几何光学
几何光学

1. 光学系统的尺度远大于光波的波长。 2. 介质是均匀和各向同性的。 3. 光强不是很大。
一、基本概念
光线
波面
球面波
平面波
光线:表示光波能量传播方向的几何线。 波面:光波位相相同的同相面。
几何光学中仅讨论与光线垂直的平面或球面,分别 对应平面波或球面波。
一、物和像
单心光束:相交于一点或他们的延长线交于一点的 光线称作单心光束。 非单心光束:各光线或其延长线不交于同一点的光 线称为非单心光束。 物点:入射单心光束的会聚点称为物点。 实物点:若入射光束为发散的单心光束,则物点叫 做实物点。 虚物点:若入射光束为汇聚的单心光束,则物点叫 做虚物点。 理想光学系统:不改变入射光束单心性的光学系统 称为理想光学系统。
一、物和像
像点: 出射单心光束的会聚点称为像点。 实像点:若出射光束为汇聚的单心光束,则像点为 实像点。 虚像点:若出射光束为发散的单心光束,则像点为 虚像点。 物空间:未经光学系统变换前入射的单心光束所在 的空间叫物空间。 物方折射率:物空间介质的折射率叫做物方折射率 像空间:经光学系统变换后出射的单心光束所在的 空间叫做像空间。 像方折射率:像空间介质的折射率叫做像方折射率
二、几何光学的基本实验定律
光的直线传播定律:光在同一种均匀介质中是 沿直线传播的。 光的反射和折射定律 光的独立传播定律:两列或几列光波在空间相 遇后,互不发生影响,各自保持自己的特性继 续向前传播。 光的可逆性原理:光在空间传播时,其光路是 可逆的。
三、费马原理
费马原理:光在指定的两点之间传播,其实际 光程总是一个极值。也就是说光沿光程为最大、 最小或恒定的路程传播。
大学物理--几何光学

B
B
B
ndl n dl
A
A
而由公理:两点间直线距离最短 A
B
dl 的极小值为直线AB A
所以光在均匀介质中沿直线传播
2.光的反射定律
Q点发出的光经 反射面Σ到达P点
P’是P点关于Σ 面的对称点。
P,Q,O三点 确定平面Π。
直线QP’与反射 面Σ交于O点。
nQO OP
则易知当i’=i时,QO + OP为光程最短的路径。
•直接用真空中的光速来计算光在不同介质中通过一定 几何路程所需要的时间。
t nl ct cc
•光程表示光在介质中通过真实路程所需时间内,在真空
中所能传播的路程。
分区均匀介质:
k
nili
i 1
,
t
c
1 c
k i 1
nili
连续介质:
ndl (l)
二、费马原理
1.表述:光在空间两定点间传播时,实际光程为一特 定的极值。
'
nl
nl '
n r 2 r s 2 2 r r s cos
n
r 2
s '
2
r
2
r s '
r cos
A
l
i -i` l '
P
-u
-u`
C
P` -s` O
-r
-s
对给定的物点,不同的入射点,对应着不同
的入射线和反射线,对应着不同的 。
由费马原理可知 :当 d PAP' 0 时,
2. 光的折射反射定律:
(1) 光的反射定律:反射线位于入射面内,反射线和 入射线分居法线两侧,反射角等于入射角,即
第12章 几何光学

望远镜的光路
内窥镜
水柱引导光线的行进
11
12.2 光程 费马原理
一、光程
光在均匀介质走过的几何路程 r 与
介质折射率 n 之乘积。用 L表示。
即: L= nr
光程的物理意义:光程就是光在介质中通过的 几何路程按波数相等折合到真空中的路程。
r nr
'
介质中:
折合到真
r
连续变化的介质:
空中:
nr
n
2
◆ 光的波粒二象性
• 牛顿:光的直线转播说明光是粒子流。 • 惠更斯、托马斯 · 杨、菲涅耳:光具有干涉和衍
射现象,所以光是一种波。 • 麦克斯韦:根据我的理论,光是一种电磁波,而
且是横波,转播速度为每秒30万公里。 • 迈克尔逊:我为什么测不到“以太风”。 • 爱因斯坦:用普朗克的“能量子”解释了光电效应。
y P iO
n1
γC
n2
Q
y A
p
q
m y n1q y n2 p
22
一、透镜
12.4 薄透镜成像
透镜——将玻璃、水晶等磨成两面为球面(或一面为平面) 的透明物体。
薄透镜:透镜厚度远小于两球面的曲率半径。
或 两个侧面的中心靠得很近的透镜。
凸透镜: 中间厚边缘薄 的透镜。
①
②
③
凹透镜:中间薄边缘厚
率),其定义为:
n c v
光在真空中的传播速度 光在介质中的传播速度
两种介质相比较,折射率大的介质,光在其中的
传播速度小,称为光密介质;折射率小的介质,光在
其中的传播速度大,称为光疏介质。
n21
v1 v2
n2 n1
折射定律也可表示为:
第二章几何光学

三、傍轴物点成像与横向放大率
第
二 章
PΠ
n
n’
Q
几
i
C
A
i’
Q’
-y’ P’
何
s
Σ
s’
Π’
光
学
傍轴条件:y 2 , y2 s 2 ,s2 ,r 2
成
像
对于折射球面: V y ns y ns
讨论放大率的正负 与像的虚实
对于反射球面: V y s ys
四、逐次成像
第 二
n1
n3 n2
章
二
折射面的曲 5.7mm 网膜的曲率 9.8mm
率半径R
半径R’
章
物方焦距f -17.1mm 像方焦距f ’ 22.8mm
几
何
人眼的调节功能
光
1、改变眼睛的焦距使距离不同的物体都能在视网
学
膜上形成清晰的像,这个过程称为眼睛的调节。
成
像
眼睛能看清的最远点称为远点(无穷远);
眼睛能看清的最近点称为近点(25cm)。
之,高度y(y’)<0。
(5)图示中的各个量均为正值。
第
第二节 共轴球面组傍轴成像
二
一、光在单个球面上的折射
章 几 何
nl A
P
Oφ
s
r
B
l’ C s’
P’ n’
光 学
1
l r 2 r s2 2rr scos 2
成
1
l r 2 s r 2 2rs r cos 2
像
由费马原理可得:
像
和像方主点重合的。
四、惠更斯目镜与冉斯登目镜
第 二
1、惠更斯目镜
第十四章 几何光学

n1 n2 n2 − n1 + = u1 v1 r 1
1 1.5 1.5 −1 + = 40 v1 10
解得
v1=60cm
u1
v1
第二球面成像:u2= -(v1-2r )= -40cm, n1 = 1.5, n2 = 1,r 2= -10cm
代入公式
得
n1 n2 n2 − n1 + = u2 v2 r2
第十四章 几何光学
以几何定律和某些基本实验定律为基础的光学称 为几何光学。 一、几何光学的基本定律: 几何光学的基本定律: 1、光在均匀介质中的直线传播定律。 2、光通过两种介质分界面时的反射定律和折射定律。 折射定律:n1 sin i1= n2 sin i2 3、光的独立传播定律和光路可逆原理。
第一节 球面折射
第二节 透镜 透镜(lens)
把玻璃等透明物质磨成薄片,其表面都为球面或 有一面为平面,即组成透镜,如下图所示。 中间部分比 边缘部分厚的 透镜叫凸透镜。 中间部分比 边缘部分薄的 透镜叫凹透镜。
+r −r2 r = ∞ −r2 1 1
双凸 平凸
−r −r2 1
弯凸
−r +r2 1
双凹
−r r2 = ∞ −r −r2 1 1
如果用v1表示上一个球面像距,u2表示下一个球面 的物距,d 表示上下两球面之间的距离,则 u2=d-v1 上式适用于所有的情况,其中,u2、v1都带符号。 例如,求得上一球面像距v1= -5cm(成一虚像),上下 两球面之间的距离d=10cm,则 u2=d-v1=10-(-5)=15cm (实物) --
v2=11.4cm
2.像与物的关系 用逐个球面成像法求解共轴系统成像问题时,关键 要弄清楚上一个球面的像是下一球面的实物还是虚物。 当成像是从左到右依次进行时,如果上一个球面 所成像(虚、实)的位置在下一个球面的左边,对下 一个球面来说,该像是实物,u>0;反之,如果上一 u>0 个球面所成像(实)的位置在下一个球面的右边,对 下一个球面来说,该像是虚物,u<0。 就是说,若上一球面成一虚像,则对下一球面来说, 它一定是实物。若上一球面所成的像为实像,则要根 据此像的像距与上、下两球面之间的距离进行比较, 判断是实物还是虚物。
光学第三章几何光学

联系光与电磁波
3、λ ——光波长
是否趋近于零 区分几何光学与波动光
学 4、χ ——介质的电极化率
其对光场响应是线性与非线性区分线性 与非线性光学
费马原理
一、费马原理:光在指定的两点间传播时,
实际的光程总是一个极值。其数学表达式为:
B nds 极值(极大值、极小值或恒定值) A
射光束都是单心光束的成像。这也是我们
着重研究的情况。
3、物、像与人眼
问题:
‘
这里的像就是人眼视网膜上所成的
像吗?人眼能否区分物与像?
结论:
对人眼来所,物与像都是进入瞳孔的发
射光束的顶点。物、像、虚像人眼不能分辨。
但对于像,其光束有一定的限制,必须在特定
的范围才能观察到。
光在平面界面上的反射和折射 光学纤维 棱镜
第 三 章 几 何 光 学
三角形孔夫琅禾费衍射图像
本章内容
光线的概念 几何光学的基本定律 费马原理 光束 实象和虚像 平面反射和折射,棱镜的最小偏向角,光
学纤维 光在球面界面上的反射和折射、符号法则 近轴物点近轴光线成像的条件 薄透镜 理想光具组的基点和基面
光线的概念、几何光学的基本定律
B
或: nds 0 A
或:t 1
B
nds 0
ccA
二、几何光学的基本实验定律与费马原理
1、几何光学的基本实验定律或费马原理都可以 作为几何光学出发点,从而建立几何光学内容 体系。 2、由费马原理可以推导几何光学的基本实验 定律。 (1)、光在均匀介质中的直线传播
S
1
l = ([ - r)2 +(r - s)2 + (2 - r)( r - s)cos ] 2
第一章 几何光学
以光线概念为基础研究光的 传播和成像规律
§1.1 光线传播的基本定律
一.几何光学的实验定律
1.光的直线传播定律。(各向同性介质中)
共面
2.反射定律和折射定律:
分于法线两侧 角度关系
3.光的独立传播定律和光路可逆原理(各向同性介质中)
几何光学中常用的器件-----棱镜
作用:改变光路 色散分光
s
2 2 2
n (s r)
n
s
/2
/2
0
/ 2
(s r )
1 n (s r )
2
n
1
/2
0
(s r)
/
求出上两式联立方程的解,可得一对特殊的共轭点, 称为球面折射的齐明点或不晕点 对一对齐明点,宽光束经球面折射仍能成像。
(二)把光束限制在傍轴区,即
则有:
2
cos 1
共轴球面系统的基点基面
(1) 焦点与焦平面
焦平面的普遍意义:顶点位于焦平面上的光束,其共轭光束为平行光束; 顶点位于焦点上的光束,其共轭光束与主光轴平行。 物(像)方焦点F( F'):与无限远处像(物)点共轭的轴上物(像)点。 物(像)方焦平面:过物(像)方焦点F( F' )的垂轴平面。
2
在傍轴区d<<s,s/,|r|;略去二阶以上无穷小量得
d (r s) PM s 1 2 s
d (r s' ) M P s ' 1 2 s'
因此,光程
d (r s) d (r s' ) [ PMP ' ] ns 1 2 2 ns ' 1 s s'
第十一章 几何光学181212
n1 n2 n2 n1
uv
r
f2
n2 r n2 n1
f1
n1 r n2 n1
f2
n2 r n2 n1
①f1 、f2可正可负, F1、F2可以是实焦点,也可 以是虚焦点,单球面对光线可以起到会聚作用, 也可以起到发散作用。
②当f1 、f2为正时, F1、F2是实际光线交汇点, 就是实焦点,对光线起会聚作用;
1 1 n 1( 1 1 )
uv
r1 r2
透镜有两个焦点;若薄透镜两侧介质n不同时,
两焦距不等;当薄透镜两侧介质n相同时,两焦
距也相等。
薄透镜焦距公式
f
n
n0 n0
1 ( r1
1 1
r2
)
比
薄透镜公式 1 1 n n0 ( 1 1 )
较
例11-2 从几何光学的角度来看,人眼可简化为 高尔斯特兰简化眼模型。这种模型将人眼成像归 结成一个曲率半径为5.7mm、媒质折射率为1.33 的单球面折射成像。⑴试求这种简化眼的焦点位 置和焦度;⑵若已知某物在膜后24.02mm处视网 膜上成像,求该物应放在何处。
解⑴:已知n1=1.0, n2=1.33, r=5.7mm
ur
a.从F1到折射面顶点的距离(物距)叫第一焦距,f1 u=f1,v =∞
n1 n2 n2 n1
uv
r
f1
n1 r n2 n1
n1
n2
平行主光轴光线成像 于F2处,F2称为折 射面的第二焦点。
F2
v r
b.从F2到折射面顶点的距离(像距)叫第二焦距,f2
u= ∞ ,v =f2
几何光学
三、光在单球面上的近轴成像
‣ 单球面折射成像的物像距公式
上节我们用等光程原理给出了
•
高斯公式和牛顿公式
•
傍轴物点成像与横向放大率
对成像系统,物和像是共轭的。
二、Fermat原理
1. 光程 折射率X光经过的路程
光在介质中传播所需要的时间=光程/真空中光速
• 你在湖边看到一个小孩溺水,你希望用最快
的速度去救他,该怎么办? 当然你不会选择(1),但是你也会放弃直线(2), 而改以(3)来取代,为什么?
• 费马用同样的想法描述光行进的路径,称为
线条称为光线。 几何光学中光线被抽象成既无直径又无体积 只有位置和方向的几何线。
1. 几何光学的实验定律
‣ 光的直线传播定律
光在真空或均匀介质中沿直线传播。
‣ 光的反射定律 ‣ 光的折射定律
• 折射率大的介质称为光密介质(optically
thicker medium),折射率小的介质称为光疏 介质(optically thinner medium)。
第一章 几何光学
• 几何光学的基本概念 • Fermat原理 • 光在单球面上的近轴成像 • 薄透镜成像
一、几何光学的基本概念
‣ 基本概念 • 本身发光或者被其他光源照明后发光的几
何点称为发光点(点光源)。 在几何光学中,发光点被抽象为一个既无体 积又无大小只有几何位置的几何点。
• 发光体向四周发出的带有辐射能量的几何
费马原理。
2. 费马原理:『给定的两点间,光沿光程平稳 的路径传播。』 平稳:极值(极大、极小)或者为稳定值。
在数学上,费马原理用变分表示为
费马原理是一个基本假设,可以导出光的反射定律 和折射定律。
几何光学
几何光学光在球面上的反射与折射1、球面镜反射成像(1)球面镜的焦距球面镜的反射仍遵从反射定律,法线是球面的半径。
一束近主轴的平行光线,经凹镜反射后将会聚于主轴上一点F (图1-4-1),这F 点称为凹镜的焦点。
一束近主轴的平行光线经凸面镜反射后将发散,反向延长可会聚于主轴上一点F (图1-4-2),这F 点称为凸镜的虚焦点。
焦点F 到镜面顶点O 之间的距离叫做球面镜的焦距f 。
可以证明,球面镜焦距f 等于球面半径R 的一半,即2R f =(2)球面镜反射成像公式 根据反射定律可以推导出球面镜的成像公式。
下面以凹镜为例来推导:(如图1-4-3所示)设在凹镜的主轴上有一个物体S ,由S 发出的射向凹镜的光线镜面A 点反射后与主轴交于S '点,半径CA 为反射的法线,S '即S 的像。
根据反射定律,AC S SAC '∠=∠,则CA 为S SA '角A 的平分线,根据角平分线的性质有S C CSS A AS '=' ①由为SA 为近轴光线,所以O S S A '=',SO AS =,①式可改写为S C CSS O OS '=' ②②式中OS 叫物距u ,S O '叫像距v ,设凹镜焦距为f ,则 f u OC OS CS 2-=-= υ-='-='f S O OC S C 2代入①式υυ--=f f u u 22 化简 f u 111=+υ这个公式同样适用于凸镜。
使用球面镜的成像公式时要注意:凹镜焦距f 取正,凸镜焦距f 取负;实物u 取正,虚物u 取负;实像v 为正,虚像v 为负。
f u 111=+υ上式是球面镜成像公式。
它适用于凹面镜成像和凸面镜成像,各量符号遵循“实取正,虚取负”的原则。
凸面镜的焦点是虚的,因此焦距为负值。
在成像中,像长 和物长h 之比为成像放大率,用m 表示,u h h m υ='=由成像公式和放大率关系式可以讨论球面镜成像情况,对于凹镜,如表Ⅰ所列;对于凸镜,如表Ⅱ所列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光的折射 全反射
一、光的折射定律和折射率
1.折射现象(如图所示)
光束从一种介质斜射进入另一种介质时传播方向
2.折射定律
(1)内容:折射光线与入射光线、法线处在 内,折射光线与入射光线
分别位于 ;入射角的正弦与折射角的
(2)表达式:
(3)光的折射现象中,光路是 .
例1.两束不同频率的单色光a 、b 从空气平行射入水中,发生了图所示的折射现象(α>β).下列结论中正确的是( )
A .光束b 的频率比光束a 低
B .在水中的传播速度,光束a 比光束b 小
C .水对光束a 的折射率比对光束b 的折射率小
D .若光束从水中射向空气,则光束b 的临界角比光束a 的临界角大
二、全反射和光的色散现象
1.全反射
(1)条件:①光从 射入 .
② 大于等于 .
(2)现象:折射光完全消失,只剩下 .
(3)临界角C :sinC=________
(4)应用:①全反射棱镜 ②光导纤维
2.光的色散
(1)色散现象
白光通过 会形成由红到紫各色光组成的彩色光谱.
(2)规律
由于n 红<n 紫,所以以相同的入射角射到棱镜界面时不同色光的折射角不同,θ红 θ紫,就是说紫光偏折的更厉害些,当它们射到另一个界面时,紫光入射角大,折射角更大,所以 的偏向角最大, 的偏向角最小.
例2.如图所示,一个棱镜的顶角为θ=41.30°,一束白光以较大的入射角从棱镜的左侧面射入,在光屏上形成由红到紫排列的彩色光带.各色光在棱镜中的折射率和临界角见下表.当入射角逐渐减小到0的过程中,彩色光带的变化情况是( )
A.紫光最先消失,最后剩下红光和橙光 B .紫光最先消失,最后剩下黄光、橙光和红光
C .红光最先消失,最后剩下紫光和蓝光
D .红光最先消失,最后剩下紫光
练习
1.已知某玻璃对蓝光的折射率比对红光的折射率大,则两种光( )
A .在该玻璃中传播时,蓝光的速度较大
B .以相同的入射角从空气斜射入该玻璃中,蓝光的折射角较大
C.从该玻璃中射入空气发生反射时,红光的临界角较大
D.用同一装置进行双缝干涉实验,蓝光的相邻条纹间距较大
2.如图所示,有一束平行于等边三棱镜截面ABC的单色光从空气射向E点,并偏
折到F点.已知入射方向与边AB的夹角为θ=30°,E、F分别为边AB、BC的中
点,则()
A.该棱镜的折射率为 2 B.光在F点发生全反射
C.光从空气进入棱镜,波长变小
D.从F点出射的光束与入射到E点的光束平行
3.在桌面上有一倒立的玻璃圆锥,其顶点恰好与桌面接触,圆锥的轴(图中虚线)与桌
面垂直,过轴线的截面为等边三角形,如图所示.有一半径为r的圆柱形平行光束垂
直入射到圆锥的底面上,光束的中心轴与圆锥的轴重合.已知玻璃的折射率为 1.5,
则光束在桌面上形成的光斑半径为()
A.r B.1.5r C.2r D.2.5r
4.光导纤维的结构如图,其内芯和外套材料不同,光在内芯中传播.以下关于光导
纤维的说法正确的是()
A.内芯的折射率比外套的大,光传播时在内芯与外套的界面上发生全反射
B.内芯的折射率比外套的小,光传播时在内芯与外套的界面上发生全反射
C.内芯的折射率比外套的小,光传播时在内芯与外套的界面上发生折射
D.内芯的折射率与外套的相同,外套的材料有韧性,可以起保护作用
5.自行车的尾灯采用了全反射棱镜的原理,它虽然本身不能发光,但在夜间骑自行车时,从后面开来的汽车发出的强光照到尾灯后会有较强的光被反射回去,使汽车司机注意到前面有自行车.尾灯由透明介质做成,其外形如图所示,下面说法中正确的是()
A.汽车灯光应从左表面射过来,在尾灯的左表面发生全反射
B.汽车灯光应从左表面射过来,在尾灯的右表面发生全反射
C.汽车灯光应从右表面射过来,在尾灯的右表面发生全反射
D.汽车灯光应从右表面射过来,在尾灯的左表面发生全反射
6.如图所示为一立方体玻璃砖,折射率为2,放在空气中,一束平行光从立方体的上表面斜射进来,入射角α<90°,然后它投射到左端侧面,则()
A.无论α角多大,该光线都能从这侧面射出
B.无论α角多大,该光线都不能从这侧面射出
C.只有α<45°时,该光线才不能从这侧面射出
D.只有α>45°时,该光线才不能从这侧面射出
7.光从空气以一定的入射角i射到玻璃砖的上表面,穿过玻璃砖后又射入空气中,如果玻璃砖的上下表面是平行的,那么光从玻璃砖射出后的传播方向如何?
8.图是北京奥运会期间安置在游泳池底部的照相机拍摄的一张照片,照相机的镜头竖直向上.照片中,水立方运动馆的景象呈现在半径r =11 cm 的圆形范围内,水面上的运动员手到脚的长度l =10 cm ,若
已知水的折射率为n =4
3
,请根据运动员的实际身高估算该游泳池的水深h 。
(结果保留两位有效数字)
9.如图,一透明半圆柱体折射率为n =2,半径为R 、长为L.一平行光束从半圆柱体的矩形表面垂直射入,从部分柱面有光线射出.求该部分柱面的面积S 。
10.一棱镜的截面为直角三角形ABC ,∠A =30°,斜边AB =a.棱镜材料的折射率为n = 2.在此截面所在的平面内,一条光线以45°的入射角从AC 边的中点M 射入棱镜.画出光
路图,并求光线从棱镜射出的点的位置(不考虑光线沿原路返回的情况)。