重庆高职单招数学公式大全
高职高考公式

高职高考复习公式班别 姓名 学号1、乘法公式平方差公式:=-22b a ;完全平方公式:()=±2b a ; 立方和公式:=+33b a ;立方差公式:=-33b a ; 2、一元二次方程:()002≠=++ac bx ax ,△=①△ 0,方程有两个不相等的实数根;②△ 0,方程有两个相等的实数根; ③△ 0,方程没有实数根;④求根公式: ⑤韦达定理:3、均值定理:4、函数奇偶性①奇函数⇔图像关于 对称⇔ (判别式子) ②偶函数⇔图像关于 对称⇔ (判别式子)5、二次函数①一般式: ②顶点式:定点坐标: 对称轴: 最值: 6、幂运算公式:()=xab ;=⋅x x b a ;7、对数的定义:=⇔=b N a b ( )(填底数和真数的范围) 8、对数的性质:N y a log =中,=1log a ;=a a log ;9、对数的运算法则:=+N M a a log log ;=-N M a a log log ;=αM a log ;换底公式:=N a log ;对数恒等式:=aNa log11、对数函数性质12、等差数列公式、性质①通项公式=n a ;②前n 项和公式=n S ; ③等差中项性质 ;④等差数列连续n 项之和 ;13、等比数列①通项公式=n a ;②前n 项和公式=n S ; ③等比中项性质 ;④等比数列连续n 项之积 ;14、任意角α三角函数定义:终边上一点坐标()y x ,,=r ;=αsin ;=αcos ;=αtan ;=αcot ;=αsec ;=αcsc ;15、三角函数的符号:)(csc sin αα在 象限为+;)(sec cos αα在 象限为+; )(cot tan αα在 象限为+17、角度和弧度之间关系:1(rad )≈ (度)18、同角三角函数公式:+α2sin = ;=αtan 19、和角公式:()=±βαsin ;()=±βαcos ;()=+βαtan ; ()=-βαtan ;20、倍角公式:=α2sin ;=α2cos = = ;=α2tan ; 21 、【基础好的同学要记】降幂公式:=α2sin ;=α2cos ;22、判断函数的奇偶性:x y sin =( );x y cos =( );x y tan =( );x y cot =( ); 23、函数()ϕ+=wx A y sin 和()ϕ+=wx A y cos 中,值域 ; 最小正周期0>ϕ图像相对于x y sin =和x y cos =的图像向 平移 单位; 0<ϕ图像相对于x y sin =和x y cos =的图像向 平移 单位; 24、 函数()ϕ+=wx A y tan 中,定义域 ;值域 ; 最小正周期25、辅助公式:x b x a y cos sin +== ;=ϕtan 26、正弦定理:余弦定义:面积公式: 27、向量()21,b a a =;()21,b b b =若向量a ∥b ⇔ ;a ⊥b ⇔ ;28、向量坐标计算公式,距离、中点、平移公式:点A ()11,y x ,点B ()22,y x ,则=AB;= 中点公式:=x ,=y 平移公式:29、向量的内积:=⋅ ;=⋅ 30、直线方程①点斜式 ②斜截式③一般式 ④点法式⑤点向式 ⑥截距式31、两直线的位置关系①与直线0:=++C By Ax l 平行的直线可以设为: ②与直线0:=++C By Ax l 垂直的直线可以设为:③点到直线的距离公式:④两平行直线的距离公式:⑤两相交直线的夹角公式:=θcos ;=θtan32、圆的标准方程:;圆心:;半径: ;33、圆的一般方程:34、圆和直线的位置关系:36、椭圆第一定义:37、双曲线第一定义:第二定义:。
职校高中数学知识点总结及公式大全

职校高中数学知识点总结及公式大全全文共四篇示例,供读者参考第一篇示例:职校高中数学知识点总结及公式大全一、初等代数1. 二项式定理(a + b)^n = C(n,0)a^n + C(n,1)a^(n-1)b + C(n,2)a^(n-2)b^2 + ... + C(n,n-1)a b^(n-1) + C(n,n)b^n2. 多项式的加减乘除运算多项式加减法:合并同类项多项式乘法:展开式,按每一项分配展开多项式除法:长除法或者直接使用因式分解3. 一元二次方程一元二次方程的一般形式为ax^2 + bx + c = 0求根公式:x = (-b ± 根号(b^2 - 4ac)) / 2a判别式:Δ = b^2 - 4ac根的情况:Δ > 0,有两个不相等的实根Δ = 0,有两个相等的实根Δ < 0,无实数根4. 不等式解不等式的方法与解方程式类似,但需要注意不等式号的方向常见的不等式:线性不等式、一元二次不等式不等式的解集写法:用数轴表示或者写成区间形式5. 函数函数的定义:对于每个元素x,存在唯一的元素y 与之对应函数的图像:以y 轴为对称轴的曲线常见函数:一次函数、二次函数、指数函数、对数函数、三角函数二、平面几何1. 几何基本定理射影定理:两平行线被一截线相交,所成的两对对应角相等全等三角形的判定:SSS、SAS、ASA、AAS、HL相似三角形的判定:AA、SSS、SAS比例定理正弦定理:a/sinA = b/sinB = c/sinC余弦定理:c^2 = a^2 + b^2 - 2ab cosC2. 圆圆的相关性质:半径、直径、周长、面积圆的弦、割、切切线与半径的垂直性:切线与半径垂直于接触点圆内角的性质:内切圆、外切圆4. 向量向量的表示:用一个有向线段或者坐标表示向量的模:|a| = √(a1^2 + a2^2)向量的运算:加减法、数量积、向量积5. 空间几何点、直线、平面在空间中的位置关系直线和平面的交点及夹角平行线和垂直线的性质空间几何问题的解决方法第二篇示例:职校高中数学知识点总结在职校的高中数学课程中,学生将会接触到许多重要的数学知识点和公式。
职中数学公式总结大全

职中数学公式总结大全数学是一门基础学科,在职中数学中,我们会接触到很多重要的数学公式。
这些公式在求解数学问题和建立数学模型中起着重要的作用。
以下是职中数学公式的一个总结大全:一、代数部分1. 二次方程的根公式:对于一元二次方程ax^2+bx+c=0,它的根可以由以下公式求得:x = (-b ± sqrt(b^2-4ac))/2a,其中sqrt表示开平方根。
2. 指数函数的性质:a^m * a^n = a^(m+n),(a^m)^n = a^(m*n),a^(-m) = 1/(a^m),(ab)^m = a^m * b^m。
3. 对数函数的性质:a^log_a(x) = x,log_a(a^x) = x,log_a(xy) = log_a(x) + log_a(y),log_a(x/y) = log_a(x) - log_a(y)。
4. 等差数列的通项公式:对于一个等差数列,其第n项可以由以下公式求得:a_n = a_1 + (n-1)d,其中a_1为首项,d为公差。
5. 等比数列的通项公式:对于一个等比数列,其第n项可以由以下公式求得:a_n = a_1 * r^(n-1),其中a_1为首项,r为公比。
二、几何部分1. 直角三角形的勾股定理:在直角三角形中,三边满足 a^2 + b^2 = c^2,其中a和b分别为两条直角边的长度,c为斜边的长度。
2. 正弦定理:在任意三角形ABC中,三边长度为a,b,c,对应的角分别为A,B,C,满足以下关系:a/sin(A) = b/sin(B) = c/sin(C)。
3. 余弦定理:在任意三角形ABC中,三边长度为a,b,c,对应的角分别为A,B,C,满足以下关系:c^2 = a^2 + b^2 - 2ab*cos(C)。
4. 面积公式:矩形的面积公式为 S = l * w,三角形的面积公式为 S = 1/2 * b * h,其中l和w分别为矩形的长和宽,b和h分别为三角形的底和高。
单招考试数学所有公式

数学公式2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB数列:某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14+…+(2n)=n(n+1)1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^21*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3解三角形:正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理b*2=a*2+c*2-2accosB 注:角B是边a和边c的夹角平面图形计算公式弧长计算公式:L=n π r/180扇形面积公式:s扇形=nπr*2/360=lr/2正n边形的每个内角都等于(n-2)×180°/n正n边形的面积Sn=pnrn/2 p表示正n边形的周长正三角形面积√3a/4 a表示边长秦九韶三角形中线面积公式:S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3(其中Ma,Mb,Mc为三角形的中线长.)平行四边形的面积=底×高梯形的面积=(上底+下底)×高÷2直径=半径×2 半径=直径÷2圆的周长=圆周率×直径= 圆周率×半径×2圆的面积=圆周率×半径×半径长方体的表面积= (长×宽+长×高+宽×高)×2长方体的体积 =长×宽×高正方体的表面积=棱长×棱长×6正方体的体积=棱长×棱长×棱长圆柱的侧面积=底面圆的周长×高圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积×高圆锥的体积=底面积×高÷3长方体(正方体、圆柱体)的体积=底面积×高立体图形面积、体积计算公式直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r 锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长柱体体积公式 V=s*h 圆柱体 V=pi*r2h方程一元二次方程的解:-b+√(b2-4ac)/2a, -b-√(b2-4ac)/2a根与系数的关系 x1+x2=-b/a, x1Xx2=c/a注:韦达定理判别式 b*2-4a=0 注:方程有相等的两实根b*2-4ac>0 注:方程有一个实根b*2-4ac<0 注:方程无实数根b*2-4ac=0 注:有两个相同实数根圆圆的标准方程 (x-a)*2+(y-b)*2=r*2 注:(a,b)是圆心坐标圆的一般方程 x*2+y*2+Dx+Ey+F=0 注:D*2+E*2-4F>0锐角三角函数公式sin α=∠α的对边 / 斜边c os α=∠α的邻边 / 斜边tan α=∠α的对边/ ∠α的邻边cot α=∠α的邻边/ ∠α的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A))三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina辅助角公式Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin²a)+(1-2sin²a)sina=3sina-4sin³acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos²a-1)cosa-2(1-sin²a)cosa=4cos³a-3cosasin3a=3sina-4sin³a=4sina(3/4-sin²a)=4sina[(√3/2)²-sin²a]=4sina(sin²60°-sin²a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos³a-3cosa=4cosa(cos²a-3/4)=4cosa[cos²a-(√3/2)²]=4cosa(cos²a-cos²30°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°) /2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·s inγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·s inγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)两角和差cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-c osφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2] tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 积化和差sinαsinβ = [cos(α-β)-cos(α+β)] /2cosαcosβ = [cos(α+β)+cos(α-β)]/2sinαcosβ = [sin(α+β)+sin(α-β)]/2cosαsinβ = [sin(α+β)-sin(α-β)]/2诱导公式sin(-α) = -sinαcos(-α) = cosαtan (—a)=-tanαsin(π/2-α) = cosαcos(π/2-α) = sinαsin(π/2+α) = cosαcos(π/2+α) = -sinαsin(π-α) = sinαcos(π-α) = -cosαsin(π+α) = -sinαcos(π+α) = -cosαtanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sinα=2tan(α/2)/[1+tan^(α/2)]cosα=[1-tan^(α/2)]/1+tan^(α/2)]tanα=2tan(α/2)/[1-tan^(α/2)]其它公式(1)(sinα)^2+(cosα)^2=1(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC(9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*( n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0。
职高数学常用公式

高中常用数学公式一、集合与解不等式集合(能够确定的对象的全体)1、含n 个元素的集合的所有子集有n 2个,真子集有n 2-1个,非空真子集有n 2-22、正整数集N + ,自然数集N ,整数集Z ,有理数集Q ,实数集R 。
3、元素与集合关系的符号是,属于∈或不属于∉4、集合与集合关系的符号是:⊆(含于)≠⊂(真含于) 空集∅解不等式﹡1、一元二次不等式:判别式 △﹥0 △=0 △﹤0一元二次不等式的解集R﹡2、分式不等式: ⑴0>++dcx b ax ⇔0))((>++d cx b ax⑵0≥++d cx b ax ⇔⎩⎨⎧≠+≥++0))((d cx d cx b ax ⑶0<++dcx bax ⇔0))((<++d cx b ax⑷0≤++dcx bax ⇔⎩⎨⎧≠+≤++00))((d cx d cx b ax﹡3、绝对值不等式:( c > 0 ) ⑴cb ax <+||⇔c b ax c <+<- ⑵c b ax >+||⇔c b ax c b ax >+-<+或 ⑶c b ax ≤+||⇔c b ax c ≤+≤- ⑷c b ax ≥+||⇔c b ax c b ax ≥+-≤+或二、函数部分1、 几种常见函数的定义域 ⑴整式形式:⎩⎨⎧++=+=c bx ax x f b ax x f 2)()(一元二次函数:一元一次函数:定义域为R 。
﹡⑵分式形式:)()()(x g x f x F =要求分母0)(≠x g 不为零 ﹡⑶二次根式形式:)()(x f x F =要求被开方数0)(≥x f⑷指数函数:)10(≠>=a a a y x 且,定义域为R﹡⑸对数函数:)10(log ≠>=a a x y a 且,定义域为(0,+∞) 对数形式的函数:)(log x f y a =,要求0)(>x f ⑹三角函数:⑺几种形式综合在一起的,求定义域即在求满足条件的各式解集的交集。
单招考试数学必背知识点

单招考试《数学》必背知识点(一)一.不为0的量1.分式AB中,分母B ≠0; 2.二次方程ax 2+bx +c =0(a ≠0) 3.一次函数y =kx +b (k ≠0) 4.反比例函数ky x=(k ≠0) 5.二次函数y = ax 2+bx +c =0(a ≠0)二.非负数1.│a │≥02. (a ≥0)3. a 2n ≥0(n 为自然数)三.绝对值:(0)(0)aa a a a ≥⎧=⎨-⎩<四.重要概念1. 平方根与算术平方根:如果x 2=a (a ≥0),则称x 为a 的平方根,记作:x=,其中x 的算术平方根.2. 负指数:1p p a a-= 3. 零指数:a 0=1(a ≠0)4. 科学计数法:a ×10 n (n 为整数,1≤a <10) 五.重要公式(一)幂的运算性质1.同底数幂的乘法法则: m n m n a a a +⋅= ( a ≠0,m,n 都是正数)2.幂的乘方法则:()m n mn a a = (m,n 都是正数)3.积的乘方法则:()n n n ab a b =(n 为正整数)4.同底数幂的除法法则: m n m n a a a -÷= (a ≠0,m 、n 都是正数,且m >n ). (二)整式的运算1.平方差公式:22()()a b a b a b +-=-2.完全平方公式:222()2a b a ab b ±=±+ (三)二次根式的运算)0,00,0)a b a b ≥≥=≥>(四)一元二次方程一元二次方程ax 2+bx +c =0(a ≠0)当△=b 2-4ac ≥0时,x ;x 1+x 2= -b a ;x 1x 2=ca(五)函数 平面直角坐标系1.点A 、B 在数轴上的坐标为x A 、x B ,则A 、B 两点间距离=|x A -x B |。
9.P(x ,y)关于x 轴对称点(x ,-y ),关于y 轴对称点(-x ,y ),关于原点对称点(-x ,y ),关于y=x 对称点(y ,x )。
单招数学必备公式大全

单招数学必备公式大全一、基本运算公式1.加减乘除的基本运算法则:加法公式:(a+b)+c=a+(b+c)减法公式:(a-b)+c=a-(b-c)乘法公式:(a·b)·c=a·(b·c)除法公式:(a/b)/c=a/(b/c)2.分数运算公式:分数加法:a/b + c/d = (ad+bc)/bd分数减法:a/b - c/d = (ad-bc)/bd分数乘法:a/b * c/d = ac/bd分数除法:a/b ÷ c/d = ad/bc3.幂运算公式:幂的乘法:a^m*a^n=a^(m+n)幂的除法:a^m÷a^n=a^(m-n)幂的负指数:a^(-m)=1/a^m幂的零指数:a^0=14.对数运算公式:对数乘法:log(a) + log(b) = log(a·b)对数除法:log(a) - log(b) = log(a/b)对数的指数:log(a^m) = m·log(a)对数的反函数:log(a^m) = m二、代数公式1.一元二次方程的求根公式:一元二次方程 ax^2 + bx + c = 0的根为:x = (-b ± sq rt(b^2 - 4ac)) / (2a)2.四则运算法则:加法交换律:a+b=b+a减法交换律:a-b≠b-a乘法交换律:a·b=b·a除法交换律:a÷b≠b÷a3.平方差公式:(a + b)^2 = a^2 + 2ab + b^2(a - b)^2 = a^2 - 2ab + b^24.平方和公式:a^2 + b^2 = (a + b)^2 - 2aba^2-b^2=(a+b)(a-b)5.立方和公式:a^3 + b^3 = (a + b)(a^2 - ab + b^2)a^3 - b^3 = (a - b)(a^2 + ab + b^2)6.二次根式乘法公式:(sqrt(a) + sqrt(b))^2 = a + 2sqrt(a) sqrt(b) + b(sqrt(a) - sqrt(b))^2 = a - 2sqrt(a) sqrt(b) + b三、几何公式1.三角形面积公式:面积=0.5*底边长*高2.直角三角形的勾股定理:斜边的平方等于两直角边的平方和:c^2=a^2+b^23.三角函数公式:正弦定理:a/sinA = b/sinB = c/sinC余弦定理:a^2 = b^2 + c^2 - 2bc*cosA正切定理:tan(A±B) = (tanA ± tanB) / (1∓tanA*tanB)4.圆的周长和面积公式:周长=2πr面积=πr^25.四边形面积公式:平行四边形面积公式:S=底边长*高矩形面积公式:S=长*宽正方形面积公式:S=边长^2梯形面积公式:S=0.5*(上底+下底)*高以上仅是一部分数学公式,但它们是单招学习过程中最常用的公式。
高职单招数学公式大全

高职单招数学公式大全一、解不等式1、一元一次不等式(0)0(0)bx a a ax b ax b b x a a⎧>>⎪⎪->⇔>⇔⎨⎪<<⎪⎩2、一元二次不等式:),,0(21两根是对应一元二次方程的x x a >判别式△﹥0△=0△﹤0一元二次不等式的解集2>++c bx ax }|{21x x x x x ><或}2|{abx x -≠R2<++c bx ax }|{21x x x x <<φφ3、绝对值不等式:(c >0)⑴cb ax <+||⇔c b ax c <+<-⑵c b ax >+||⇔c b ax c b ax >+-<+或⑶c b ax ≤+||⇔cb axc ≤+≤-⑷cb ax ≥+||⇔cb axc b ax ≥+-≤+或二、集合与函数部分1、集合相关概念⑴集合的概念:能够确切指定的一些对象的全体。
⑵集合中元素的性质:确定性,互异性,无序性。
⑶集合的表示方法:列举法,描述法,图示法。
⑷子集的概念:A 中的任何一个元素都属于B 。
记作:A B ⊆⑸相等集合:A B ⊆且B A⊆⑹真子集:A B ⊆且B 中至少有一个元素不属于A 。
记作:A ≠⊂B ⑺交集:B}x A x |{x B A ∈∈=⋂且⑻并集:}|{B x A x x B A ∈∈=⋃或⑼补集:A}x x |{x A C U ∉∈=且U 2、几种常见函数的定义域⑴整式形式:⎩⎨⎧++=+=c bx ax x f bax x f 2)()(一元二次函数:一元一次函数:定义域为R 。
⑵分式形式:)()()(x g x f x F =要求分母0)(≠x g 不为零⑶二次根式形式:)()(x f x F =要求被开方数0)(≥x f ⑷指数函数:)10(≠>=a a a y x且,定义域为R ⑸对数函数:)10(log ≠>=a a x y a 且,定义域为(0,+∞)⑹三角函数:⎪⎪⎩⎪⎪⎨⎧∈+≠===},2||{tan cos sin Z k k x x x y R x y R x y ππ的定义域为正切函数:的定义域为余弦函数:的定义域为正弦函数:⑺几种形式综合在一起的,求定义域即在求满足条件的各式解集的交集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆高职单招数学公式大全一、 解不等式1、一元一次不等式(0)0(0)bx a a ax b ax b b x a a⎧>>⎪⎪->⇔>⇔⎨⎪<<⎪⎩2、一元二次不等式:),,0(21两根是对应一元二次方程的x x a >3、绝对值不等式:( c > 0 )⑴cb ax <+||⇔c b ax c <+<- ⑵c b ax >+||⇔c b ax c b ax >+-<+或 ⑶c b ax ≤+||⇔c b ax c ≤+≤- ⑷cb ax ≥+||⇔c b ax c b ax ≥+-≤+或二、集合与函数部分1、集合相关概念⑴集合的概念:能够确切指定的一些对象的全体。
⑵集合中元素的性质:确定性,互异性,无序性。
⑶集合的表示方法:列举法,描述法,图示法。
⑷子集的概念:A 中的任何一个元素都属于B 。
记作:A B ⊆ ⑸相等集合:A B ⊆且B A ⊆⑹真子集:A B ⊆且B 中至少有一个元素不属于A 。
记作:A ≠⊂B⑺交集:B}x A x |{x B A ∈∈=⋂且 ⑻并集:}|{B x A x x B A ∈∈=⋃或 ⑼补集:A}x x |{x A C U ∉∈=且U2、几种常见函数的定义域⑴整式形式:⎩⎨⎧++=+=c bx ax x f b ax x f 2)()(一元二次函数:一元一次函数:定义域为R 。
⑵分式形式:)()()(x g x f x F =要求分母0)(≠x g 不为零 ⑶二次根式形式:)()(x f x F =要求被开方数0)(≥x f⑷指数函数:)10(≠>=a a a y x 且,定义域为R⑸对数函数:)10(log ≠>=a a x y a 且,定义域为(0,+∞) ⑹三角函数:⎪⎪⎩⎪⎪⎨⎧∈+≠===},2||{tan cos sin Z k k x x x y R x y Rx y ππ的定义域为正切函数:的定义域为余弦函数:的定义域为正弦函数:⑺几种形式综合在一起的,求定义域即在求满足条件的各式解集的交集。
3、常见函数求值域⑴一次函数b ax x f +=)(:值域为R ⑵一元二次函数)0()(2≠++=a c bx ax x f :⎪⎪⎩⎪⎪⎨⎧-≤<-≥>}44|{0}44|{022a b ac y y a a b ac y y a 时,值域为当时,值域为当 ⑷指数函数:)10(≠>=a a a y x 且值域为(0,+∞) ⑸对数函数:)10(log ≠>=a a x y a 且,值域为R ⑹三角函数:⎪⎩⎪⎨⎧=-=-=R x y x y x y 的值域为正切函数:,的值域为余弦函数:,的值域为正弦函数:tan ]11[cos ]11[sin函数)sin(φω+=x A y 的值域为[-A,A]4、函数的性质⑴奇偶性①⎩⎨⎧=--=-轴对称图像关于偶函数图像关于原点对称奇函数:y x f x f x f x f ),()(:),()(②判断或证明奇偶函数的步骤:第一步:求函数的定义域,判断是否关于原点对称第二步:如果定义域不关于原点对称,则为非奇非偶函数;如果对称,则求)(x f - 第三步:若)()(x f x f -=-,则函数为奇函数 若)()(x f x f =-,则函数为偶函数 ⑵单调性①判断或证明函数为单调增、减函数的步骤:第一步:在给定区间(如果没给定,一定要先求函数的定义域)内任取1x 、2x 且1x <2x 。
第二步:做差)()(21x f x f -变形整理;第三步:⎩⎨⎧<->-,为增函数,为减函数0)()(0)()(2121x f x f x f x f ②几种常见函数形式的单调区间:一次函数b ax x f +=)(:⎩⎨⎧∞+∞<∞+∞>)上单调递减,时,在(当)上单调递增,时,在(当-0a -0a二次函数)0()(2≠++=a c bx ax x f :⎪⎩⎪⎨⎧+∞∞<+∞∞>上单调递减。
在上单调递增时,在(当上单调递增;在(上单调递减,时,在(当),2a b -(,)2a b -,-0a ),2a b -,)2a b --0a 指数函数)10(≠>=a a a y x 且⎩⎨⎧∞+∞<<+∞-∞>)上单调递减,,在(上单调递增,在-10),(1a a对数函数)10(log ≠>=a a x y a 且⎩⎨⎧∞+<<+∞>)上单调递减,,在(上单调递增,在010),0(1a a⑶周期性(主要针对三角函数)①⎪⎩⎪⎨⎧===πππ的最小正周期为正切函数:的最小正周期为余弦函数:的最小正周期为正弦函数:x y x y x y tan 2cos 2sin ②函数)sin(φω+=x A y 的最小正周期ωπ2=T (0ω>)三、指数部分与对数部分常用公式1、指数部分:⑴有理指数幂的运算法则: ①s r s ra a a+=⋅②s r s ra a⋅=)(③rrrb a b a ⋅=⋅)(⑵分数指数幂与根式形式的互化: ① n m nm a a=② nmnm aa1=-)1*,(>∈n N n m 且、⑶一些其它结论:①10=a② a a n n =)( ③⎩⎨⎧=为偶数,当为奇数当n a n a a nn||,2、对数部分:⑴1log =a a ⑵01log =a ⑶对数恒等式:N aNa =log⑷N M N M a a a log log )(log +=⋅⑸N M NMa a a log log )(log -=; ⑹ M p M a pa log log =*⑺换底公式:abb c c a log log log =(好的同学了解即可)四、三角部分公式1、弧度与角度⑴换算公式:1800=π 10=180πrad 1rad=π180≈57018'=57.300⑵弧长、圆心角与半径之间关系式:Rl=||α(在这里α为弧度,l 为弧长,R 为半径) 2、角α终边经过点P ),(y x ,22y x r +=,则r y =αsin r x=αcosxy=αtan口诀:一全,二正弦,三切,四余弦。
5、简化公式:①⎪⎩⎪⎨⎧-=-=--=-ααααααtan )tan(cos )cos(sin )sin( ②⎪⎩⎪⎨⎧-=-=--=-ααπααπααπtan )2tan(cos )2cos(sin )2sin(③⎪⎩⎪⎨⎧-=--=-=-ααπααπααπtan )tan(cos )cos(sin )sin( ④⎪⎩⎪⎨⎧=+-=+-=+ααπααπααπtan )tan(cos )cos(sin )sin(⑤⎪⎩⎪⎨⎧=+=+=+ααπααπααπtan )2tan(cos )2cos(sin )2sin(k k k (k Z ∈)⑥⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=-=-ααπααπααπcot )2tan(sin )2cos(cos )2sin(口诀;为锐角,奇变偶不变,符号看象限。
五、几何部分1、向量⑴几何形式的运算:①⎩⎨⎧=+=+C A D A B A CA CB B A平行四边形法则:三角形法则:加法: ②B C C A B A=-减法:三角形法则③⎪⎩⎪⎨⎧⋅=<=⋅==⋅=>=||||||,000,0||||||,0a a a a a a a a a a aλλλλλλλλλλλ反向,与当当同向,与当数乘向量: ④向量的数量积:θcos ||||⋅⋅=⋅b a b a(其中θ为两个向量的夹角)⑵代数方式的运算:设),(21a a a =,)(2,1b b b = ,①加法:),(2211b a b a b a ++=+②减法:),(2211b a b a b a --=-③数乘向量:),(21a a a λλλ=④向量的数量积:2211b a b a b a +=⋅(结果为实数)⑶两个向量平行与垂直的判定:设),(21a a a =,)(2,1b b b = ,①平行的判定:a ∥b ⇔a bλ=⇔1221b a b a =②垂直的判定:a ⊥b ⇔0=⋅b a⇔02211=+b a b a⑷其它公式:设),(21a a a =,)(2,1b b b =①向量的长度:2221||a a a +=②设),(),,(2211y x B y x A 则),(1212y y x x B A --= |212212)()(|y y x x B A -+-=③设),(),,(2211y x B y x A ,则线段AB 的中点M 的坐标为M )2,2(2121y y x x ++ ④两个向量的夹角为θ,则222122212211||||cos b b a a b a b a b a ba +++=⋅=θ1、 直线部分⑴斜率公式:①)为直线的倾斜角,090(tan ≠=αααk②)(211212x x x x y y k ≠--=⑵直线方程的形式:⑷点),(00y x 到直线0=++C By Ax 的距离公式:2200BA CBy Ax d +++=⑸两平行线0:11=++C By Ax l 与0:22=++C By Ax l 间距离1222C C d A B-=+(注意两直线系数AB 相同才可用)3、圆部分⑴圆的方程:① 标准方程:222)()(r b y a x =-+-(其中圆心为),(b a ,半径为r )② 一般方程:022=++++F Ey Dx y x (其中圆心为)2,2(ED --,2422FE D r -+=)(2240D E F +->)⑵直线与圆的位置关系⎪⎩⎪⎨⎧相离相切相交,判定方法有两种:① 代数法:联立直线与圆的方程组成方程组,消元后得一二元一次方程。
当⎪⎩⎪⎨⎧<∆=∆>∆时,直线与圆相离时,直线与圆相切时,直线与圆相交000 (了解) ② 几何法:先求圆心到直线的距离d ,由d 与半径r 的大小情况来判定⎪⎩⎪⎨⎧<=>,直线与圆相交,直线与圆相切,直线与圆相离r d r d r d (常用) 4、椭圆部分⑴定义:平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.即:|)|2(,2||||2121F F a a MF MF >=+,这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.⑵椭圆的几何性质:焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210x y a b a b +=>> ()222210y x a b a b +=>>范围a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤顶点()1,0a A -、()2,0a A()10,b B -、()20,b B()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 短轴的长2b = 长轴的长2a =焦点()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==-对称性关于x 轴、y 轴、原点对称离心率()22101c b e e a a==-<<通径长22ab5、双曲线部分⑴定义:平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-,这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.实轴和虚轴等长的双曲线称为等轴双曲线.⑵双曲线的几何性质:焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210,0x y a b a b -=>> ()222210,0y x a b a b-=>> 范围x a ≤-或x a ≥,y R ∈ y a ≤-或y a ≥,x R ∈顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A 轴长 虚轴的长2b = 实轴的长2a =焦点()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==+对称性关于x 轴、y 轴对称,关于原点中心对称离心率()2211c b e e a a==+>渐近线方程b y x a=±a y x b=±通径长22ab6、抛物线部分⑴定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线. ⑵抛物线的几何性质:标准方程22y px=()0p >22y px=-()0p > 22x py=()0p > 22x py=-()0p >图形顶点()0,0对称轴x 轴y 轴焦点,02p F ⎛⎫ ⎪⎝⎭,02p F ⎛⎫- ⎪⎝⎭0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线方程2px =-2p x =2p y =-2p y =离心率1e =范围0x ≥ 0x ≤0y ≥ 0y ≤7、球部分六、数列1、等差数列:1a 是首项;d 为公差n 为项数;n a 为通项即第n 项)⑵等差公式:a ,A ,b 三数成等差数列,A 为a 与b 的等差中项,⑶前n 项和公式:③特殊地:当数列为常数列,,,a a a ----时,na S n =2、等比数列:⑵等比中项公式:若a ,A ,b 三数成等比数列,则A 为a 与b 的等比中项,七、排列组合(理科)1、分类计数原理与分步计算原理⑴分类计算原理(加法原理):完成一件事,有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法,那么完成这件事共有N= m1+ m2+…+m n种不同的方法。