(完整word版)德国ICE高速列车重大脱轨事故

合集下载

ICE动车组事故调查

ICE动车组事故调查
ICE动车组事故调查
业务推广部
1
1998年6月3日 ,一列高速列车在德国埃舍
特小镇出轨,此刻列车正好穿过一座公路桥,横
摆的第三节车厢以巨大的冲力将桥墩撞断,公路
桥坍塌,压住车厢,从而酿成德国近50年中最惨
重的铁路事故业务,推1广0部1人死亡,105人受伤。
2
联邦调查人员为找到事故原 因进行了长达3个月深入细致的调 查分析,最终找到了事故的原因。
业务推广部
3
1998年6月3日,凌晨5点40分,400 名乘客登上了慕尼黑——汉堡的884次 ICE1型高速列车,该车定员800人。
业务推广部
4
列车很快就以250KM的时速在德国的原野上飞 奔,该车自1991年投入使用以来从未发生过事故, 以至美国也考虑业务引推广进部 德国生产的高速铁路系统。5
54
业务推广部
55
道岔转换的结果是1号车厢和后面的 车厢进入不同的股道,随后在巨大的惯 性作用下2号车厢脱轨撞毁公路桥的桥 墩,桥体砸向后面的车厢。高铁史上的 最重大的灾难发生了。
业务推广部
56
⑥归根结底这起灾难的起因应该是 那个破损的车轮,那么车轮的钢圈为何 会脱落呢?
业务推广部
57
一般的火车车轮为常见的单毂式车 轮。ICE通车时也采用这种车轮。
业务推广部
12
约克和列车长刚回到1号车受损位 置时,突然车厢剧烈左右晃动起来, 他俩被甩到地板上,这时列车长挣扎 着想去拉位于车厢前部的紧急制动装 置,但他已经动弹不得。随后惨剧不 可避免的发生了。
业务推广部
13
11点05分,赶到的救援人员被现 场惨象惊呆了:公路桥完全坍塌,8 节车厢挤压在一起严重变形。
脱轨 处

德国ICE高速列车重大脱轨事故

德国ICE高速列车重大脱轨事故

德国ICE高速列车重大脱轨事故一、事故概况1998年6月3日上午,在临近厄什德国站几公里处,慕尼黑—汉堡的884次ICE列车—“威廉·康拉德·伦琴”号的机车后第一节车厢下的一个车轮轮箍断裂。

接近11点时列车脱轨,当时列车正以195-200km/h的速度行驶到雷贝拉大街的一座混凝土公路桥前的一个道岔处,机后第三节车厢撞上了一个桥墩,导致整座桥倒塌,造成101死亡。

二、事故原因分析2.1采用橡胶弹性车轮在事故发生后,ICE1列车采用的橡胶弹性车轮首先受到公开质疑。

ICE1列车最早采用的是整体车轮(一个车轮结构,没有轮箍)。

经过长期运用以后发现,由于轮对磨损而形成的不圆度产生干扰噪声,在运行时发出嗡嗡声响。

于是在1992年3月被放弃使用,改用橡胶弹性车轮。

德国VSG交通技术公司生产ICE1列车用的这种车轮。

这种命名为“Bochun 84”型车轮的生产至今已超过6000VSG公司生产小脚弹性车轮已有50年历史,过去大量生产的B054型车轮曾经供城市铁路和有轨电车使用。

事故是由于采用橡胶弹性车轮引起的,ICE1车轮车箍断裂的原因除了由于轮箍表面裂纹外,还可能由轮箍表面裂纹引起。

这些轮对由于套装橡胶后,使车轮刚度大为下降,在线路上滚动时总有些压扁,就像汽车的轮胎一样。

在压力作用下轮箍内表面产生了与橡胶块相分离的拉应力。

由于轮箍不断被滚压,就相当于对一种薄材料施以高负荷,而造成轮箍内表面折损,产生裂纹德国的Frankhofer工作强度研究所对极端负荷下的轮箍进行了研究。

研究证明轮箍裂纹也能从内部形成。

但遗憾的是,直至事故发生前还未有科学研究者对ICE1中间拖车应用的Bochum84车轮进行这方面的研究。

汉诺威大学测量和控制研究所的FHock教授认为,橡胶弹性车轮断裂可能是由于轮箍内侧折损造成的。

对于ICE1列车导轮用的B084车轮滚动时产生的弹性形变,在超过许应力情况下,理论上肯定会出现裂纹,并与轮箍厚度有关。

两起事故案例(伦敦和南京地铁)

两起事故案例(伦敦和南京地铁)

[图文]近期国内外地铁事故情况汇总[日期:2007-07-09]来源:安全技术部作者:collin7月5日伦敦地铁脱轨基本情况一、发生时间:当地时间7月5日上午9时4分(北京时间16时4分)二、发生地点:东西向中轴线(红线)地铁城东Mile End与Bethnal Green (伯斯纳尔格林)车站之间三、事故概况:一列车的6节车厢脱轨四、对乘客的影响:1、37名乘客受轻伤,其中11人被送往医院,事发后,有关部门第一时间疏散了大约700名乘客,有数百名乘客前后两个小时被困在隧道中。

2、除出轨地铁外,还有一班地铁被堵在隧道中,数以百计的乘客被迫下车徒步沿铁轨走到下一站站台,才得以逃脱困境。

五、乘客表现:一位脱险的乘客表示,人们最初以为地铁遭到了恐怖袭击或者发生了爆炸,因此很多人非常紧张;也有一些乘客在惊恐中开始哭泣,甚至变得有点行为失控。

多亏当时也在车厢内的一位地铁工作人员及时出来解释,认为好像是发生了出轨事故,才让惊慌不定的乘客镇静了下来。

六、事故初步原因:伦敦交通管理当局TFL说,有初期证据显示,铁轨上可能有障碍物。

七、事故造成的影响:横贯伦敦大市区东西向的中轴线地铁目前大段瘫痪,从城东金融中心的利物浦街站(Liverpool Street)到东郊雷顿斯顿(Leytonstone)一段已经完全关闭。

Mile End,Bethnal Green,Bow Road等车站部分或全部关闭。

八、救援情况:伦敦消防大队共调动十四台各类大型器械前往事发现场,包括四台特别市政救援车辆。

1[字体:大中小]9月7日南京地铁供电设施被雷击基本情况一、发生时间:9月7日上午8时32分(北京时间16时4分)二、发生地点:地铁小行站附近地面段的供电设备三、事故概况:强雷电击中位于地铁小行站附近地面段的供电设备,造成了中胜至安德门区间接触网断电。

四、事故造成的影响:1、中断运营1小时37分钟,于10:09′恢复运营。

2、对受影响的乘客,根据乘客需要,为521人办理了免费退票。

德国高铁ICE出轨事故的致命真相

德国高铁ICE出轨事故的致命真相

德国高铁ICE出轨事故的致命真相卢江良;王源源【期刊名称】《科学24小时》【年(卷),期】2017(000)001【总页数】4页(P34-37)【作者】卢江良;王源源【作者单位】【正文语种】中文一提到德国制造,我们想到的往往是其产品经久耐用、值得信赖。

德国工业产品以品质优良著称,技术领先、做工精细,在全世界都享有盛誉。

1991年6月,德国城际特快列车(简称ICE)正式投入运营。

代表高科技的ICE是世界上最快的列车之一,通达德国各地,并且以豪华舒适和极高的安全性著称,号称世界上最安全、最先进的设备。

ICE列车高速行驶了7年无一例死亡事故,成为德国人自豪的资本。

但是,1998年6月3日,一辆从德国慕尼黑开往汉堡的高速列车却在途中突然出轨,造成了世界高铁历史上第一次严重的伤亡事故,打破了德国制造的神话。

1998年6月3日5时47分,一列编号为884号的德国ICE列车驶离慕尼黑车站,前往汉堡。

这趟列车共搭载了400多名乘客,此次行程全长共计850千米,中途停靠7个站,通常5小时45分钟左右便可抵达目的地。

该车配备有电脑监控系统,12节由强化铝合金打造的豪华车厢宛如飞机商务舱。

当日10时56分,884号列车已平安行驶了5个多小时,再过40分钟左右,列车便可抵达目的地汉堡。

突然,一声巨响打破了车厢中的平静,第一节车厢中的乘客吃惊地看到,一截巨大的金属条从车厢地板下贯穿而出,将地板捅出了一个大洞,卡在两个座位之间的扶手上。

但此时列车仍在以200多千米的时速行驶,受惊的乘客纷纷离开车厢,寻找车长并告知这一令人惊恐的情况。

然而,车长却表示,根据高铁的运营管理制度,他必须先查看详情,才能核准启动紧急刹车。

10时58分,整趟列车已经开始左右摇晃。

此时,列车正在向距离汉堡130千米的埃舍德镇疾驶。

在这个小镇附近,有一座横跨高铁路轨的水泥双线路桥。

10时59分,车长和报告列车异常情况的乘客来到第一节车厢,正在乘客准备向车长指出受损位置时,灾难降临了——正在高速行驶的884号列车突然出轨,急速冲向埃舍德镇路桥。

德国高铁惊魂

德国高铁惊魂

德国高铁惊魂感想1. 德国人(!)居然在工程上也有这么大的失误-- 为减少车轮噪音,金属轮廓内侧增加了橡胶圈,导致外轮廓行在驶中不断受压过程中,变形幅度较大。

最后就是因为金属疲劳这样一个最简单的原理导致轮子出事。

2.运气是这是事故的因素之一。

车厢只是出轨,并不是追尾或对撞。

但是出轨的地方实在是不能更糟糕了-- 不远处就是桥洞,那么高的速度,几节车厢叠在一起撞向桥洞两侧。

真惨,真倒霉。

否则根本不会有这么大伤亡。

3. 德国人的救援非常及时镇静,没有闲人围观,也没有立刻就地拆或者埋,而是全线停运、减速、调查。

这个与前阵子国内发生的温州高铁事故相比,可明显的感觉到4. 德国的司法有问题,导致结局很悲哀。

没有人被判刑,受害者也没有得到足够的赔偿。

死了100多人,另外还有更多受伤的,德国铁路公司居然总共只赔了2500万欧元,这在美国是不可想象的。

也许可以说,没有陪审团的司法,都是原始的?(但不是说有了陪审团就是完美的。

)德国的事故发生在1998年,处理事件的方式,显得非常得科学,保存现场,拯救生命,在经过48小时之后才停止。

之后一步步推断事故发生的原因,并没有相信传言是因为一辆汽车引起的事故而推卸责任。

最后还翻出之前电车部门的警告,通过电脑的模拟几乎还原整件事情的原貌,还给世界一个真相,告诉世界德国是一个认真谨慎的民族。

德国的高铁事故是技术问题所导致的车轮缺陷所导致的事故。

质检方面没有太过详细去检测新车轮的缺点,有很多巧合的事件使人员伤亡。

比如发生的地点刚好有座桥,桥的坍塌使后面的列车损伤惨重。

但是车辆的系统并没有收到任何的损害,在事故发生时刹车系统也是自动的启用了。

还有之后的善后工程,每个受害者都给予了赔偿。

德国ICE事故回眸

德国ICE事故回眸

上, 后部第 08&!节车以巨大的惯 性力冲撞在坍塌的桥体和被压 的车辆上, 呈 “ 之” 字形互相挤 压在一起。 扭曲变形的车体困住 了很多乘客。 司机在发现列车脱 钩后采取紧急制动, 继续行驶了 !公里才最终停住。最终这起事 ))人重伤, 故共造成 &""人死亡, 经济损失约 !亿马克,成为世界 高速铁路史上迄今为止最惨痛 的事故 ( 题图、 图&) 。
&’’&年汉诺威 (维尔茨堡和曼海 姆(斯图加特高速铁路建成通车 后正式投入运营的,共有#" 列, 最高行驶速度 !)" 公里 *小时, 是 德国首批运营的高速列车。通过 查阅资料我们不难发现, 由于当 +,-& 型列车的设计 时缺乏经验, 存在一些问题。它不仅是世界上 平均轴重最大的高速列车, 对轨 道破坏严重, 而且由于采用了钢 动力学性能 簧./%0" 型转向架, 不佳, 噪声较大。采用橡胶弹性 车轮的本来意图, 是为了增加列 , 降低 车的减震效果 ( 提高0"1) 轮轨噪声, 提高列车舒适性。但 运营实践证明, 高速列车使用这 种车轮的减振和抗磨效果并不 &’’# 年以后新研制 理想。因此, 的第二代+,-!型高速列车, 决定 放弃弹性车轮而改用空气弹簧, 并取得了满意的效果。但事故发 生时,由于还没有到达使用寿 +,-&型列车上的弹性车轮并 命, 没有更换。谁也没有想到, 这小 小的车轮最终酿成了如此惨痛 的事故。 还是让我们先认识一下 橡 胶弹性车轮吧 ( 图!) 。列车的车 轮通常分为整体车轮和分体车 轮两大类。前者是车轮的轮辐 ( 轮体) 、踏面 ( 和钢轨的接触 面) 和轮缘 ( 比踏面突起一定高 度,一般仅设置于踏面内侧, 起

高铁事故案例及设备原理知识拓展

高铁事故案例及设备原理知识拓展
高铁事故案例及设备原理 知识拓展
第一部分 高铁事故案例
一、西班牙高铁事故
事故概况: 2013年7月24日,西班牙一列载有200多名乘客 的快速列车在行驶至距车站3公里处时脱轨, 造成至少80人死亡,170余人受伤,成为欧洲 史上最严重列车事故之一。
事发地急转弯弯道
时速190Km/h的列车通过一个限速80Km/h的急转弯
组合车轮上的钢圈因金属疲劳断裂,插入车厢, 图为在下面的一截钢圈。
车轮上的钢圈铲起护轨后车轮脱轨
在主干线交汇处,前后两部分车轮分别运行在不同的线路上
脱轨车厢撞上高架桥的桥墩
列车脱轨现场
事故原因: 车轮外面的钢圈出现金属疲劳后发生断裂,运 行至道岔处钢条铲起护轨导致车轮脱轨,脱轨 车轮运行至主干线交汇处时,前后两部分车辆 分别运行到不同的轨道上,导致车厢脱轨,脱 轨车厢撞上桥墩后,导致大桥坍塌,又导致后 续车厢叠加在一起。
列车脱轨现场
事故原因: 当事司机在此前一站因停车位置大幅超过标准 要求,因担心受到公司惩罚,这名司机在开往 下一站期间,忙于与车长的无线联络中,结果 没能在拐弯区间控制车速。据现场勘查和仪器 记录,脱轨前一瞬间,列车车速达到116公里, 远超该区间70公里的限速。列车严重超速运行 是导致事故发生的主要原因。
车载设备功能:
➢ 综合轨道电路、应答器 信息和动车组参数,自 动生成连续速度控制模 式曲线,实时监控列车 安全运行。
轨道电路为 CTCS-2级提供连
续的行车许可
L5
L4
L3
L2
1300m
1300m
1250
1350
速度曲线
L
LU
U
1250
1300
1200

回顾98年ICE重大事故

回顾98年ICE重大事故

1998年6月3日,由慕尼黑开往汉保的德国ICE884次高速列车在运行至距汉诺威东北方向附近的小镇埃舍德时,发生了第二次世界大战后德国最为惨重的列车脱轨行车事故。

该列车由两辆机车和12辆拖车组成,事故发生后12辆拖车全部脱轨。

截止到6月17日,已有100人死亡,88人重伤。

发生事故的列车是德国第一代ICE型高速列车。

德国共有此型列车60列,它们从1991年开始投入运营,总运营里程超过10亿公里,平均每列运营里程达1600万公里。

6 月17日,联邦铁路局局长在德国听证会上公布了对事故发生过程的初步调查结果:在列车运行距公路跨线桥约6公里时,第一节拖车的3轮对的轮箍发生破裂,列车继续以200公里/小时的速度运行,轮箍断裂并拥塞在高速动轮的轮对中,剧烈的摩擦发出刺耳的轰隆声,在距公路桥约300公里处,已断裂的轮箍勾住了埃舍德车站的一组道岔,使拖车挑起、脱轨并与机车脱钩,脱轨的车轮则落在相邻的线路上,列车继续运行120米后,脱轨的车轮被邻线的另一组道岔改变了方向,突然猛烈地甩向右侧,第3节拖车尾部与桥墩猛烈冲撞,使跨线桥部分坍塌坠落。

驰过跨线桥的头部机车经紧急制动后运行约2公里停车,没有脱轨;与头车分离的第1-3节拖车脱轨后停在桥后约300米处;第4-5节拖车被坍塌的桥梁砸毁,后部第6-12节拖车以最大的惯性冲撞挤压在一起,尾部机车几乎未受损坏。

该列车车轮系橡胶弹性车轮elastic gum wheel rubber elastic wheels,轮箍是轧制的无缝钢圈,通过热效应压在轮心上,轮心是铸钢轮体,轮箍与轮心间有一层橡胶体。

轮箍轧制时若残留气泡或矿碴,在高压负荷动力作用下,就可能开裂;也可能是由于轮箍材料老化产生“疲劳断裂”所致。

事故发生后,其余59列ICE型列车中止运营,并进行了全面检查。

44列ICE2列车的运营虽未受事故影响,但最高时速已降低到160公里。

德国1998年列车事故经过及处理过程1998年6月3日10时58分,这辆运载287人的德国城际特快列车(ICE)从德国慕尼黑开往汉堡,在途经小镇艾雪德附近的时候突然脱轨。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

德国ICE高速列车重大脱轨事故
一、事故概况
1998年6月3日上午,在临近厄什德国站几公里处,慕尼黑—汉堡的884次ICE列车—“威廉·康拉德·伦琴”号的机车后第一节车厢下的一个车轮轮箍断裂。

接近11点时列车脱轨,当时列车正以195-200km/h的速度行驶到雷贝拉大街的一座混凝土公路桥前的一个道岔处,机后第三节车厢撞上了一个桥墩,导致整座桥倒塌,造成101死亡。

二、事故原因分析
2.1采用橡胶弹性车轮
在事故发生后,ICE1列车采用的橡胶弹性车轮首先受到公开质疑。

ICE1列车最早采用的是整体车轮(一个车轮结构,没有轮箍)。

经过长期运用以后发现,由于轮对磨损而形成的不圆度产生干扰噪声,在运行时发出嗡嗡声响。

于是在1992年3月被放弃使用,改用橡胶弹性车轮。

德国VSG交通技术公司生产ICE1列车用的这种车轮。

这种命名为“Bochun 84”型车轮的生产至今已超过6000VSG公司生产小脚弹性车轮已有50年历史,过去大量生产的B054型车轮曾经供城市铁路和有轨电车使用。

事故是由于采用橡胶弹性车轮引起的,ICE1车轮车箍断裂的原因除了由于轮箍表面裂纹外,还可能由轮箍表面裂纹引起。

这些轮对由于套装橡胶后,使车轮刚度大为下降,在线路上滚动时总有些压扁,就像汽车的轮胎一样。

在压力作用下轮箍内表面产生了与橡胶块相分离的拉应力。

由于轮箍不断被滚压,就相当于对一种薄材料施以高负荷,而造成轮箍内表面折损,产生裂纹德国的Frankhofer工作强度研究所对极端负荷下的轮箍进行了研究。

研究证明轮箍裂纹也能从内部形成。

但遗憾的是,直至事故发生前还未有科学研究者对ICE1中间拖车应用的Bochum84车轮进行这方面的研究。

汉诺威大学测量和控制研究所的FHock教授认为,橡胶弹性车轮断裂可能是由于轮箍内侧折损造成的。

对于ICE1列车导轮用的B084车轮滚动时产生的弹性形变,在超过许应力情况下,理论上肯定会出现裂纹,并与轮箍厚度有关。

ICE列车轮箍允许磨损厚度为30mm,而发生事故的断裂轮箍几乎已经到达规定的剩余厚度。

事故中884次ICE列车出故障的车轮完全断裂,显然是经不起近280km/h的高速产生的巨大动力负荷,虽然这是完全合乎规定的。

车轮的规定直径为920mm,问题车轮是1998年1月12日安装上的,直径只有862mm,算是达标,因为按照规定,车轮直径极限为848mm。

但是慕尼黑ICE列车制造厂在质检时却没有发现该车轮内侧存在一道裂纹。

2.2一连串工作疏忽
检测人员未能发现车轮内侧的裂纹,一连串工作上的粗心和失误使得德国铁路公司一直在做补救工作。

以前ICE列车上装配的是整体式车轮的转向架,当列车行驶到一定速度时,餐吧内的餐具被震得叮当作响,引起乘客的不满。

示范列车的舒适度因此受到影响,德国铁路公司不能容忍这种事情存在。

技术主管劳兰特·海内希先生负责处理此事。

VSG提供了一种装有橡胶垫的轮对,橡胶垫的弹性自然会避免上述的麻烦。

但是当列车高速行驶时,它的弹性会使车轮断裂,所以投入前必须检测这些车轮是否能承受280km/h的速度(即ICE1列车的最高速度)。

可是明登的专家们只进行了200km/h的速度测试,200km/h是IntelRegio系列列车的最高速度。

之后未做进一步的检测,劳兰特·海内希便匆忙地将车轮换到ICE列车上,工作人员也不顾这些车轮是否达到基本条件,便按劳兰特·海内希的要求照做了,这些人后来也被送上了法庭。

VSG于1986年与德国铁路公司签署了研发合同,负责强度测算。

每只直径862mm的车轮轧制出来后都要进行检测。

被告人之一,即厂里的工程师将车轮的极限直径定为848mm,而他根本不知道这种装了橡胶垫的车轮疲劳磨损后的工作状况如何。

试运行阶段被称为“大检测”,因为“检测结果”是用上百名乘客的性命换来的。

ICE生产厂的检测系统也不适用于检测这种新型轮对。

铁路负责人却草率地认定:即使不久后装了橡胶垫的车轮在经过铁路分流器时出现破损,即便人们猜测到高速对这种轮对的动力作用比设想的大得多,厂家对车轮的抗震强度测试也不会因此受到质疑。

三、应对措施
德国高铁这次事故,根本上说是源于车辆设计失误。

ICE1型列车转向架没有使用能够有效降低震动、提高舒适性的空气弹簧,也没有在降低车厢轴重上下功夫,反而在车轮上做文章,错误的使用了并不适合高速列车使用的弹性车轮,没有进行做狗的高速就仓促马上投入使用。

这些原因最终导致了这次ICE脱轨颠覆事故,成为迄今为止世界三大高速列车脱轨事故唯一一起列车颠覆和乘客伤亡的事故。

德国铁路公司在事故发生后立刻采取改进措施:
1.首先立刻停用其余59列ICE1型列车;
2.全部弹性车轮都更换为新的整体式车轮,并对走行部进行全面检查后才准予投入运营。

3.44列ICE2型列车的运营虽然未受到事故影响,但也将最高运行速度降低到160km/h,并作全面检查。

4.直到全部隐患得到消除后,ICE高速列车才恢复正常运营。

相关文档
最新文档