需满足f (-x) = f (x),由此验证可知A,C,D都是偶函数,但要满足在区间(0,+ 8) 上单调递减,验证可知只有C符合.考点:偶函数的判断,函数的单调性.2. f (x) = x2-2x + 4的单调减区间是.【答案】(fl) 【解析】试题分析:将函数进行配方得/(,) =,2—2x + 4 = (x —1)2+3,又称轴为x = l,函数图象开口向上,所 以函数的单调减区间为(-8,1) . 考点:二次函数的单调性.3 .函数y = log (%2 +2% —3)的单调递减区间为()2A. (— °°, —3)B. (— °°, — 1)C. (1, +°°)D. ( — 3, — 1) 【答案】A 【解析】试题分析:由x2 + 2x —3>0,得%<—3或x>l, .♦./(%)的定义域为(―8,—3)U(L+8).y = log (%2 + 2% —3)可看作由 y = log 沈和 M = %2 + 2% — 3 复合而成的,u - X2 +2x-3 = (x +1)2 -4 2 2在(—8,—3)上递减,在(1,+8)上递增,又y = log "在定义域内单调递增,.・.y = log (%2+2%-3)在2 2(—8,—3)上递减,在(1,+8)上递增,所以y = log (%2+ 2% —3)的单调递减区间是(―叫—3),故选A.2考点:复合函数的单调性.4 .已知丁 = %2+2(〃 — 2)% + 5在区间(4,+8)上是增函数,则a 的范围是( )【答案】B 【解析】试题分析:函数y = %2+2(〃-2)% + 5的图像是开口向上以x = 2-a 为对称轴的抛物线,因为函数在区 间(4,+8)上是增函数,所以2 —a V 4,解得“之―2 ,故A 正确。

(整理)函数的基本性质单调性最值

(整理)函数的基本性质单调性最值

(一)函数单调性的定义1. 增函数与减函数一般地,设函数y =f (x )的定义域为I ,增函数:如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2),那么就说f (x )在区间D 上是增函数。

减函数:如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)>f (x 2),那么就说f (x )在区间D 上是减函数。

说明:一个函数的两个单调区间是不可以取其并集,比如:xy 1=不能说 )0,(-∞ ),0(+∞是原函数的单调递减区间;注意:①函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;②必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2)或 f (x 1)>f (x 2)。

2. 函数的单调性的定义如果函数y =f (x )在某个区间上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间。

例1 观察下列函数的其图象,指出其单调性. (1)1y x x=+;(2)11y x=-;例2 指出下列常见函数的单调性: (1)y c =(c 为常数);【析】y 不随x 的增大而改变,无单调性. (2)y ax b =+(0a ≠);【析】0a >,函数在R 上递增;0a <,函数在R 上递减. (3)2y ax bx c =++(0a ≠); 【析】0a >,函数在(,)2b a-∞-上递减,在(,)2ba -+∞上递增;0a <,函数在(,)2b a-∞-上递增,在(,)2ba -+∞上递减.(4)ky x=(0k ≠); 0k >,函数在(,0)-∞上递减,在(0,)+∞上递减; 0k <,函数在(,0)-∞上递增,在(0,)+∞上递增.(5)y x =;函数在(,0)-∞上递减,在(0,)+∞上递增. (6)y x =. 函数在(0,)+∞上递增.3. 判断函数单调性的方法和步骤(1)利用定义证明函数f (x )在给定的区间D 上的单调性的一般步骤: ①任取x 1,x 2∈D ,且x 1<x 2; ②作差f (x 1)-f (x 2);③变形(通常是因式分解和配方);④定号(即判断差f (x 1)-f (x 2)的正负);⑤下结论(即指出函数f (x )在给定的区间D 上的单调性)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x1<x2 O x1 x2 x
如何用x与f(x)来描述上升的图象? y y=f(x)
f(x1) f(x2) x1<x2
O x1 x2 x
如何用x与f(x)来描述上升的图象? y y=f(x)
f(x1) f(x2) x1<x2
O x1 x2 x
如何用x与f(x)来描述上升的图象? y y=f(x)
x
O x1
y
y x2
f ( x1 )
x
O
x1
如何用x与f(x)来描述上升的图象? y
O
x
如何用x与f(x)来描述上升的图象? y
O
x
如何用x与f(x)来描述上升的图象? y
O
x
如何用x与f(x)来描述上升的图象? y
x1<x2 O x1 x2 x
如何用x与f(x)来描述上升的图象? y y=f(x)
在单调区间上增函数的图象是上升 的,减函数的图象是下降的.
1.右图是定义在
y
3
闭区间[-5, 5]上
2
的函数y=f(x)的图
1
象,根据图象说出 -5 -4 -3 -2 -1 O 1 2 3 4 5 x
y=f(x)的单调区间,
-1 -2
以及在每一单调区
-3
间上, y=f(x)是增函数还是减函数.
1.右图是定义在
O x1 x2 x 区间上为增函数.
如何用x与f(x)来描述下降的图象? y y=f(x)
f(x1) f(x2)
O x1 x2 x
如何用x与f(x)来描述上升的图象?
y
y=f(x)
在给定区间上任取x1, x2
f(x1)
f(x2)
x1<x2 f(x1)<f(x2) 函数f (x)在给定
O x1 x2 x 区间上为增函数.
其中y=f(x)在[-5,-2),[1, 3)上是减函数, 在区间[-2, 1),[3, 5]上是增函数.
1.右图是定义在
y
3
闭区间[-5, 5]上
2
的函数y=f(x)的图
1
象,根据图象说出 -5 -4 -3 -2 -1 O 1 2 3 4 5 x
y=f(x)的单调区间,
-1
-2 图象法
以及在每一单调区
增函数、减函数的概念:
一般地,设函数f(x)的定义域为I.
1.如果对于定义域I内的某个区间上的任意 两个自变量的值x1, x2,当x1<x2时,都有 f(x1)<f(x2),那么就说f(x)在这个区间上是 增函数. 2.如果对于定义域I内的某个区间上的任意 两个自变量的值x1, x2,当x1<x2时,都有 f(x1)>f(x2),那么就说f(x)在这个区间上是 减函数.
y
y=f(x)
在给定区间上任取x1, x2
f(x1)
f(x2)
x1<x2 f(x1)<f(x2) 函数f (x)在给定
O x1 x2 x 区间上为增函数.
如何用x与f(x)来描述上升的图象?
y
y=f(x)
在给定区间上任取x1, x2
f(x1)
f(x2)
x1<x2 f(x1)<f(x2) 函数f (x)在给定
1.3.1 函数的基本性质 ——单调性
某市年生产总值统计表
生产总值 (亿元)
30
33.60
20
19.71
10 4.67 7.56
1985 1990 1994 1997 年份
某市高等学校在校学生数统计表
人数 (万人)
15
10
15.38 14.04 12.13 10.79
5
1985 1990 1994 1997 年份
O x1 x2 x 区间上为增函数.
如何用x与f(x)来描述下降的图象?
y y=f(x) f(x1) f(x2)
O x1 x2 x
在给定区间上任取x1, x2 x1<x2 f(x1)>f(x2)
函数f (x)在给定 区间上为减函数.
增函数、减函数的概念:
增函数、减函数的概念:
一般地,设函数f(x)的定义域为I.
减函数.
x
变式1:f(x)= 3在(-∞, 0)上是增函数 还是减函数? x
变式2:讨论函数f(x)= 3在定义域上的
单调性.
x
3. 证明:函数f(x)= 在3(0, +∞)上是
减函数.
x
变式1:f(x)= 3在(-∞, 0)上是增函数 还是减函数? x
y
3
闭区间[-5, 5]上
2
的函数y=f(x)的图
1
象,根据图象说出 -5 -4 -3 -2 -1 O 1 2 3 4 5 x
y=f(x)的单调区间,
-1 -2
以及在每一单调区
-3
间上, y=f(x)是增函数还是减函数.
解: 函数y=f(x)的单调区间有[-5,-2), [-2, 1),[1, 3),[3, 5],
增函数、减函数的概念:
一般地,设函数f(x)的定义域为I.
1.如果对于定义域I内的某个区间上的任意 两个自变量的值x1, x2,当x1<x2时,都有 f(x1)<f(x2),那么就说f(x)在这个区间上是 增函数. 2.如果对于定义域I内的某个区间上的任意 两个自变量的值x1, x2,当x1<x2时,都有 f(x1)>f(x2),那么就说f(x)在这个区间上是 减函数.
若差>0,则为减函数).
2. 证明:函数f(x)=3x+2在R上是增函数. 定义法
2 .证明:函数f(x)=3x+2在R上是增函数. 定义法
变式1:函数f(x)=-3x+2在R上是增函数 还是减函数?
2. 证明:函数f(x)=3x+2在R上是增函数. 定义法
变式1:函数f(x)=-3x+2在R上是增函数 还是减函数?
如何用x与f(x)来描述下降的图象?
y y=f(x)
在给定区间上任取x1, x2
f(x1) f(x2)
O x1 x2 x
如何用x与f(x)来描述上升的图象?
y
y=f(x)
在给定区间上任取x1, x2
f(x1)
f(x2)
x1<x2 f(x1)<f(x2) 函数f (x)在给定
O x1 x2 x 区间上为增函数.
f ( x1 )
x1 O
y x2
x
y
f ( x1 )
x1 O
y x2
x
y
y x2
f ( x1 )
x
x1 O0
y
y x2
f ( x1 )
x
x1O
y
y x2
f ( x1 )
x
O x1
y
y x2
f ( x1 )
x
O x1
y
y x2
f ( x1 )
x
O x1
y
y x2
f ( x1 )
变式2: y=x2-ax+4在[2,4]上是 单调函数,求a的取值范围.
2. 证明:函数f(x)=3x+2在R上是增函数.
判定函数在某个区间上的单调性的 方法步骤:
1. 设x1, x2∈给定的区间,且x1<x2; 2. 计算f(x1)-f(x2) 至最简; 3. 判断上述差的符号; 4. 下结论 (若差<0,则为增函数;
函数单调性的概念:
函数单调性的概念:
如果函数 y=f(x)在某区间上是增函 数或减函数,那么就说函数 f(x)在这一 区间具有(严格的)单调性,这一区间叫 做 y=f(x)的单调区间.
函数单调性的概念:
如果函数 y=f(x)在某区间上是增函 数或减函数,那么就说函数 f(x)在这一 区间具有(严格的)单调性,这一区间叫 做 y=f(x)的单调区间.
增函数、减函数的概念:
一般地,设函数f(x)的定义域为I.
1.如果对于定义域I内的某个区间上的任意 两个自变量的值x1, x2,当x1<x2时,都有 f(x1)<f(x2),那么就说f(x)在这个区间上是 增函数.
增函数、减函数的概念:
一般地,设函数f(x)的定义域为I.
1.如果对于定义域I内的某个区间上的任意 两个自变量的值x1, x2,当x1<x2时,都有 f(x1)<f(x2),那么就说f(x)在这个区间上是 增函数. 2.如果对于定义域I内的某个区间上的任意 两个自变量的值x1, x2,当x1<x2时,都有 f(x1)>f(x2),那么就说f(x)在这个区间上是 减函数.
如何用x与f(x)来描述上升的图象?
y
y=f(x)
在给定区间上任取x1, x2
f(x1) f(x2)
O x1象?
y
y=f(x)
在给定区间上任取x1, x2
f(x1) f(x2) x1<x2 f(x1)<f(x2)
O x1 x2 x
如何用x与f(x)来描述上升的图象?
y
y=x+1
1
-1 O x
yy
2 2y=-2x+2
11 x
O
x
y
y=x+1
1
-1 O x
y y y=-x2+2x
O
12 x
yy
2 2y=-2x+2
11 x
O
x
y
y=x+1
1
-1 O x
y y y=-x2+2x
O
12 x
yy
2 2y=-2x+2
11 x
O
x
y y 1 x
Ox
y
y x2
x O
y
f(x1) f(x2) x1<x2 f(x1)<f(x2)
O x1 x2 x
如何用x与f(x)来描述上升的图象? y y=f(x)
f(x1) f(x2) x1<x2 f(x1)<f(x2)
相关文档
最新文档