事件的关系与运算PPT

合集下载

事件的关系和运算课件-高一下学期数学人教A版(2019)必修第二册

事件的关系和运算课件-高一下学期数学人教A版(2019)必修第二册

问题6
记事件B为“点数为奇数”,事件F为“点数为偶数”, 事件H为“点数为1”,则事件H与事件F有何关系?事 件B和事件F有什么关系?
提示 事件H与事件F不会同时发生.事件B与事件F不会同时发生,
且在一次试验中,B与F一定有一个发生.
知识梳理
事件A与事件B互斥
一般地,如果事件A与事件B不能 同时发生,也就是说A∩B是一个不 可能事件,即 A∩B=∅ ,则称事 件A与事件B 互斥 (或互不相容),
跟踪训练3
对于C,“至少有一个是奇数”和“全是奇数”分别是事件B∪A和事件A, 显然不互斥; 对于D,“至少有一个是偶数”和“全是偶数”分别是事件B∪C和事件C, 显然不互斥.
课堂小结
1. 知识清单: (1)事件的包含关系与相等关系. (2)并事件和交事件. (3)互斥事件和对立事件.
2. 方法归纳:列举法、Venn图法.
利用Venn图
借助集合间运算的思想,分析同一 条件下的试验所有可能出现的结果, 把这些结果在图中列出,进行运算.
跟踪训练2 对空中移动的目标连续射击两次,设A={两次都击中目标},
B={两次都没击中目标},C={恰有一次击中目标},D={至少有一次击
中目标},下列关系不正确的是
A.A⊆D
B.B∩D=∅
包含关系或相等关系
(1)B___⊆___H;(2)D__⊆___J;(3)E__⊆____I;(4)A__=___G.
解析 因为出现的点数小于5包含出现1点,出现2点,出现3点, 出现4点四种情况,所以事件B发生时,事件H必然发生,故B⊆H; 同理D⊆J,E⊆I;又易知事件A与事件G相等,即A=G.
事件A(或事件A包含于事件B);如果事件B包含事件A,事 件A也包含事件B,即B⊇A且A⊇B,则称事件A与事件B相等.

概率论与统计1-2事件的关系和运算

概率论与统计1-2事件的关系和运算

独立事件的概率计算公式
若事件A和B独立,则$P(A cap B) = P(A)P(B)$。
独立事件的概率性质
若事件A和B独立,则$P(A cup B) = P(A) + P(B) - P(A cap B)$。
独立事件的概率计算实例
在掷骰子游戏中,若事件A为掷出偶数点,事件B为掷出3 点,由于A和B是独立的,所以$P(A cap B) = P(A)P(B) = frac{1}{2} times frac{1}{6} = frac{1}{12}$。
贝叶斯公式则是在已知某些其他事件发生的条件 下,重新评估某个事件发生的概率。
全概率公式用于计算一个事件发生的概率,考虑 了所有可能的情况和它们发生的概率。
全概率公式和贝叶斯公式在应用上有所不同,全 概率公式更适用于对整个事件进行分类和计算, 而贝叶斯公式则更适用于在已知某些条件下对事 件进行预测和推断。
完备事件组中的所有事件的概率之和 为1。
完备事件组中的任意两个事件都是互 斥的。
利用完备事件组计算概率
利用完备事件组计算概率的基本思想
将复杂事件分解为若干个互斥事件的并集,然后利用概率的加法公式计算复杂事 件的概率。
利用完备事件组计算概率的方法
首先确定完备事件组,然后确定所求事件的概率,最后利用概率的加法公式计算 出所求事件的概率。
差运算的应用
在概率论中,差运算常用于计算某个事件发生的概率减去其他事件 同时发生的概率。
03
条件概率与贝叶斯公式
条件概率的定义与性质
条件概率的定义
在概率论中,条件概率是指在某 个事件B已经发生的情况下,另一 个事件A发生的概率,记作P(A|B) 。
条件概率的性质
条件概率具有一些重要的性质, 包括非负性、规范性、可加性等 ,这些性质在概率论和统计中有 着广泛的应用。

随机事件的关系与运算

随机事件的关系与运算
(2)化简左式至右式
A B C AB C A BC A B C AB C A BC A B C
A B C.
目 录
前一页
后一页
退 出
后一页
退 出
5) 差事件
A B A AB AB
A B
A
S B S
A B
A A B
A B
发生当且仅当 A 发生 B 不发生.
目 录
前一页
后一页
退 出
第一章 概率论的基本概念
§1 随机事件的概率
6) 互不相容(互斥)
7) 对立事件 (逆事件)
A B
A B A B S
A
A
B
S
S
BA
请注意互不相容与对立事件的区别!
目 录 前一页 后一页 退 出
第一章 概率论的基本概念
§1 随机事件的概率
例如,在S4 中
事件 A={t|t1000} 表示 “产品是次品” 事件 B={t|t 1000} 表示 “产品是合格品” 事件 C={t|t1500} 表示“产品是一级品” 则 A与B是互为对立事件;
A B A B,
可推广 Ak Ak ,
k k
AB A B
A A .
k k k k
目 录 前一页 后一页 退 出
第一章 概率论的基本概念
§1 随机事件的概率
例1:设 A, B, C 为三个随机事件,用A, B, C 的运 算关系表示下列各事件. (1)A 发生.
A A A
A B B A, A B B A
A B C A B A C De Morgan(德摩根)定律:

事件的关系与运算ppt课件

事件的关系与运算ppt课件

可以发现,事件E1和事件E2同时发生,相当于事件C2发生,用集
合表示就是:1,22,3 2 ,即E1 E2 C2 ,这时我们称事件C2
为事件E1和事件E2的交事件。
交事件(积事件)
一般地,事件A与事件B同时发生,这样的一个事件 中的样本点既在事件A中,也在事件B中,我们称这 个事件为事件A和事件B的交事件(或积事件),记故“甲向南”意味着“ 乙向南”是不可能的,故是互斥事件,但不是对立事件.
二、事件的运算
例2 在掷骰子的试验中,可以定义许多事件.例如,事件C1={出现1 点},事件C2={出现2点},事件C3={出现3点},事件C4={出现4点}, 事件C5={出现5点},事件C6={出现6点},事件D1={出现的点数不大 于1},事件D2={出现的点数大于3},事件D3={出现的点数小于5}, 事件E={出现的点数小于7},事件F={出现的点数为偶数},事件G= {出现的点数为奇数},请根据上述定义的事件,回答下列问题:(1)请 举出符合包含关系、相等关系的事件;(2)利用和事件的定义,判断 上述哪些事件是和事件.
三、随机事件的表示及含义
例3 设A,B,C表示三个随机事件,试将下列事件用A,B,C 表示出来.(1)三个事件都发生;(2)三个事件至少有一个发生; (3)A发生,B,C不发生;(4)A,B都发生,C不发生;(5)A,B至 少有一个发生,C不发生;(6)A,B,C中恰好有两个发生.
解 (1)ABC (2)A∪B∪C (3) A B C (4)AB (5)(A∪B) (6)AB∪AC∪BC
A=B
知识点二 交事件与并事件
观察事件:D1 1,2,3, E1 1,2, E2 2,3
可以发现,事件E1和事件E2至少有一个发生,相当于事件D1发生,

10.1.2事件的关系和运算课件高一下学期数学人教A版

10.1.2事件的关系和运算课件高一下学期数学人教A版
在掷骰子试验中,观察骰子朝上面的点数,可以定义许多随机事件, 例如:Ci=“点数为i”,i=1,2,3,4,5,6; D1=“点数不大于 3”; D2=“点数大于3”; E1=“点数为1或2”; E2=“点数为2或3; F=“点数为偶数”; G=“点数为奇数”; 你还能写出这个试验中其他一些事件吗? 请用集合的形式表示这些事件。 借助集合与集合的关系和运算,你能发现这些事件之间的联系吗?
是一级品”为事件A,则A的对立事件是____________________.
答案:至少有一件是二级品
当堂练习
例12.某县城有甲、乙两种报纸供居民订阅,记事件A为“只订甲报”,事 件B为“至少订一种报”,事件C为“至多订一种报”,事件D为“不订甲 报”,事件E为“一种报纸也不订”.判断下列每对事件是不是互斥事 件.如果是,再判断它们是不是对立事件.(1)A与C.(2)B与E. (3)B与 D.(4)B与C. (5)C与E. 解:(1) A与C不是互斥事件.
当堂练习
例5.判断下列给出的每对事件是否为互斥事件,是否为对立事件,并说明 理由.
从40张扑克牌(红桃、黑桃、方块、梅花点数从1~10各10张)中,任抽取1 张.
(1)“抽出红桃”与“抽出黑桃”;
(2)“抽出红色牌”与“抽出黑色牌”;
(3)“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”.
解:(1)是互斥事件,不是对立事件. 理由是从40张扑克牌中任意抽取1张,“抽出红桃”和“抽出黑桃”是不可能同时 发生的,所以是互斥事件.同时,不能保证其中必有一个发生,这是由于还可能抽 出“方块”或“梅花”,因此,二者不是对立事件. (2)既是互斥事件,又是对立事件. 理由是从40张扑克牌中任意抽取1张,“抽出红色牌”与“抽出黑色牌”两个事件 不可能同时发生,且其中必有一个发生,所以它们既是互斥事件,又是对立事件. (3)不是互斥事件,当然不可能是对立事件. 理由是从40张扑克牌中任意抽取1张,“抽出的牌点数为5的倍数”与“抽出的牌点 数大于9”这两个事件可能同时发生,如抽得点数为10,因此,二者不是互斥事件, 当然不可能是对立事件.

《事件之间的关系与运算》示范公开课教学课件【高中数学】

《事件之间的关系与运算》示范公开课教学课件【高中数学】
(2)从包含的样本点的角度看,A⊆B意味着A的每一个样本点都是B的样本点;
(3)从逻辑的角度看,A⊆B意味着A发生是B发生的充分条件,B发生是A发生的必要条件;
新知探究
问题3 如何从多个角度来理解事件的包含关系?
(5)从发生的概率大小的角度看,A⊆B意味着P(A)≤P(B).
新知探究
事件的相等:如果事件A发生时,事件B一定发生;而且事件B发生时,事件A也一定发生,则称“A与B相等”,记作A=B .
归纳小结
问题12 (1)如何理解事件A包含事件B?事件A与事件B相等?
(2)什么叫做并事件?什么叫做交事件?
(3)什么叫做互斥事件?什么叫做对立事件?互斥事件与对立事件的联系与区别是什么?
归纳小结
归纳小结
②联系:互斥事件和对立事件在一次试验中都不可能同时发生,而事件对立是互斥的特殊情况,即对立必互斥,但互斥不一定对立.
(2)A事件发生且B事件不发生;
(3)A,B两个事件都不发生.
新知探究
设A,B,C表示三个随机事件,请将下列事件用A,B,C表示出来:
(1)A发生,B,C不发生;
(2) A,B都发生,C不发生;
(3)三个事件都发生;
(4)三个事件至少有一个发生;
(5)三个事件都不发生;
(6)不多于一个事件发生.
ABC
①区别:两个事件A与B是互斥事件,包括如下三种情况:(ⅰ)若事件A发生,则事件B就不发生;(ⅱ)若事件B发生,则事件A不发生;(ⅲ)事件A,B都不发生.
目标检测
打靶3次,事件Ai表示“击中i发”,其中i=0,1,2,3.那么A=A1+A2+A3表示( )
1
B
A.全部击中
B.至少击中1发
C.至少击中2发

事件的关系与运算

事件的关系与运算

,任何事件都包括不可能事件。
事件的关系和运算: (2)相等关系 一般地,对事件A与事件B,若 B A且A B ,那么称事件A与事件B 相等,记作A=B 。 如图: BA
例.事件 C1 ={ 出现1 点 }发生,则事件 D1 ={出现的点数不大于 1 } 就一定会发生,反过来也一样,所以C1=D1。
事件的关系和运算: (5)互斥事件 若 A B 为不可能事件( A B ),那么称事件A与事件B互斥,其含 义是:事件A与事件B在任何一次试验中都不会同时发生。 如图: A B
例.因为事件 C1 ={出现 1 点} 与事件C2 ={出现 2 点}不可能同时发 生,故这两个事件互斥。
事件的关系和运算: (3)并事件(和事件)
若某事件发生当且仅当事件A发生或事件B发生,则称此事件 为事件A和事件B的并事件(或和事件),记作 A B(或A B)
如图: B A
A B
例.若事件 J={出现 1 点或 5 点 } 发生, 事件C1 ={出现 1 点 } 与事件C5 ={出现 5 点 }中至少有一个会发生,则
事件的关系与运算
在掷骰子的试验中,我们可以定义许多事件,如: C1 ={ 出现 1 点 }; C2 ={出现 2 点}; C3 ={ 出现 3 点 }; C4 ={ 出现 4 点 }; C5 ={出现 5 点}; C6 ={ 出现 6 点 }; D={ 出现的点数大于 3 };E ={ 出现的点数小于 7 }; F ={ 出现的点数大于 6 }; G ={ 出现的点数为偶数 }; H ={ 出现的点数为奇数 }; …… 思考: 1. 上述事件中有必然事件或不可能事件吗?有的话,哪些是? 2. 若事件 C1 发生,则还有哪些事件也一定会发生? 3. 上述事件中,哪些事件发生会使得 I={出现 1 点或 5 点} 也发生? 4. 若只掷一次骰子,则事件 C1 和事件 C2 有可能同时发生么? 5. 在掷骰子实验中事件 G 和事件 H 是否一定有一个会发生?

ch1-1随机事件_事件的关系与运算

ch1-1随机事件_事件的关系与运算
, C 为事件, 则有
(1) 交换律
A U B = B U A, AB = BA.
( 2) 结合律 ( A U B ) U C = A U ( B U C ),
( AB )C = A( BC ).
( 3) 分配律 ( A U B ) I C = ( A I C ) U ( B I C ) = AC U BC ,
三、事件的关系与运算
事件间的关系及运算
设试验 E 的样本空间为 S , 而 A, B , Ak ( k = 1,2,L) 是 S 的子集 .
出现, (1)子事件 (1)子事件 若事件 A 出现 必然导致 B 出现 , 也称A 则称事件 B 包含事件 A, 也称 是B的 子事件 的 子事件.
记为 B ⊃ A 或 A ⊂ B.
积事件也可记作
A ⋅ B 或 AB .
实例 某种产品的合格与否是由该产品的长度 与直径是否合格所决定,设C=“产品合格” 与直径是否合格所决定 设C=“产品合格” , A=“长度合格”,B=“直径合格” A=“长度合格”,B=“直径合格”.
则 C = A I B = AB
图示事件A与 的积事件 事件. 图示事件 与B 的积事件
续)从一批产品中任取两件,观察合格 从一批产品中任取两件, 品的情况. 两件产品都是合格品}, 品的情况 记 A={两件产品都是合格品 , 两件产品都是合格品 两件产品中至少有一个是不合格品} 两件产品中至少有一个是不合格品 A={两件产品中至少有一个是不合格品 若记 Bi ={取出的第 i 件是合格品 ,i=1,2 取出的第 件是合格品}, 表示A和 问如何用 Bi 表示 和 A ? A=B1B2
两件产品中至少有一个是不合格品} 两件产品中至少有一个是不合格品 A={两件产品中至少有一个是不合格品 它又可写为两个互斥事件之和
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
B
例.因为事件 C1 ={出现 1 点} 与事件C2 ={出现 2 点}不可能同时发 生,故这两个事件互斥。
事件的关系和运算:
(6)互为对立事件 若 A B 为不可能事件,A B 为必然事件,那么称事件A 与事件B互为对立事件,其含义是:事件A与事件B在任何一次试 验中有且仅有一个发生。 如图: A B
3.1.3 事件的关系与运算
在掷骰子的试验中,我们可以定义许多事件,如: C1 ={ 出现 1 点 }; C2 ={出现 2 点}; C3 ={ 出现 3 点 }; C4 ={ 出现 4 点 }; C5 ={出现 5 点}; C6 ={ 出现 6 点 }; D1 ={ 出现的点数不大于 1 }; D2 ={ 出现的点数大于 3 }; D3 ={ 出现的点数小于 5 }; E ={ 出现的点数小于 7 }; F ={ 出现的点数大于 6 }; G ={ 出现的点数为偶数 }; H ={ 出现的点数为奇数 }; …… 思考: 1. 上述事件中有必然事件或不可能事件吗?有的话,哪些是?
如图:
B A B A
例.若事件 M={出现 1 点且 5 点}发生,则 事件 C1 ={出现 1 点} 与事件 C5 ={出现 5 点} 同时发生,则 M C1 C5 .
事件的关系和运算:
(5)互斥事件 若 A B 为不可能事件( A B ),那么称事件A与 事件B互斥,其含义是:事件A与事件B在任何一次试验中都不 会同时发生。 如图:
如图:
BA B
A
例.若事件 J={出现 1 点或 5 点 } 发生,则 事件C1 ={出现 1 点 }与事件 C5 ={出现 5 点 }中至少有一个会发生,则 J C1 C5 .
事件的关系和运算:
(4)交事件(积事件) 若某事件发生当且仅当事件A发生且事件B发生,则称此事件 为事件A和事件B的交事件(或积事件),记作 A B (或AB )。
事件的关系和运算:
(2)相等关系 一般地,对事件A与事件B,若 B 事件A与事件B相等,记作A=B 。
A且A B ,那么称
如图:
BA
例.事件 C1 ={ 出现1 点 }发生,则事件 D1 ={出现的点数不大于 1 } 就一定会发生,反过来也一样,所以C1=D1。
事件的关系和运算:
(3)并事件(和事件) 若某事件发生当且仅当事件A发生或事件B发生,则称此事件 为事件A和事件B的并事件(或和事件),记作 A B 。 (或A B )
例. 事件G ={出现的点数为偶数}与事件H ={出现的点数为奇数} 即为互为对立事件。
事件的关系和运算:
(1)包含关系: (2)相等关系:
BA (或A B)
A=B ( B A且A B)
(3)并事件(和事件): (4)交事件(积事件): (5)互斥事件:
A B (或A B )
A B (或AB )
A B A B 且 A
是必然事件 B
(6)互为对立事件:
练习:
1.在某次考试成绩中(满分为100分),下列事件的关系是什么? ① A1={70分~80分},A2={70分以上} ; ② B1={不及格},B2={60分以下} ; ③ C1={90分以上},C2={95分以上},C3={90分~95分}; ④ D1={60分~80分},D2={70分~90分},D3={70分~80分}; 2.判断下面给出的每对事件是否是互斥事件或互为对立事件。 从40张扑克牌(四种花色从1~10 各10 张)中任取一张 ①“抽出红桃”和“抽出黑桃” ②“抽出红色牌”和“抽出黑色牌” ③“抽出的牌点数为 5 的倍数”和“抽出的牌点数大于 9”
事件的关系和运算:
(1)包含关系 一般地,对于事件A与事件B,如果事件A发生,则事件B 一定发生,这时称事件B包含事件A(或称事件A包含于事件B), 记作 B A (或A B) 。
如图:
B A
例.事件C1 ={出现 1 点 }发生,则事件 H ={出现的点数为奇数 }也 一定会发生,所以 H C1 . 注:不可能事件记作 ,任何事件都包括不可能事件。
反过来可以么? 2. 若事件 C些事件发生会使得 I={出现 1 点或 5 点} 也发生? 5. 若只掷一次骰子,则事件 C1 和事件 C2 有可能同时发生么? 6. 在掷骰子实验中事件 G 和事件 H 是否一定有一个会发生?
4. 上述事件中,哪些事件发生会使得 I={出现 1 点且 5 点 }也发生?
相关文档
最新文档