高一数学必修1第三章_函数的应用经典试题
高一数学必修一第三章函数的应用练习题难题带答案

高一数学必修一函数的应用一.选择题(共30小题)1.已知函数,关于x的方程f(x)=a存在四个不同实数根,则实数a的取值范围是()A.(0,1)∪(1,e)B.C.D.(0,1)2.某码头有总重量为13.5吨的一批货箱,对于每个货箱重量都不超过0.35吨的任何情况,都要一次运走这批货箱,则至少需要准备载重1.5吨的卡车()A.12辆B.11辆C.10辆D.9辆3.已知函数f(x)=和g(x)=a(a∈R且为常数).有以下结论:①当a=4时,存在实数m,使得关于x的方程f(x)=g(x)有四个不同的实数根;②存在m∈[3,4],使得关于x的方程f(x)=g(x)有三个不同的实数根;③当x>0时,若函数h(x)=f2(x)+bf(x)+c恰有3个不同的零点x1,x2,x3,则x1x2x3=1;④当m=﹣4时,关于x的方程f(x)=g(x)有四个不同的实数根x1,x2,x3,x4,且x1<x2<x3<x4,若f(x)在[x,x4]上的最大值为ln4,则sin(3x1+3x2+5x3+4x4)π=1.其中正确结论的个数是()A.1个B.2个C.3个D.4个4.已知函数f(x)=,若函数g(x)=[f(f(x))]2﹣(a+1)•f(f(x))+a(a∈R)恰有8个不同零点,则实数a的取值范围是()A.(0,1)B.[0,1]C.(0,+∞)D.[0,+∞)5.已知,方程有三个实根x1<x2<x3,若x3﹣x2=2(x2﹣x1),则实数a=()A.B.C.a=﹣1D.a=16.已知函数,若方程f(x)=ax有三个不同的实数根x1,x2,x3,且x1<x2<x3,则x1﹣x2的取值范围是()A.B.C.D.7.已知函数y=f(x﹣1)的图象关于直线x=1对称,则方程f(2020﹣x)=f(log2020|x|)的解至少有多少个()A.2B.3C.4D.58.函数f(x)是定义在R上的奇函数,且函数f(x﹣1)为偶函数,当x=[0,1]时,,若g(x)=f(x)﹣x﹣b有三个零点,则实数b的取值集合是()A.,k∈Z B.,k∈ZC.,k∈Z D.,k∈Z9.已知函数,若函数g(x)=f(x)﹣kx﹣1恰有三个零点,则实数k的取值范围为()A.B.C.D.10.已知函数,若关于x的方程|f(x)﹣a|+|f(x)﹣a﹣1|=1,有且仅有三个不同的整数解,则实数a的取值范围是()A.B.[0,8]C.D.11.已知函数f(x)=,g(x)=f(x)﹣b,h(x)=f[f(x)]﹣b,记函数g(x)和h(x)的零点个数分别是M,N,则()A.若M=1,则N≤2B.若M=2,则N≥2C.若M=3,则N=4D.若N=3,则M=212.已知f(x)=a(e x﹣e﹣x)﹣sinπx(a>0)存在唯一零点,则实数a的取值范围()A.B.C.D.13.若函数f(x)=ae2x+(a﹣2)e x﹣x,a>0,若f(x)有两个零点,则a的取值范围为()A.(0,1)B.(0,1]C.D.14.已知函数f(x)=函数g(x)=kx.若关于x的方程f(x)﹣g(x)=0有3个互异的实数根,则实数k的取值范围是()A.B.C.D.15.已知函数f(x)=min{x|x﹣2a|,x2﹣6ax+8a2+4}(a>1),其中min(p,q)=,若方程f(x)=恰好有3个不同解x1,x2,x3(x1<x2<x3),则x1+x2与x3的大小关系为()A.x1+x2>x3B.x1+x2=x3C.x1+x2<x3D.不能确定16.关于x的方程有四个不同的实数根,且x1<x2<x3<x4,则(x4﹣x1)+(x3﹣x2)的取值范围()A.B.C.D.17.已知函数,g(x)=ax3﹣f(x).若函数g(x)恰有两个非负零点,则实数a的取值范围是()A.B.C.D.18.已知函数f(x)=9(lnx)2+(a﹣3)•xlnx+3(3﹣a)x2有三个不同的零点x1,x2,x3,且x1<1<x2<x3,则的值为()A.81B.﹣81C.﹣9D.919.已知函数f(x)=x2+ax+b(a,b∈R)在区间[2,3]上有零点,则a2+ab的取值范围是()A.(﹣∞,4]B.C.[4,]D.20.已知三次函数0)有两个零点,若方程f′[f(x)]=0有四个实数根,则实数a的范围为()A.B.C.D.21.已知函数f(x)=x2﹣2x﹣1,若函数g(x)=f(|a x﹣1|)+k|a x﹣1|+4k(其中a>1)有三个不同的零点,则实数k 的取值范围为()A.(,]B.()C.(]D.()22.已知方程xe x﹣a(e2x﹣1)=0只有一个实数根,则a的取值范围是()A.a≤0或a≥B.a≤0或a≥C.a≤0D.a≥0或a≤﹣23.已知函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈[﹣1,1]时,f(x)=1﹣|x|,又,则函数F(x)=g(x)﹣f(x)在区间[﹣2017,2017]上零点的个数为()A.2015B.2016C.2017D.201824.已知函数f(x)=,若函数F(x)=f(x)﹣b有四个不同的零点x1,x2,x3,x4(x1<x2<x3<x4),则的取值范围是()A.(2,+∞)B.C.D.[2,+∞)25.已知函数f(x)=lnx+(1﹣a)x+a(a>0),若有且只有两个整数x1,x2使得f(x1)>0,且f(x2)>0,则a的取值范围是()A.B.(0,2+ln2)C.D.26.已知函数f(x)=|x2﹣4x|,x∈R,若关于x的方程f(x)=m|x+1|﹣2恰有4个互异的实数根,则实数m的取值范围为()A.(0,)B.(0,)C.(2,)D.(2,)27.已知函数,则函数F(x)=f(f(x))﹣ef(x)的零点个数为()(e是自然对数的底数).A.6B.5C.4D.328.已知关于x的方程为=3e x﹣2+(x2﹣3),则其实根的个数为()A.2B.3C.4D.529.定义在R上的偶函数f(x)满足f(x﹣2)=f(x),且当x∈[1,2]时,f(x)=﹣4x2+18x﹣14,若函数g(x)=f (x)﹣mx有三个零点,则正实数m的取值范围为()A.(,18﹣4)B.(2,18﹣4)C.(2,3)D.(,3)30.已知函数f(x)=|log2x|,g(x)=,则方程|f(x)﹣g(x)|=1的实根个数为()A.2个B.3个C.4个D.5个二.填空题(共5小题)31.已知关于x的方程xlnx﹣a(x2﹣1)=0在(0,+∞)上有且只有一个实数根,则a的取值范围是.32.已知函数有且仅有三个零点,并且这三个零点构成等差数列,则实数a的值为.33.若函数f(x)=﹣﹣a存在零点,则实数a的取值范围是.34.已知函数f(x)=1+x﹣+﹣+…+,g(x)=1﹣x+﹣++…﹣,设F(x)=f(x+3)g(x﹣4)且F(x)的零点均在区间[a,b](a<b,a,b∈Z)内,则b﹣a的最小值是.35.已知函数,正实数a、b、c成公差为正数的等差数列,且满足f(a)f(b)f(c)<0,若实数d是方程f(x)=0的一个解,那么下列四个判断:①d<a;②d>b;③d<c;④d>c中,有可能成立的个数为.三.解答题(共5小题)36.已知函数f(x)=lnx﹣ax(a>0),设.(1)判断函数h(x)=f(x)﹣g(x)零点的个数,并给出证明;(2)首项为m的数列{a n}满足:①a n+1+a n≠;②f(a n+1)=g(a n).其中0<m<.求证:对于任意的i,j∈N*,均有a i﹣a j<﹣m.37.已知m>0,函数f(x)=e x﹣mx,直线l:y=﹣m.(1)讨论f(x)的图象与直线l的交点个数;(2)若函数f(x)的图象与直线l:y=﹣m相交于M(x1,y1),N(x2,y2)两点(x1<x2),证明:.38.已知a∈R,函数f(x)=x﹣ae x+1有两个零点x1,x2(x1<x2).(Ⅰ)求实数a的取值范围;(Ⅱ)证明:e+e>2.39.已知函数在(﹣∞,+∞)上是增函数.(1)求实数a的值;(2)若函数g(x)=f(x)﹣kx有三个零点,求实数k的取值范围.40.今年入秋以来,某市多有雾霾天气,空气污染较为严重.市环保研究所对近期每天的空气污染情况进行调査研究后发现,每一天中空气污染指数与f(x)时刻x(时)的函数关系为f(x)=|log25(x+1)﹣a|+2a+1,x∈[0,24],其中a为空气治理调节参数,且a∈(0,1).(1)若a=,求一天中哪个时刻该市的空气污染指数最低;(2)规定每天中f(x)的最大值作为当天的空气污染指数,要使该市每天的空气污染指数不超过3,则调节参数a 应控制在什么范围内?参考答案与试题解析一.选择题(共30小题)1.【解答】解:由题意,a>0,令t=,则f(x)=a⇔⇔⇔⇔.记g(t)=.当t<0时,g(t)=2ln(﹣t)﹣(t﹣)单调递减,且g(﹣1)=0,又g(1)=0,∴只需g(t)=0在(0,+∞)上有两个不等于1的不等根.则⇔=,记h(t)=(t>0且t≠1),则h′(t)==.令φ(t)=,则φ′(t)==<0.∵φ(1)=0,∴φ(t)=在(0,1)大于0,在(1,+∞)上小于0.∴h′(t)在(0,1)上大于0,在(1,+∞)上小于0,则h(t)在(0,1)上单调递增,在(1,+∞)上单调递减.由,可得,即a<1.∴实数a的取值范围是(0,1).故选:D.2.【解答】解:【解法1】从第1辆卡车开始依次装上货物,每车一直装到再装一箱就超过1.5吨为止,把多出的这一箱先单独留出来不往后面装,因为13.5÷(1.5+0.35)≈7.3,所以这样至少能装到第7辆卡车(包括单独留出)之后还有剩余;①如果装到第7辆卡车剩余的已经不足1.5吨,那么第8辆卡车可以把剩余的装走,此时前7辆卡车单独留出的7个货箱可以分成两组,一组3个,一组4个,每组不超过0.35×4=1.4吨,这样再找2辆卡车就可以拉完,一共最多需要10辆卡车;②如果装到第7辆车剩余的货箱超过1.5吨,可以继续装第8辆卡车,此时8辆卡车上单独留出8个货箱可以分成两组,每组4个,每组都不超过0.35×4=1.4吨,再找2辆卡车就可以拉走;上面10辆卡车一共装了超过1.5×8=12吨货箱,所剩货箱不超过13.5﹣12=1.5吨,最多还需要1辆卡车就可以拉走,所以一共最多需要11辆卡车;综上,要保证任何情况都能一次性拉走,则至少需要11辆卡车.【解法二】由题意,将所有货箱任意排定顺序;首先将货箱依次装上第1辆卡车,并直到再装1个就超过载重量为止,并将这最后不能装上的货箱放在第1辆卡车之旁;然后按同样办法装第2辆、第3辆、…,直到第8辆车装完并在车旁放了1个货箱为止;显然前8辆车中每辆所装货箱及车旁所放1箱的重量和超过1.5吨;所以所余货箱的重量和不足1.5吨,可以全部装入第9辆卡车;然后把前8辆卡车旁所放的各1货箱分别装入后2辆卡车,每车4个货箱,显然不超载;这样装车就可用8+1+2=11辆卡车1次把这批货箱运走.故选:B.3.【解答】解:①当x≤0时,f(x)=﹣x2+mx=﹣(x2﹣mx)=﹣(x﹣)2+,当对称轴<0且>4,即m<0且m2>16,即m<﹣4时,f(x)=g(x)=4有四个不同的实数根,故①正确,②若m>0,则函数的对称轴>0,此时当x≤0时,函数f(x)为增函数,且f(x)≤0,此时当m∈[3,4],使得关于x的方程f(x)=g(x)不可能有三个不同的实数根,故②错误③当x>0时,设t=f(x)=|lnx|,若f2(x)+bf(x)+c=0有三个不同的根,则t2+bt+c=0有两个不同的实根,其中t1=0,t2>0,当t1=0时,对应一个根x1=1,当t2>0时,对应两个根x2,x3,且0<x2<1<x3,则|lnx2|=|lnx3|,即﹣lnx2=lnx3,则lnx2+lnx3=0,即ln(x2x3)=0,则x2x3=1,即x1x2x3=1,故③正确,④当m=﹣4时,作出f(x)的图象如图,由对数的性质知x3x4=1,x<<x3,即f(x)在[x,x4]上的最大值为f(x)=|lnx|=2|lnx3|=﹣2lnx3=ln4=2ln2,得lnx3=﹣ln2,得x3=,则x4=2,由对称性知,即x1+x2=﹣4,则sin(3x1+3x2+5x3+4x4)π=sin(﹣12++8)π=sin(﹣4π+π)=sinπ=sin=1,故④正确,故正确的是①③④,共3个,故选:C.4.【解答】解:由g(x)=[f(f(x))]2﹣(a+1)•f(f(x))+a=0得[f(f(x))﹣1][f(f(x)﹣a]=0,则f(f(x))=1或f(f(x))=a,作出f(x)的图象如图,则若f(x)=1,则x=0或x=2,设t=f(x),由f(f(x))=1得f(t)=1,此时t=0或t=2,当t=0时,f(x)=t=0,有两个根,当t=2时,f(x)=t=2,有1个根,则必须有f(f(x))=a,(a≠1)有5个根,设t=f(x),由f(f(x))=a得f(t)=a,若a=0,由f(t)=a=0得t=﹣1,或t=1,f(x)=﹣1有一个根,f(﹣x)=1有两个根,此时有3个根,不满足条件.若a>1,由f(t)=a得t>2,f(x)=t有一个根,不满足条件.若a<0,由f(t)=a得﹣2<t<﹣1,f(x)=t有一个根,不满足条件.若0<a<1,由f(t)=a得﹣1<t1<0,或0<t2<1或1<t3<2,当﹣1<t1<0时,f(x)=t1,有一个根,当0<t2<1时,f(x)=t2,有3个根,当1<t3<2时,f(x)=t3,有一个根,此时有1+3+1=5个根,满足条件.故0<a<1,即实数a的取值范围是(0,1),故选:A.5.【解答】解:由1﹣x2≥0得x2≤1,则﹣1≤x≤1,当x<0时,由f(x)=2,即﹣2x=2.得1﹣x2=x2,即2x2=1,x2=,则x=﹣,①当﹣1≤x≤﹣时,有f(x)≥2,原方程可化为f(x)+2+f(x)﹣2﹣2ax﹣4=0,即﹣4x﹣2ax﹣4=0,得x=﹣,由﹣1≤﹣≤﹣解得:0≤a≤2﹣2.②当﹣<x≤1时,f(x)<2,原方程可化为4﹣2ax﹣4=0,化简得(a2+4)x2+4ax=0,解得x=0,或x=﹣,又0≤a≤2﹣2,∴﹣<﹣<0.∴x1=﹣,x2=﹣,x3=0.由x3﹣x2=2(x2﹣x1),得=2(+),解得a=﹣(舍)或a=.因此,所求实数a=.故选:B.6.【解答】解:当y=ax与y=lnx相切时,设切点为(x0,lnx0),,∴,,由得再由图知方程f(x)=ax的三个不同的实数根x1,x2,x3满足,1<x2<e<x3因此,即x1﹣x2的取值范围是()故选:B.7.【解答】解:∵f(x﹣1)是f(x)向右平移一个单位的图象,且函数y=f(x﹣1)的图象关于直线x=1对称,所以函数f(x)关于直线x=0对称,即f(x)为偶函数,因此当“f(2020﹣x)=f(log2020|x|)”是“|2020﹣x|=|f(log2020|x|)|”充要条件时,此时方程f(2020﹣x)=f(log2020|x|)的解的个数最少,接下来讨论方程|2020﹣x|=|log2020|x||的解的个数,因为|2020﹣x|=|log2020|x||等价于或,①当时,方程的解的个数即函数y=2020﹣x的图象和函数y=log2020|x|的图象的交点个数,画出两函数图象如下图所示:易知两函数在x∈(0,+∞)上存在一个交点,故方程有1解;②当时,下面分两种情况进行讨论,若x<0,等价于,令g(x)=,易得函数g(x)在(﹣∞,0)上单调递减,又因为,,由零点存在定理可得函数g(x)在(﹣∞,0)上存在唯一零点,即方程在(﹣∞,0)上有且只有一个解;若x>0时,等价于,下面我们证明当a∈(0,)时,函数y=a x与函数y=log a x图象有三个交点,假设A点在指数函数y=a x上,且指数函数过该点的切线斜率为﹣1,B点在对数函数y=log a x上,且对数函数过该点的切线斜率也为﹣1,当A、B重合时,它们会有一个交点,此时就是一个界点.图象如下图所示,指数函数为y=a x,求导y′=a x lna,即指数函数切线的斜率,,∴,与指数函数y=a x对应的反函数,对数函数为y=log a x,求导,即对数函数斜率,,∴x B=﹣log a e,A,B重合,即x A=x B,∴log a(﹣log a e)=﹣log a e,∴,即a=,∴,即是一个分界点,结合指数函数数及对数函数的变化趋势可知,当a∈(0,)时,函数y=a x与函数y=log a x图象有三个交点,又因为,所以,于是方程在(0,+∞)上有三个解,即方程在(0,+∞)上有三个解,综上所述方程|2020﹣x|=|log2020|x||一共有5个解,于是方程f(2020﹣x)=f(log2020|x|)的解至少5个,故选:D.8.【解答】解:由已知得,f(﹣x)=﹣f(x),f(x﹣1)=f(﹣x﹣1),则f(x+1)=﹣f(﹣x﹣1)=﹣f(x﹣1)=f(1﹣x),所以函数f(x)的图象关于直线x=1对称,关于原点对称,又f(x+2)=f((x+1)+1)=﹣f((x+1)﹣1)=﹣f(x),进而有f(x+4)=﹣f(x+2)=f(x),所以得函数f(x)是以4为周期得周期函数,由g(x)=f(x)﹣x﹣b有三个零点可知,函数f(x)与函数y=x+b得图象有三个交点,当直线y=x+b与函数f(x)图象在[0,1]上相切时,由,即2x2+(2b﹣2)x+b2=0,故方程2x2+(2b﹣2)x+b2=0有两个相等得实根,由△=0⇒(2b﹣2)2﹣4•2•b2=0,解得b=﹣1±,当x∈[0,1]时,f(x)=,作出函数f(x)与函数y=x+b的图象如图:由图知当直线y=x+b与函数f(x)图象在[0,1]上相切时,b=﹣1+,数形结合可得g(x)在[﹣2,2]上有三个零点时,实数b满足,再根据函数f(x)的周期为4,可得所求的实数b的范围为,k∈Z.故选:C.9.【解答】解:当2<x<4时,y=,则y≤0,等式两边平方得y2=﹣x2+6x﹣8,整理得(x﹣3)2+y2=1,所以曲线y=表示圆(x﹣3)2+y2=1的下半圆,如下图所示,由题意可知,函数y=g(x)有三个不同的零点,等价于直线y=kx+1与曲线y=f(x)的图象有三个不同交点,直线y=kx+1过定点P(0,1),当直线y=kx+1过点A(4,0)时,则4k+1=0,可得k=;当直线y=kx+1与圆(x﹣3)2+y2=1相切,且切点位于第三象限时,k<0,此时,解得k=.由图象可知,当时,直线y=kx+1与曲线y=f(x)的图象有三个不同交点.因此,实数k取值范围是.故选:B.10.【解答】解:∵|f(x)﹣a|+|f(x)﹣a﹣1|=,∴函数f(x)位于直线y=a和y=a+1的图象上有三个横坐标为整数的点,当x<0时,且f(x)<0,由双勾函数的单调性可知,函数y=f(x)在区间(﹣∞,﹣)上单调递减,在区间(﹣,0)上单调递增,于是当x<0时,,∵f(﹣1)=,f(﹣2)=,f(﹣3)=,f(﹣4)=,且f(﹣4)>f(﹣3)>f(﹣2),如下图所示,要使得函数f(x)位于直线y=a和y=a+1的图象上有三个横坐标为整数的点,则f(﹣3)≤a+1<f(﹣4),即,解得.因此,实数a的取值范围是.故选:A.11.【解答】解:若f(x)=2e2x﹣e x时,令f′(x)=4e2x﹣e x=0,解得x=ln,易知此时f(x)在(﹣∞,ln)上单调递减,在(ln,+∞)上单调递增;作出函数y=2e2x﹣e x及函数y=x的图象如下图所示,由图象可知,函数f(x)最多有两个零点x=0或x=ln,不妨令b=0,则①当a≤ln时,此时函数g(x)的零点为x=0,则M=1,此时函数h(x)的零点满足f(x)=0,或f(x)=ln,显然f(x)=0有1个解,f(x)=ln有1个解,则N=2;②当ln<a≤0时,此时函数g(x)的零点为0,ln,则M=2,此时函数h(x)的零点满足f(x)=0,或f(x)=ln,显然f(x)=0有两个解,f(x)=ln无解,则N=2;③当a>0时,此时函数g(x)的零点为ln,则M=1,此时函数h(x)的零点满足f(x)=0,或f(x)=ln,显然f(x)=0有1个解,f(x)=ln无解,则N=1;由以上分析可知,故选:A.12.【解答】解:由题意知f(0)=0,∵f(x)=a(e x﹣e﹣x)﹣sinπx(a>0)存在唯一零点,∴f(x)只有一个零点0.∵f(﹣x)=sinπx+a(e﹣x﹣e x)=﹣f(x),∴f(x)是奇函数,故只考虑当x>0时,函数f(x)无零点即可.当x>0时,有πx>sinπx,∴f(x)=a(e x﹣e﹣x﹣sinπx)>a(e x﹣e﹣x﹣).令g(x)=e x﹣e﹣x﹣,x>0,则g(0)=0,∵g′(x)=e x+e﹣x﹣,x>0,g″(x)=e x﹣e﹣x>0,∴g′(x)在(0,+∞)上单调递增,∵g(0)=0,∴g′(x)>g′(0)=2﹣≥0,解得a≥.故选:B.13.【解答】解:f′(x)=2ae2x+(a﹣2)e x﹣1=(2e x+1)(ae x﹣1).a≤0时,f′(x)<0,函数f(x)在R上单调递减,此时函数f(x)最多有一个零点,不满足题意,舍去.a>0时,f′(x)=2ae2x+(a﹣2)e x﹣1=(2e x+1)(ae x﹣1).令f′(x)=0,∴e x=,解得x=﹣lna.∴x∈(﹣∞,﹣lna)时,f′(x)<0,∴函数f(x)在(﹣∞,﹣lna)上单调递减;x∈(﹣lna,+∞)时,f′(x)>0,∴函数f(x)在(﹣lna,+∞)上单调递增.∴x=﹣lna时,函数f(x)取得极小值,∵f(x)有两个零点,∴f(﹣lna)=a×+(a﹣2)×+lna=1﹣+lna<0,令u(a)=1﹣+lna,u(1)=0.u′(a)=+>0,∴函数u(x)在(0,+∞)上单调递增,∴0<a<1.又x→﹣∞时,f(x)→+∞;x→+∞时,f(x)→+∞.∴满足函数f(x)有两个零点.∴a的取值范围为(0,1),故选:A.14.【解答】解:作出函数g(x)和f(x)的图象如图:由图可知,当k≤0时,不满足题意,则k>0;当直线y=kx经过点B时,k==,此时y=x与函数f(x)图象有3个交点,满足;当y=kx为y=lnx的切线时,设切点(x0,lnx0),则k=,故有lnx0=•x0=1,解得x0=e,即有切点为A(e,1),此时g(x)=x与f(x)有3个交点,满足题意;综上:当k∈[,],故选:B.15.【解答】解:f(x)=,易知f(a)=a2(极大值);f(2a)=0(极小值);(极大值);f(3a)=4﹣a2(极小值).要使f(x)=恰好有3个不同解,结合图象得:①当,即时,解得,不存在这样的实数a.②当,即时,解得;此时2a<,又因为x2与x3关于x=3a对称,∴x3﹣3a=3a﹣x2<a<2a<x1.∴x3<4a<x1+x2.③当,即时,解得a>2.此时,x1,x2是方程﹣x2+2ax=的两实根,所以x1+x2=2a,而x3>3a,所以x1+x2<x3,故选:D.16.【解答】解:依题意可知,|x2﹣4x+1|=t2+1,由方程有四个根,所以函数y=t2+1与y=|x2﹣4x+1|的图象有四个交点,由图可知,x1+x4=4,x2+x3=4,1≤t2+1<3,解得t2∈(0,2),由x2﹣4x+1=t2+1解得x1=2﹣;由﹣(x2﹣4x+1)=t2+1解得x2=2﹣;所以(x4﹣x1)+(x3﹣x2)=8﹣2(x1+x2)=2(+)设m=t2∈(0,2),n=+,n2=m+4+2﹣m+2=6+2∈(6,6+4),即m∈(,2+),所以(x4﹣x1)+(x3﹣x2)的取值范围是(2,4+2).故选:B.17.【解答】解:显然,x=0满足g(x)=0,因此,只需再让g(x)=0有另外一个唯一正根即可.ax3﹣f(x)=0,即为ax3=f(x).作出h(x)=ax3,y=f(x)图象如下:说明:射线与线段是y=f(x)的部分图象,因为要分三种情况分析,故y=h(x)的图象作了三个(只做出y轴右侧部分),分别对应①、②、③.(1)对于第一种情况:因为h′(0)=0<1,所以当y=h(x)(如图象①)与y=f(x)=x在[0,1)上的图象有交点A时,只需h(1)=a>1即可;(2)对于第二种情况:y=h(x)(图象②)与y=f(x)=x﹣1在[1,2)上的图象切于点B,设切点为(m,m﹣1),因为h′(x)=3ax2,则,解得;(3)当y=h(x)(图象③)与y=x﹣1(1≤x<2)相交于点C,且满足h(2)≤1,即时,只需x∈[2,3)时,g(x)≥0恒成立即可.所以ax3≥x﹣2,x∈[0,2]恒成立即可,且只能在x=3处取等号,即,,在[2,3]上恒成立,故u(x)在[2,3]上递增,所以u(x)max=u(3)=,.故此时即为所求.综上可知,a的范围是.故选:C.18.【解答】解:f(x)=9(lnx)2+(a﹣3)•xlnx+3(3﹣a)x2=0⇒(a﹣3)(xlnx﹣3x2)=﹣9(lnx)2⇒a﹣3=,令t=3﹣,则,t∈[3﹣,+∞),⇒a﹣3=⇒9t2﹣(51+a)t+81=0.设关于t的一元二次方程有两实根t1,t2,∴△=(51+a)2﹣4×9×81>0,可得a>3或a<﹣105.∴>=6,t1t2=9.又∵t1+t2=,当且仅当t1=t2=3时等号成立,由于t1+t2≠6,∴t1>3,<3(不妨设t1>t2).∵x1<1<x2<x3,∴>3,<3,3﹣<3.则可知=t1,=3﹣=t2.∴=.故选:A.19.【解答】解:不妨设x1,x2为函数f(x)的两个零点,其中x1∈[2,3],x2∈R,则x1+x2=﹣a,x1x2=b.则a2+ab=(x1+x2)2﹣(x1+x2)•x1x2=(1﹣x1)x22+(2x1﹣x12)x2+x12,由1﹣x1<0,x2∈R,所以(1﹣x1)x22+(2x1﹣x12)x2+x12≤=,可令g(x1)=,g′(x1)=,当x1∈[2,3],g′(x1)>0恒成立,所以g(x1)∈[g(2),g(3)]=[4,].则g(x1)的最大值为,此时x1=3,还应满足x2=﹣=﹣,显然x1=3,x2=﹣时,a=b=﹣,a2+ab=.故选:B.20.【解答】解:三次函数0)有两个零点,且由f′(x)=x2+2ax﹣3a2=0得x=a或﹣3a.故必有.又若方程f′[f(x)]=0有四个实数根,则f(x)=a或f(x)=﹣3a共有四个根.①当前一组混合组成立时,做出图象(图①)可知,只需0<a<f(﹣3a)即可,即,解得②;②当后一组混合组成立时b=﹣9a3,做出图象(图②)可知图②只需f(a)<﹣3a<0即可,即,解得③.取②③的并集可知,当时.方程f′[f(x)]=0有四个根.故选:C.21.【解答】解:令t=|a x﹣1|,t≥0,则函数g(x)=f(|a x﹣1|)+k|a x﹣1|+4k可换元为:h(t)=t2+(k﹣2)t+4k﹣1.若g(x)有三个不同的零点,则方程h(t)=0有两个不同的实数根t1,t2,且解的情况有如下三种:①t1∈(1,+∞),t2∈(0,1),此时,解得;②t1=0,t2∈(0,1),此时由h(0)=0,求得k=,∴h(t)=,即,不合题意;③t1=1,t2∈(0,1),此时由h(1)=0,得k=,∴h(t)=,解得,符合题意.综上,实数k的取值范围为(].故选:C.22.【解答】解:令t=e x,t>0,x=lnt,则原方程转化成tlnt﹣a(t2﹣1)=0,即,令,显然f(1)=0,问题转化成函数f(t)在(0,+∞)上只有一个零点1,,若a=0,则f(t)=lnt在(0,+∞)单调递增,f(1)=0,此时符合题意;若a<0,则f′(t)>0,f(t)在(0,+∞)单调递增,f(1)=0,此时符合题意;若a>0,记h(t)=﹣at2+t﹣a,则函数h(t)开口向下,对称轴,过(0,﹣a),△=1﹣4a2,当△≤0 即1﹣4a2≤0,即时,f′(t)≤0,f(t)在(0,+∞)单调递减,f(1)=0,此时符合题意;当△>0 即1﹣4a2>0,即时,设h(t)=0有两个不等实根t1,t2,0<t1<t2,又h(1)>0,对称轴,所以0<t1<1<t2,则f(t)在(0,t1)单调递减,(t1,t2)单调递增,(t2,+∞)单调递增,由于f(1)=0,所以f(t2)>0,取,,记令,则,所以f(t0)<0,结合零点存在性定理可知,函数f(t)在(t1,t2)存在一个零点,不符合题意;综上,符合题意的a的取值范围是a≤0 或,故选:A.23.【解答】解:因为f(x+2)=f(x),所以f(x)的一个周期为2,当x>1时,g(x)=,所以g′(x)=,所以x∈(1,e),g′(x)>0,函数是增函数,g(x)>g(1)=0,x∈(e,+∞),g′(x)<0,函数是减函数,g(x)>0,g(x)的最大值为1,f(x)与g(x)的图象如下:在区间[﹣1,1]内有一个根,在[1,2017]内有1008个周期,每个周期内均有2个根,所以F(x)共有2017个零点.故选:C.24.【解答】解:作出f(x)的函数图象如图所示:由图象知x1+x2=﹣4,x3x4=1,0<b≤1,解不等式0<﹣log2x≤1得:≤x3<1,∴=+,令t=x32,则≤t<1,令g(t)=t+,则g(t)在[,1]上单调递减,g(1)=2,g()=,∴g(1)<g(t)≤g(),即2<t+≤,故选:C.25.【解答】解:由f(x)=lnx+(1﹣a)x+a>0,得lnx>(a﹣1)x﹣a,作出函数y=lnx与y=(a﹣1)x﹣a的图象如图:直线y=(a﹣1)x﹣a过定点(1,﹣1),当x=2时,曲线y=lnx上的点为(2,ln2),当x=3时,曲线y=lnx上的点为(3,ln3).过点(1,﹣1)与(2,ln2)的直线的斜率k=,过点(1,﹣1)与(3,ln3)的直线的斜率k=.由a﹣1=ln2+1,得a=ln2+2,由a﹣1=,得a=.∴若有且只有两个整数x1,x2使得f(x1)>0,且f(x2)>0,则a的取值范围是.故选:C.26.【解答】解:作出f(x)=|x2﹣4x|与f(x)=m|x+1|﹣2的图象如图,由图可知,f(x)=m|x+1|﹣2恒过(﹣1,﹣2),且为2条射线,斜率分别为m,﹣m,当f(x)=m|x+1|﹣2过(0,0)以及与抛物线相切时时临界情况,当f(x)=m|x+1|﹣2过(0,0)时,m==2,当f(x)=m|x+1|﹣2与y=﹣x2+4x相切时,联立,得x2+(m﹣4)x+m﹣2=0,则△=(m﹣4)2﹣4(m﹣2)=0,解得m=6﹣2(6+2舍去),故m的取值范围为(2,6﹣2),故选:C.27.【解答】解:不妨设,,易知,f1(x)<0在(﹣∞,0]上恒成立,且在(﹣∞,0]单调递增;,设,由当x→0+时,g(x)→﹣∞,g(1)=e ﹣1>0,且函数g(x)在(0,+∞)上单增,故函数g(x)存在唯一零点x0∈(0,1),使得g(x0)=0,即,则,故当x∈(0,x0)时,g(x)<0,f2'(x)<0,f2(x)单减;当x∈(x0,+∞)时,g(x)>0,f2'(x)>0,f2(x)单增,故=0,故f2(x)≥0;令t=f(x),F(t)=f(t)﹣et=0,当t≤0时,﹣e﹣t﹣et=0,解得t=﹣1,此时易知f(x)=t=﹣1有一个解;当t>0时,te t﹣t﹣1﹣lnt﹣et=0,即te t﹣t﹣1﹣lnt=et,作函数f2(t)与函数y=et如下图所示,由图可知,函数f2(t)与函数y=et有两个交点,设这两个交点为t1,t2,且t1>0,t2>0,而由图观察易知,f(x)=t1,f(x)=t2均有两个交点,故此时共有四个解;综上,函数F(x)=f(f(x))﹣ef(x)的零点个数为5.故选:B.28.【解答】解:x =不是方程=3e x﹣2+(x2﹣3)的根,所以方程可变形为﹣=,原问题等价于考查函数y =﹣与函数g(x )=的交点个数,令h(x )=,则h′(x )=,列表可得:x (﹣∞,﹣(﹣,﹣1)(﹣1,)(,3)(3,+∞))h′(x)++﹣﹣+h(x)单调递增单调递增单调递减单调递减单调递增函数y =在有意义的区间内单调递增,故g(x)的单调性与函数h(x)的单调性一致,且g(x)的极值g(﹣1)=g(3)=﹣+2e,绘制函数图象如图所示,观察可得,y =﹣与函数g(x)恒有3个交点,即方程实数根的个数是3,故选:B.29.【解答】解:根据f(x﹣2)=f(x),可知函数的一个周期为2,作出x∈[1,2]时,f(x)=﹣4x2+18x﹣14的图象,再根据函数f(x)为偶函数,f(﹣x)=f(x)=f(x+2),所以函数f(x)的图象关于直线x=1对称,利用周期性,可以作出函数f(x)的图象,函数g(x)=f(x)﹣mx有三个零点,所以函数y=f(x)的图象与直线y=mx有三个交点,由图可知,当直线位于直线l1与直线l2之间时可以满足题意.当直线l2与y=f(x)的图象相切时,联立得,4x2+(m﹣18)x+14=0,∴△=(m﹣18)2﹣4×4×14=0,解得m=18﹣4,m=19+4(舍去)∴<m<18﹣4.故选:A.30.【解答】解:方程|f(x)﹣g(x)|=1⇔f(x)=g(x)±1,y=g(x)+1=,y=g(x)﹣1=.分别画出y=f(x),y=g(x)+1的图象.由图象(1)可得:0<x≤1时,两图象有一个交点;1<x≤2时,两图象有一个交点;x>2时,两图象有一个交点.分别画出y=f(x),y=g(x)﹣1的图象.由图象(2)可知:x>时,两图象有一个交点.综上可知:方程|f(x)﹣g(x)|=1实数根的个数为4.故选:C.二.填空题(共5小题)31.【解答】解:当x=1时,方程等价为ln1﹣a(1﹣1)=0,即x=1是方程的一个根,若当x>0时,方程只有一个根,则由xlnx﹣a(x2﹣1)=0得x>0,且xlnx=a(x2﹣1),即lnx=a(x﹣),当x≠时,方程无解,即函数g(x)=lnx与h(x)=a(x﹣),在x≠1时无解,函数g(x)=lnx为增函数,g′(x)=,h′(x)=a(1+),则当a=0时,h(x)=0,此时h(x)与函数g(x)只有一个交点(1,0),若a<0,则h′(x)<0,即h(x)为减函数,且h(1)=0,此时两个函数图象只有一个交点(1,0)满足条件,若a>0,要使g(x)与h(x)只有一个交点(1,0),则只需要h′(1)≥g′(1),即可则2a≥1,即a≥,综上a≥或a≤0,故答案为:a≥或a≤032.【解答】解:函数=0,得|x+a|﹣﹣a=3,设g(x)=|x+a|﹣﹣a,h(x)=3,则函数g(x)=,不妨设f(x)=0的3个根为x1,x2,x3,且x1<x2<x3,当x>﹣a时,由f(x)=0,得g(x)=3,即x﹣=3,得x2﹣3x﹣4=0,得(x+1)(x﹣4)=0,解得x=﹣1,或x=4;若①﹣a≤﹣1,即a≥1,此时x2=﹣1,x3=4,由等差数列的性质可得x1=﹣6,由f(﹣6)=0,即g(﹣6)=3得6+﹣2a=3,解得a=,满足f(x)=0在(﹣∞,﹣a]上有一解.若②﹣1<﹣a≤4,即﹣4≤a<1,则f(x)=0在(﹣∞,﹣a]上有两个不同的解,不妨设x1,x2,其中x3=4,所以有x1,x2是﹣x﹣﹣2a=3的两个解,即x1,x2是x2+(2a+3)x+4=0的两个解.得到x1+x2=﹣(2a+3),x1x2=4,又由设f(x)=0的3个根为x1,x2,x3成差数列,且x1<x2<x3,得到2x2=x1+4,解得:a=﹣1+(舍去)或a=﹣1﹣.③﹣a>4,即a<﹣4时,f(x)=0最多只有两个解,不满足题意;综上所述,a=,或﹣1﹣.33.【解答】解:由题意得,a=﹣=﹣;表示了点A(﹣,)与点C(3x,0)的距离,表示了点B(,)与点C(3x,0)的距离,如下图,结合图象可得,﹣|AB|<﹣<|AB|,即﹣1<﹣<1,故实数a的取值范围是(﹣1,1).故答案为:(﹣1,1).34.【解答】解:∵f(x)=1+x﹣+﹣+…﹣+,f′(x)=1﹣x+x2﹣…+x2012==>0,此时函数单调递增,∵f(0)=1>0,f(﹣1)=﹣﹣<0,∴函数f(x)存在一个唯一的零点,设函数f(x)的零点为x1,∴根据根的存在性定理可知x1∈(﹣1,0).∵g(x)=1﹣x+﹣+…+﹣,g′(x)=﹣1+x﹣x2﹣…﹣x2012==﹣<0,即函数单调递减,∵g(1)=>0,g(2)=,设函数g(x)存在唯一的一个零点x2,∴根据根的存在性定理可知x2∈(1,2).由F(x)=f(x+3)g(x﹣4)=0,则f(x+3)=0或g(x﹣4)=0.由x+3∈(﹣1,0).得﹣1<x+3<0,即﹣4<x<﹣3,∴函数f(x+3)的零点在(﹣4,﹣3).由x﹣4∈(1,2).,得1<x﹣4<2,即5<x<6,∴函数g(x﹣4)的零点在(5,6).即函数F(x)=f(x+3)•g(x﹣4)的零点在(﹣4,﹣3)和(5,6)内,∵F(x)的零点均在区间[a,b],(a<b,a,b∈Z),∴b≥6,a≤﹣4,∴b﹣a≥10,即b﹣a的最小值是10.35.【解答】解:,是由和y=﹣log2x,两个函数中,每个函数都是减函数,所以,函数为减函数.∵正实数a,b,c是公差为正数的等差数列,∴不妨设0<a<b<c∵f(a)f(b)f(c)<0则f(a)<0,f(b)<0,f(c)<0 或者f(a)>0,f(b)>0,f(c)<0综合以上两种可能,恒有f(c)<0所以可能有①d<a;②d<b;④d<c,正确.故答案为:3.三.解答题(共5小题)36.【解答】解:(1)函数h(x)=f(x)﹣g(x)在上有且仅有一个零点.证明如下:函数f(x)=lnx﹣ax的定义域为(0,+∞),由,可得函数g(x)的定义域为(﹣∞,),∴函数h(x)=f(x)﹣g(x)的定义域为(0,).h(x)=f(x)﹣g(x)=lnx﹣ax﹣ln()+2﹣ax.h′(x)=,当且仅当时等号成立,因此h(x)在上单调递增,又,故函数h(x)=f(x)﹣g(x)在上有且仅有一个零点;证明:(2)由(1)可知h(x)在上单调递增,且,故当时,h(x)<0,即f(x)<g(x);当时,h(x)>0,即f(x)>g(x).∵,∴f(a1)<g(a1)=f(a2),若,则由,且f(x)在上单调递减,知,即,这与矛盾,故,而当时,f(x)单调递增,故;同理可证,…,,故数列{a n}为单调递增数列且所有项均小于,因此对于任意的i,j∈N*,均有.37.【解答】解:(1)由題意,令g(x)=e x﹣mx+m,(m>0)则g'(x)=e x﹣m,令g'(x)>0,解得x>lnm.所以g(x)在(lnm,+∞)上单调递增,令g'(x)<0,解得x<lnm,所以g(x)在(﹣∞,lnm)上单调递减,则当x=lnm时,函数取得极小值,同时也是最小值g(x)min=g(lnm)=m﹣mlnm+m=m(2﹣lnm)①当m(2﹣lnm)>0,即0<m<e2时,f(x)的图象与直线l无交点,②当m(2﹣lnm)=0,即m=e2时f(x)的图象与直线l只有一个交点.③当m(2﹣lnm)<0,即m>e2时f(x)的图象与直线l有两个交点.综上所述,当0<m<e2时,f(x)的图象与直线l无交点;m=e2时f(x)的图象与直线l只有一个交点,m>e2时f(x)的图象与直线l有两个交点.(2)证明:令φ(x)=g(lnm+x)﹣g(lnm﹣x)=me x﹣me﹣x﹣2mx,(x>0)φ′(x)=m(e x+e﹣x﹣2)∵e x+e﹣x≥2=2,∴φ'(x)≥0,即φ(x)在(0,+∞)上单调递增,∴φ(x)>φ(0)=0∴x>0时,g(lnm+x)>g(lnm﹣x)恒成立,又0<x1<lnm<x2,∴lnm﹣x1>0,∴g(lnm+lnm﹣x1)>g(lnm﹣lnm+x1)即g(2lnm﹣x1)>g(x1),又g(x1)=g(x2)∴g(x2)<g(2lnm﹣x1)∵2lnm﹣x2>lnm,x2>lnm,y=g(x)在(lnm,+∞)上单调递增,∴x2<2lnm﹣x1即x1+x2<2lnm.38.【解答】解:(Ⅰ)f′(x)=1﹣ae x,①a≤0时,f′(x)>0,f(x)在R上递增,不合题意,舍去,②当a>0时,令f′(x)>0,解得x<﹣lna;令f′(x)<0,解得x>﹣lna;故f(x)在(﹣∞,﹣lna)单调递增,在(﹣lna,+∞)上单调递减,由函数y=f(x)有两个零点x1,x2(x1<x2),其必要条件为:a>0且f(﹣lna)=﹣lna>0,即0<a<1,此时,﹣1<﹣lna<2﹣2lna,且f(﹣1)=﹣1﹣+1=﹣<0,令F(a)=f(2﹣2lna)=2﹣2lna﹣+1=3﹣2lna﹣,(0<a<1),则F′(a)=﹣+=>0,F(a)在(0,1)上单调递增,所以,F(a)<F(1)=3﹣e2<0,即f(2﹣2lna)<0,故a的取值范围是(0,1).(Ⅱ)令f(x)=0⇒a=,令g(x)=,g′(x)=﹣xe﹣x,则g(x)在(﹣∞,0)单调递增,在(0,+∞)单调递减,由(Ⅰ)知0<a<1,故有﹣1<x1<0<x2,令h(x)=g(﹣x)﹣g(x),(﹣1<x<0),h(x)=(1﹣x)e x﹣(1+x)e﹣x,(﹣1<x<0),h′(x)=﹣xe x+xe﹣x=x(e﹣x﹣e x)<0,所以,h(x)在(﹣1,0)单调递减,故h(x)>h(0)=0,故当﹣1<x<0时,g(﹣x)﹣g(x)>0,所以g(﹣x1)>g(x1),而g(x1)=g(x2)=a,故g(﹣x1)>g(x2),又g(x)在(0,+∞)单调递减,﹣x1>0,x2>0,所以﹣x1<x2,即x1+x2>0,故e+e≥2=2e>2.39.【解答】解:(1)当x<0时,f(x)=﹣x2.是增函数,且f(x)<0=f(0),故当x≥0时,f(x)为增函数,即f′(x)≥0恒成立,函数的导数f′(x)=+2ax﹣2a=+2a(x﹣1)=(1﹣x)(﹣2a)≥0恒成立,当x≥1时,1﹣x≤0,此时相应﹣2a≤0恒成立,即2a≥恒成立,即2a≥()max=恒成立,当x≤1时,1﹣x≥0,此时相应﹣2a≥0恒成立,即2a≤恒成立,即2a≤()min=恒成立,则2a=,即a=.(2)若k≤0,则g(x)在R上是增函数,此时g(x)最多有一个零点,不可能有三个零点,则不满足条件.故k>0,当x<0时,g(x)=﹣x2﹣kx有一个零点﹣k,g(0)=f(0)﹣0=0,故0也是故g(x)的一个零点,故当x>0时,g(x)有且只有一个零点,即g(x)=0有且只有一个解,即+﹣﹣kx=0,得+﹣=kx,(x>0),则k=+﹣,在x>0时有且只有一个根,即y=k与函数h(x)=+﹣,在x>0时有且只有一个交点,h′(x)=﹣+,由h′(x)>0得﹣+>0,即<得e x>2e,得x>ln2e=1+ln2,此时函数递增,由h′(x)<0得﹣+<0,即>得e x<2e,得0<x<ln2e=1+ln2,此时函数递减,即当x=1+ln2时,函数取得极小值,此时极小值为h(1+ln2)=+﹣=++﹣=++﹣=,h(0)=1+0﹣=1﹣,作出h(x)的图象如图,要使y=k与函数h(x)=+﹣,在x>0时有且只有一个交点,则k=或k≥1﹣,即实数k的取值范围是{}∪[1﹣,+∞).40.【解答】解:(1)a=时,f(x)=|log25(x+1)﹣|+2,x∈[0,24],令|log25(x+1)﹣|=0,解得x=4,因此:一天中第4个时刻该市的空气污染指数最低.(2)令f(x)=|log25(x+1)﹣a|+2a+1=,当x∈(0,25a﹣1]时,f(x)=3a+1﹣log25(x+1)单调递减,∴f(x)<f(0)=3a+1.当x∈[25a﹣1,24)时,f(x)=a+1+log25(x+1)单调递增,∴f(x)≤f(24)=a+1+1.联立,解得0<a≤.可得a ∈.因此调节参数a 应控制在范围.第41页(共41页)。
高一数学必修一第三章函数的应用(含幂函数)练习题及参考答案

高一数学(必修1)第三章 函数的应用(含幂函数)[基础训练]一、选择题1.若)1(,,)1(,1,4,)21(,2522>==-=+====a a y x y x y x y x y y x y xx 上述函数是幂函数的个数是( ) A .0个 B .1个 C .2个 D .3个2.已知)(x f 唯一的零点在区间(1,3)、(1,4)、(1,5)内,那么下面命题错误的( ) A .函数)(x f 在(1,2)或[)2,3内有零点 B .函数)(x f 在(3,5)内无零点 C .函数)(x f 在(2,5)内有零点 D .函数)(x f 在(2,4)内不一定有零点3.若0,0,1a b ab >>>,12log ln 2a =,则log a b 与a 21log 的关系是( )A .12log log a b a < B .12log log a b a =C .12log log a b a > D .12log log a b a ≤4. 求函数132)(3+-=x x x f 零点的个数为 ( ) A .1 B .2 C .3 D .45.已知函数)(x f y =有反函数,则方程0)(=x f ( ) A .有且仅有一个根 B .至多有一个根 C .至少有一个根 D .以上结论都不对6.如果二次函数)3(2+++=m mx x y 有两个不同的零点,则m 的取值范围是( ) A .()6,2- B .[]6,2- C .{}6,2- D .()(),26,-∞-+∞7.某林场计划第一年造林10000亩,以后每年比前一年多造林20%,则第四年造林( ) A .14400亩 B .172800亩 C .17280亩 D .20736亩二、填空题1.若函数()x f 既是幂函数又是反比例函数,则这个函数是()x f = 。
2.幂函数()f x 的图象过点(,则()f x 的解析式是_____________。
高一上学期数学(必修一)《第三章函数的应用》同步练习题及答案(人教版)

高一上学期数学(必修一)《第三章函数的应用》同步练习题及答案(人教版)一、单选题1.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,第一季度共获利42万元,已知二月份和三月份利润的月增长率相同.设二、三月份利润的月增长率为x ,则x 满足的方程为( )A .210(1)42x +=B .21010(1)42x ++=C .1010(1)10(12)42x x ++++=D .21010(1)10(1)42x x ++++=2.某公司市场营销人员的个人月收入与其每月的销售量成一次函数关系,如图所示,由图中给出的信息可知,营销人员没有销售量时的收入是( )A .310元B .300元C .390元D .280元3.某公司在甲、乙两地同时销售一种品牌车,销售x 辆该品牌车的利润(单位:万元)分别为2121L x x=-+和22L x =.若该公司在两地共销售15辆,则能获得的最大利润为( )A .90万元B .60万元C .120万元D .120.25万元4.把长为12cm 的细铁丝截成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是( )A .233cm 2B .24cmC .232cmD .223cm5.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为( )m .A .400B .12C .20D .306.单位时间内通过道路上指定断面的车辆数被称为“道路容量”,与道路设施、交通服务、环境、气候等诸多条件相关.假设某条道路一小时通过的车辆数N 满足关系2010000.70.3v N v v d =++,其中0d 为安全距离,v为车速()m /s .当安全距离0d 取30m 时,该道路一小时“道路容量”的最大值约为( )A .135B .149C .165D .1957.某中学体育课对女生立定跳远项目的考核标准为:立定跳远距离1.33米得5分,每增加0.03米,分值增加5分,直到1.84米得90分后,每增加0.1米,分值增加5分,满分为120分.若某女生训练前的成绩为70分,经过一段时间的训练后,成绩为105分,则该女生训练后,立定跳远距离增加了( )A .0.33米B .0.42米C .0.39米D .0.43米8.周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A 地出发前往B 地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的85继续骑行,经过一段时间,甲先到达B 地,乙一直保持原速前往B 地.在此过程中,甲、乙两人相距的路程y (单位:米)与乙骑行的时间x (单位:分钟)之间的关系如图所示,则下列说法错误的是( )A .乙的速度为300米/分钟B .25分钟后甲的速度为400米/分钟C .乙比甲晚14分钟到达B 地D .A 、B 两地之间的路程为29400米二 、多选题 9.根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f(x)=√x x <A,√A x ⩾A(A,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,下列结果正确的是( )A. A =16B. c =60C. A =4D. c =3010.对任意两个实数a ,b ,定义max{ a,b}={a,a >b,若f(x)=2−x 2,g(x)=x 2下列关于函数F(x)=max{ f(x),g(x)}的说法正确的有( )A. 函数F(x)是偶函数B. 函数F(x)有四个单调区间C. 方程F(x)=2有四个不同的根D. 函数F(x)的最大值为1,无最小值11.函数y =[x]的函数值表示不超过x 的最大整数.例如[1.1]=1,[2.3]=2设函数f(x)={1−x 2,x <0,x −[x],x ⩾0,则下列说法正确的是( )A. 函数f(x)的值域为(−∞,0]B. 若x ⩾0,则[f(x)]=0C. 方程f(x)=1有无数个实数根D. 若方程f(x)=−x +a 有两个不等的实数根,则实数a 的取值范围是[0,+∞)12.已知函数f(x)={x 2,x ⩽0,−x 2,x >0,则下列结论中正确的是( ) A. f(√2)=2B. 若f(m)=9,则m ≠±3C. f(x)是奇函数D. 在f(x)上R 单调递减三、填空题13.某建材商场国庆期间搞促销活动,规定:如果顾客选购物品的总金额不超过600元,则不享受任何折扣优惠;如果顾客选购物品的总金额超过600元,则超过600元部分享受一定的折扣优惠,折扣优惠按下表累计计算. 可以享受折扣优惠金额折扣优惠率 不超过500元的部分5% 超过500元的部分 10% 某人在此商场购物获得的折扣优惠金额为30元,则他实际所付金额为__________元.14.函数()()222323y x x x x =---+零点的个数为_____________.15.如图,在半径为4(单位:cm )的半圆形(O 为圆心)铁皮上截取一块矩形材料ABCD ,其顶点,A B 在直径上,顶点,C D 在圆周上,则矩形ABCD 面积的最大值为____(单位:2cm ).四、解答题16..如图,某灌溉渠的横断面是等腰梯形,底宽2m ,渠深为1.8m ,斜坡的倾斜角是45°(无水状态不考虑).(1)试将横断面中水的面积()A h (2m )表示成水深h (m )的函数;(2)当水深为1.2m 时,求横断面中水的面积.17.“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,把每尾鱼的平均生长速度v (单位:千克/年)表示为养殖密度x (单位:尾/立方米)的函数.当04x <≤时,v 的值为2;当420x <≤时,v 是关于x 的一次函数.当x =20时,因缺氧等原因,v 的值为0.(1)当020x <≤时,求函数()v x 的表达式;(2)当x 为多大时,鱼的年生长量(单位:千克/立方米)()()f x x v x =⋅可以达到最大?并求出最大值.18.首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题.某单位在国家科研部门的支持下进行技术攻关,采取了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似的表示为21200800002y x x =-+ ,且处理每吨二氧化碳得到可利用的化工产品价值为100元. (1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使单位不亏损?19.吉祥物“冰墩墩”在北京2022年冬奥会强势出圈,并衍生出很多不同品类的吉祥物手办.某企业承接了“冰墩墩”玩具手办的生产,已知生产此玩具手办的固定成本为200万元.每生产x 万盒,需投入成本()h x 万元,当产量小于或等于50万盒时()180100h x x =+;当产量大于50万盒时()2603500h x x x =++,若每盒玩具手办售价200元,通过市场分析,该企业生产的玩具手办可以全部销售完(利润=售价-成本,成本=固定成本+生产中投入成本)(1)求“冰墩墩”玩具手办销售利润y (万元)关于产量x (万盒)的函数关系式;(2)当产量为多少万盒时,该企业在生产中所获利润最大?20.随着城市居民汽车使用率的增加,交通拥堵问题日益严重,而建设高架道路、地下隧道以及城市轨道公共运输系统等是解决交通拥堵问题的有效措施.某市城市规划部门为提高早晚高峰期间某条地下隧道的车辆通行能力,研究了该隧道内的车流速度v (单位:千米/小时)和车流密度x (单位:辆/千米)所满足的关系式:()60,030R 80,30120150x v k k x x <≤⎧⎪=∈⎨-<≤⎪-⎩.研究表明:当隧道内的车流密度达到120辆/千米时造成堵塞,此时车流速度是0千米/小时.(1)若车流速度v 不小于40千米/小时,求车流密度x 的取值范围;(2)隧道内的车流量y (单位时间内通过隧道的车辆数,单位:辆/小时)满足y x v =⋅,求隧道内车流量的最大值(精确到1辆/小时),并指出当车流量最大时的车流密度(精确到1辆/千米).(参考数据:5 2.236) 参考答案1.D 2.B3.C4.D5.C6.B7.B8.C9.AB;10.AB;11.BD;12.CD;13.112014.215.1616.(1)依题意,横断面中的水面是下底为2m ,上底为()22h +m ,高为h m 的等腰梯形,所以()()()222220 1.82h A h h h h h ++=⋅=+<≤. (2)由(1)知()()220 1.8A h h h h =+<≤ ()21.2 1.22 1.2 3.84h =+⨯=所以当水深为1.2m 时,横断面水中的面积为3.842m .17.(1)依题意,当04x <≤时()2v x =;当420x <≤时,()v x 是关于x 的一次函数,假设()(0)v x ax b a =+≠则42200a b a b +=⎧⎨+=⎩,解得0.1252.5a b =-⎧⎨=⎩所以()2,040.125 2.5,420x v x x x <≤⎧=⎨-+<≤⎩. (2)当04x <≤时()()()2028v x f x x v x x =⇒<=⋅=≤;当420x <≤时()()20.125 2.50.125 2.5v x x f x x x =-+⇒=-+当()2.51020.125x =-=⨯-时,()f x 取得最大值()1012.5f =. 因为12.58>,所以当x =10时,鱼的年生长量()f x 可以达到最大,最大值为12.53/千克米.18.(1)由题意知,平均每吨二氧化碳的处理成本为180000180000200220020022y x x x x x=+-≥⋅-=; 当且仅当1800002x x = ,即400x = 时等号成立 故该当每月处理量为400吨时,才能使每吨的平均处理成本最低为200元.(2)不获利,设该单位每个月获利为S 元,则2211100100200800003008000022S x y x x x x x ⎛⎫=-=--+=-+- ⎪⎝⎭()21300350002x =--- 因为[]400,600x ∈,则[]80000,40000S ∈--故该当单位每月不获利,需要国家每个月至少补贴40000元才能不亏损.19.(1)当产量小于或等于50万盒时20020018010020300y x x x =---=-当产量大于50万盒时222002006035001403700y x x x x x =----=-+-故销售利润y (万元)关于产量x (万盒)的函数关系式为220300,050,N 1403700,50x x y x x x x -≤≤⎧=∈⎨-+->⎩(2)当050x ≤≤时2050300700y ≤⨯-=;当50x >时21403700y x x =-+-当140702x ==时,21403700y x x =-+-取到最大值,为1200. 因为7001200<,所以当产量为70万盒时,该企业所获利润最大.20.(1)解:由题意知当120x =(辆/千米)时,0v =(千米/小时)代入80150k v x=--,解得2400k = 所以60,030240080,30120150x v x x <≤⎧⎪=⎨-<≤⎪-⎩. 当030x <≤时,6040v =≥,符合题意;当30120x <≤时,令24008040150x-≥-,解得90x ≤,所以3090x <≤. 所以,若车流速度v 不小于40千米/小时,则车流密度x 的取值范围是(]0,90.(2)解:由题意得60,030240080,30120150x x y x x x x <≤⎧⎪=⎨-<≤⎪-⎩当030x <≤时,60y x =为增函数,所以1800y ≤,当30x =时等号成立;当30120x <≤时 ()()2150180150450024004500808080180150150150150x x x y x x x x x --+--⎡⎤⎛⎫=-==--+ ⎪⎢⎥---⎝⎭⎣⎦ 4800(35)3667≤-≈. 当且仅当4500150150x x-=-,即30(55)83x =-≈时等号成立. 所以,隧道内车流量的最大值约为3667辆/小时,此时车流密度约为83辆/千米.。
高中数学必修一第三章《函数的应用》单元测试卷及答案2套

高中数学必修一第三章《函数的应用》单元测试卷及答案2套测试卷一(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.函数y =1+1x的零点是( )A .(-1,0)B .-1C .1D .02.设函数y =x 3与y =(12)x -2的图象的交点为(x 0,y 0),则x 0所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)3.某企业2010年12月份的产值是这年1月份产值的P 倍,则该企业2010年度产值的月平均增长率为( )A .P P -1 B .11P -1C .11PD .P -1114.如图所示的函数图象与x 轴均有交点,其中不能用二分法求图中交点横坐标的是( )A .①③B .②④C .①②D .③④5.如图1,直角梯形OABC 中,AB∥OC,AB =1,OC =BC =2,直线l∶x=t 截此梯形所得位于l 左方图形面积为S ,则函数S =f(t)的图象大致为图中的( )图16.已知在x 克a%的盐水中,加入y 克b%的盐水,浓度变为c%,将y 表示成x 的函数关系式为( )A .y =c -ac -b x B .y =c -ab -c x C .y =c -bc -axD .y =b -cc -ax 7.某单位职工工资经过六年翻了三番,则每年比上一年平均增长的百分率是( ) (下列数据仅供参考:2=1.41,3=1.73,33=1.44,66=1.38)A .38%B .41%C .44%D .73%8.某工厂生产某种产品的固定成本为200万元,并且生产量每增加一单位产品,成本增加1万元,又知总收入R 是单位产量Q 的函数:R(Q)=4Q -1200Q 2,则总利润L(Q)的最大值是________万元,这时产品的生产数量为________.(总利润=总收入-成本)( )A .250 300B .200 300C .250 350D .200 3509.在一次数学实验中,运用图形计算器采集到如下一组数据:x -2.0 -1.0 0 1.00 2.00 3.00 y0.240.5112.023.988.02则x 、y )A .y =a +bxB .y =a +b xC .y =ax 2+bD .y =a +b x10.根据统计资料,我国能源生产自1986年以来发展得很快,下面是我国能源生产总量(折合亿吨标准煤)的几个统计数据:1986年8.6亿吨,5年后的1991年10.4亿吨,10年后的1996年12.9亿吨,有关专家预测,到2001年我国能源生产总量将达到16.1亿吨,则专家是以哪种类型的函数模型进行预测的?( )A .一次函数B .二次函数C .指数函数D .对数函数11.用二分法判断方程2x 3+3x -3=0在区间(0,1)内的根(精确度0.25)可以是(参考数据:0.753=0.421875,0.6253=0.24414)( )A .0.25B .0.375C .0.635D .0.82512.有浓度为90%的溶液100g ,从中倒出10g 后再倒入10g 水称为一次操作,要使浓度低于10%,这种操作至少应进行的次数为(参考数据:lg 2=0.3010,lg 3=0.4771)( )A .19B .20C .21D .22二、填空题(本大题共4小题,每小题5分,共20分)13.用二分法研究函数f(x)=x 3+2x -1的零点,第一次经计算f(0)<0,f(0.5)>0,可得其中一个零点x 0∈________,第二次计算的f(x)的值为f(________).14.若函数f(x)=a x-x -a(a>0,且a≠1)有两个零点,则实数a 的取值范围为________.15.一批设备价值a 万元,由于使用磨损,每年比上一年价值降低b%,则n 年后这批设备的价值为________________万元.16.函数f(x)=x 2-2x +b 的零点均是正数,则实数b 的取值范围是________. 三、解答题(本大题共6小题,共70分)17.(10分)华侨公园停车场预计“十·一”国庆节这天停放大小汽车1200辆次,该停车场的收费标准为:大车每辆次10元,小车每辆次5元.(1)写出国庆这天停车场的收费金额y(元)与小车停放辆次x(辆)之间的函数关系式,并指出x 的取值范围.(2)如果国庆这天停放的小车占停车总辆数的65%~85%,请你估计国庆这天该停车场收费金额的范围.18.(12分)光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为a ,通过x 块玻璃后强度为y.(1)写出y 关于x 的函数关系式;(2)通过多少块玻璃后,光线强度减弱到原来的13以下?(lg 3≈0.4771)19.(12分)某医药研究所开发一种新药,据监测,如果成人按规定的剂量服用,服用药后每毫升中的含药量y(微克)与服药的时间t(小时)之间近似满足如图所示的曲线,其中OA 是线段,曲线AB 是函数y =ka t(t≥1,a>0,且k ,a 是常数)的图象.(1)写出服药后y 关于t 的函数关系式;(2)据测定,每毫升血液中的含药量不少于2微克时治疗疾病有效.假设某人第一次服药为早上6∶00,为保持疗效,第二次服药最迟应当在当天几点钟?(3)若按(2)中的最迟时间服用第二次药,则第二次服药后3小时,该病人每毫升血液中的含药量为多少微克(精确到0.1微克)?20.(12分)已知一次函数f(x)满足:f(1)=2,f(2)=3, (1)求f(x)的解析式;(2)判断函数g(x)=-1+lg f 2(x)在区间[0,9]上零点的个数.21.(12分)截止到2009年底,我国人口约为13.56亿,若今后能将人口平均增长率控制在1%,经过x 年后,我国人口为y 亿.(1)求y 与x 的函数关系式y =f(x);(2)求函数y =f(x)的定义域;(3)判断函数f(x)是增函数还是减函数?并指出函数增减的实际意义.22.(12分)某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x 个,零件的实际出厂单价为P 元,写出函数的表达式; (3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本)答案1.B [由1+1x =0,得1x=-1,∴x =-1.]2.B [由题意x 0为方程x 3=(12)x -2的根,令f (x )=x 3-22-x,∵f (0)=-4<0,f (1)=-1<0,f (2)=7>0, ∴x 0∈(1,2).]3.B [设1月份产值为a ,增长率为x ,则aP =a (1+x )11, ∴x =11P -1.]4.A [对于①③在函数零点两侧函数值的符号相同,故不能用二分法求.] 5.C [解析式为S =f (t ) =⎩⎪⎨⎪⎧12t ·2t 0≤t ≤112×1×2+t -1×21<t ≤2=⎩⎪⎨⎪⎧t 20≤t ≤12t -11<t ≤2∴在[0,1]上为抛物线的一段,在(1,2]上为线段.]6.B [根据配制前后溶质不变,有等式a %x +b %y =c %(x +y ),即ax +by =cx +cy ,故y =c -a b -cx .] 7.B [设职工原工资为p ,平均增长率为x , 则p (1+x )6=8p ,x =68-1=2-1=41%.]8.A [L (Q )=4Q -1200Q 2-Q -200=-1200(Q -300)2+250,故总利润L (Q )的最大值是250万元,这时产品的生产数量为300.]9.B [∵x =0时,b x无意义,∴D 不成立. 由对应数据显示该函数是增函数,且增幅越来越快, ∴A 不成立. ∵C 是偶函数,∴x =±1的值应该相等,故C 不成立. 对于B ,当x =0时,y =1, ∴a +1=1,a =0;当x =1时,y =b =2.02,经验证它与各数据比较接近.]10.B [可把每5年段的时间视为一个整体,将点(1,8.6),(2,10.4),(3,12.9)描出,通过拟合易知它符合二次函数模型.]11.C [令f (x )=2x 3+3x -3,f (0)<0,f (1)>0,f (0.5)<0,f (0.75)>0,f (0.625)<0,∴方程2x 3+3x -3=0的根在区间(0.625,0.75)内, ∵0.75-0.625=0.125<0.25,∴区间(0.625,0.75)内的任意一个值作为方程的近似根都满足题意.]12.C [操作次数为n 时的浓度为(910)n +1,由(910)n +1<10%,得n +1>-1lg 910=-12lg3-1≈21.8,∴n ≥21.] 13.(0,0.5) 0.25解析 根据函数零点的存在性定理. ∵f (0)<0,f (0.5)>0,∴在(0,0.5)存在一个零点,第二次计算找中点,即0+0.52=0.25. 14.(1,+∞)解析 函数f (x )的零点的个数就是函数y =a x与函数y =x +a 交点的个数,如下图,由函数的图象可知a >1时两函数图象有两个交点,0<a <1时两函数图象有唯一交点,故a >1.15.a (1-b %)n解析 第一年后这批设备的价值为a (1-b %);第二年后这批设备的价值为a (1-b %)-a (1-b %)·b %=a (1-b %)2; 故第n 年后这批设备的价值为a (1-b %)n. 16.(0,1]解析 设x 1,x 2是函数f (x )的零点,则x 1,x 2为方程x 2-2x +b =0的两正根,则有⎩⎪⎨⎪⎧Δ≥0x 1+x 2=2>0x 1x 2=b >0,即⎩⎪⎨⎪⎧4-4b ≥0b >0.解得0<b ≤1.17.解 (1)依题意得y =5x +10(1200-x ) =-5x +12000,0≤x ≤1200. (2)∵1200×65%≤x ≤1200×85%, 解得780≤x ≤1020,而y =-5x +12000在[780,1 020]上为减函数, ∴-5×1020+12000≤y ≤-5×780+12000. 即6900≤y ≤8100,∴国庆这天停车场收费的金额范围为[6 900,8 100]. 18.解 (1)依题意:y =a ·0.9x,x ∈N *. (2)依题意:y ≤13a ,即:a ·0.9x≤a3,0.9x≤13=0.91log 30.9,得x ≥log 0.913=-lg32lg3-1≈-0.47710.9542-1≈10.42.答 通过至少11块玻璃后,光线强度减弱到原来的13以下.19.解 (1)当0≤t <1时,y =8t ;当t ≥1时,⎩⎪⎨⎪⎧ka =8,ka 7=1.∴⎩⎪⎨⎪⎧a =22,k =8 2.∴y =⎩⎪⎨⎪⎧8t , 0≤t <1,8222t,t ≥1.(2)令82·(22)t≥2,解得t ≤5. ∴第一次服药5小时后,即第二次服药最迟应当在当天上午11时服药. (3)第二次服药后3小时,每毫升血液中含第一次所服药的药量为y 1=82×(22)8=22(微克);含第二次服药后药量为y 2=82×(22)3=4(微克),y 1+y 2=22+4≈4.7(微克). 故第二次服药再过3小时,该病人每毫升血液中含药量为4.7微克. 20.解 (1)令f (x )=ax +b ,由已知条件得⎩⎪⎨⎪⎧a +b =22a +b =3,解得a =b =1,所以f (x )=x +1(x ∈R ).(2)∵g (x )=-1+lg f 2(x )=-1+lg (x +1)2在区间[0,9]上为增函数,且g (0)=-1<0,g (9)=-1+lg102=1>0,∴函数g (x )在区间[0,9]上零点的个数为1个. 21.解 (1)2009年底人口数:13.56亿. 经过1年,2010年底人口数:13.56+13.56×1%=13.56×(1+1%)(亿). 经过2年,2011年底人口数:13.56×(1+1%)+13.56×(1+1%)×1% =13.56×(1+1%)2(亿). 经过3年,2012年底人口数:13.56×(1+1%)2+13.56×(1+1%)2×1% =13.56×(1+1%)3(亿).∴经过的年数与(1+1%)的指数相同.∴经过x年后人口数为13.56×(1+1%)x(亿).∴y=f(x)=13.56×(1+1%)x.(2)理论上指数函数定义域为R.∵此问题以年作为时间单位.∴此函数的定义域是{x|x∈N*}.(3)y=f(x)=13.56×(1+1%)x.∵1+1%>1,13.56>0,∴y=f(x)=13.56×(1+1%)x是增函数,即只要递增率为正数,随着时间的推移,人口的总数总在增长.22.解(1)设每个零件的实际出厂价恰好降为51元时,一次订购量为x0个,则x0=100+60-510.02=550.因此,当一次订购量为550个时,每个零件的实际出厂价恰好降为51元.(2)当0<x≤100时,P=60;当100<x<550时,P=60-0.02·(x-100)=62-x50;当x≥550时,P=51.所以P=f(x)=⎩⎪⎨⎪⎧60,0<x≤10062-x50,100<x<550,51,x≥550(x∈N).(3)设销售商的一次订购量为x个时,工厂获得的利润为L元,则L=(P-40)x=⎩⎪⎨⎪⎧20x,0<x≤10022x-x250,100<x<550,11x,x≥550(x∈N).当x=500时,L=6000;当x=1000时,L=11000.因此,当销售商一次订购500个零件时,该厂获得的利润是6000元;如果订购1000个,利润是11000元.测试卷二(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.设方程|x 2-3|=a 的解的个数为m ,则m 不可能等于( )A .1B .2C .3D .42.将进货单价为80元的商品按90元一个售出时,能卖出400个,已知该商品每个涨价1元,其销售量就减少20个,为了赚得最大利润,售价应定为( )A .每个110元B .每个105元C .每个100元D .每个95元3.今有一组实验数据如下表,现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最接近的一个是( )A .y =log 2tB .y =12C .y =t 2-12D .y =2t -24.某商场对顾客实行购物优惠活动,规定一次购物付款总额: (1)如果不超过200元,则不给予优惠;(2)如果超过200元但不超过500元,则按标价给予9折优惠;(3)如果超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予7折优惠.某人两次去购物,分别付款168元和423元,假设他去一次购买上述同样的商品,则应付款是( )A .413.7元B .513.7元C .548.7元D .546.6元5.方程x 2+ax -2=0在区间[1,5]上有解,则实数a 的取值范围为( )A .(-235,+∞) B .(1,+∞) C .[-235,1]D .(-∞,-235]6.设f(x)是区间[a ,b]上的单调函数,且f(a)f(b)<0,则方程f(x)=0在区间[a ,b]( )A .至少有一实根B .至多有一实根C .没有实根D .必有唯一实根7.方程x 2-(2-a)x +5-a =0的两根都大于2,则实数a 的取值范围是( )A .a<-2B .-5<a<-2C .-5<a≤-4D .a>4或a<-48.四人赛跑,其跑过的路程f(x)和时间x 的关系分别是:f 1(x)=12x ,f 2(x)=14x ,f 3(x)=log 2(x +1),f 4(x)=log 8(x +1),如果他们一直跑下去,最终跑到最前面的人所具有的函数关系是( )A .f 1(x)=12xB .f 2(x)=14xC .f 3(x)=log 2(x +1)D .f 4(x)=log 8(x +1)9.函数f(x)=ln x -2x的零点所在的大致区间是( )A .(1,2)B .(2,3)C .(e,3)D .(e ,+∞)10.已知f(x)=(x -a)(x -b)-2的两个零点分别为α,β,则( )A .a<α<b<βB .α<a<b<βC .a<α<β<bD .α<a<β<b11.设f(x)是连续的偶函数,且当x>0时是单调函数,则满足f(2x)=f(x +1x +4)的所有x之和为( )A .-92B .-72C .-8D .812.在某种金属材料的耐高温实验中,温度随着时间变化的情况由微机记录后再显示的图象如图所示.现给出下面说法:①前5分钟温度增加的速度越来越快; ②前5分钟温度增加的速度越来越慢; ③5分钟以后温度保持匀速增加; ④5分钟以后温度保持不变. 其中正确的说法是( )A .①④B .②④C .②③D .①③二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数f(x)=⎩⎪⎨⎪⎧log 2x x>03xx≤0,且关于x 的方程f(x)+x -a =0有且只有一个实根,则实数a 的取值范围是______________.14.要建造一个长方体形状的仓库,其内部的高为3m ,长与宽的和为20m ,则仓库容积的最大值为________.15.已知函数f(x)=⎩⎪⎨⎪⎧2x-1, x>0,-x 2-2x ,x≤0.若函数g(x)=f(x)-m 有3个零点,则实数m 的取值范围为________.16.若曲线|y|=2x+1与直线y =b 没有公共点,则b 的取值范围是________. 三、解答题(本大题共6小题,共70分)17.(10分)讨论方程4x 3+x -15=0在[1,2]内实数解的存在性,并说明理由.18.(12分)(1)已知f(x)=23x-1+m 是奇函数,求常数m 的值; (2)画出函数y =|3x-1|的图象,并利用图象回答:k 为何值时,方程|3x-1|=k 无解?有一解?有两解?19.(12分)某出版公司为一本畅销书定价如下: C(n)=⎩⎪⎨⎪⎧12n ,1≤n≤24,n ∈N *,11n ,25≤n ≤48,n ∈N *,10n ,n ≥49,n ∈N *,这里n 表示定购书的数量,C (n )是定购n 本书所付的钱数(单位:元).若一本书的成本价是5元,现有甲、乙两人来买书,每人至少买1本,两人共买60本,问出版公司最少能赚多少钱?最多能赚多少钱?20.(12分)是否存在这样的实数a,使函数f(x)=x2+(3a-2)x+a-1在区间[-1,3]上与x轴恒有一个交点,且只有一个交点?若存在,求出范围;若不存在,请说明理由.21.(12分)已知a是实数,函数f(x)=2ax2+2x-3-a,如果函数y=f(x)在区间[-1,1]上有零点,求实数a的取值范围.22.(12分)我国是水资源比较贫乏的国家之一,各地采用价格调控等手段以达到节约用水的目的.某市用水收费标准是:水费=基本费+超额费+定额损耗费,且有如下三条规定:①若每月用水量不超过最低限量m立方米时,只付基本费9元和每户每月定额损耗费a 元;②若每月用水量超过m立方米时,除了付基本费和定额损耗费外,超过部分每立方米付n元的超额费;③每户每月的定额损耗费a不超过5元.(1)求每户每月水费y(元)与月用水量x(立方米)的函数关系式;(2)该市一家庭今年第一季度每月的用水量和支付的费用如下表所示:m,n,a的值.答案1.A [在同一坐标系中分别画出函数y1=|x2-3|和y2=a的图象,如图所示.可知方程解的个数为0,2,3或4,不可能有1个解.] 2.D [设售价为x 元,则利润y =[400-20(x -90)](x -80)=20(110-x )(x -80)=-20(x 2-190x +8800) =-20(x -95)2+4500.∴当x =95时,y 最大为4500元.]3.C [当t =4时,y =log 24=2,y =12log 4=-2,y =42-12=7.5,y =2×4-2=6.所以y =t 2-12适合,当t =1.99代入A 、B 、C 、D4个选项,y =t 2-12的值与表中的1.5接近,故选C.]4.D [购物超过200元,至少付款200×0.9=180(元),超过500元,至少付款500×0.9=450(元),可知此人第一次购物不超过200元,第二次购物不超过500元,则此人两次购物总金额是168+4230.9=168+470=638(元).若一次购物,应付500×0.9+138×0.7=546.6(元).]5.C [令f (x )=x 2+ax -2,则f (0)=-2<0, ∴要使f (x )在[1,5]上与x 轴有交点,则需要⎩⎪⎨⎪⎧f 1≤0f 5≥0,即⎩⎪⎨⎪⎧a -1≤023+5a ≥0,解得-235≤a ≤1.]6.D [∵f (a )·f (b )<0,∴f (x )在区间[a ,b ]上存在零点,又∵f (x )在[a ,b ]上是单调函数,∴f (x )在区间[a ,b ]上的零点唯一,即f (x )=0在[a ,b ]上必有唯一实根.]7.C [由题意知⎩⎪⎨⎪⎧Δ≥02-a2>2f 2>0,解得-5<a ≤-4.]8.B [在同一坐标系下画出四个函数的图象,由图象可知f 2(x )=14x 增长的最快.]9.B [f (2)=ln2-22=ln2-1<1-1=0,f (3)=ln3-23>1-23=13>0.故零点所在区间为(2,3).]10.B [设g (x )=(x -a )(x -b ),则f (x )是由g (x )的图象向下平移2个单位得到的,而g (x )的两个零点为a ,b ,f (x )的两个零点为α,β,结合图象可得α<a <b <β.]11.C [∵x >0时f (x )单调且为偶函数, ∴|2x |=|x +1x +4|,即2x (x +4)=±(x +1). ∴2x 2+9x +1=0或2x 2+7x -1=0. ∴共有四根.∵x 1+x 2=-92,x 3+x 4=-72,∴所有x 之和为-92+(-72)=-8.]12.B [因为温度y 关于时间t 的图象是先凸后平行直线,即5分钟前每当t 增加一个单位增量Δt ,则y 随相应的增量Δy 越来越小,而5分钟后y 关于t 的增量保持为0.故选B.]13.(1,+∞)解析 由f (x )+x -a =0, 得f (x )=a -x ,令y =f (x ),y =a -x ,如图,当a >1时,y =f (x )与y =a -x 有且只有一个交点, ∴a >1. 14.300m 3解析 设长为x m ,则宽为(20-x )m ,仓库的容积为V , 则V =x (20-x )·3=-3x 2+60x,0<x <20,由二次函数的图象知,顶点的纵坐标为V 的最大值. ∴x =10时,V 最大=300(m 3). 15.(0,1)解析 函数f (x )=⎩⎪⎨⎪⎧2x-1, x >0,-x 2-2x ,x ≤0的图象如图所示,该函数的图象与直线y =m 有三个交点时m ∈(0,1),此时函数g (x )=f (x )-m 有3个零点.16.[-1,1]解析 分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线|y |=2x +1与直线y =b 的图象如图所示,由图象可得:如果|y |=2x+1与直线y =b 没有公共点,则b 应满足的条件为b ∈[-1,1].17.解 令f (x )=4x 3+x -15, ∵y =4x 3和y =x 在[1,2]上都为增函数. ∴f (x )=4x 3+x -15在[1,2]上为增函数,∵f (1)=4+1-15=-10<0,f (2)=4×8+2-15=19>0, ∴f (x )=4x 3+x -15在[1,2]上存在一个零点, ∴方程4x 3+x -15=0在[1,2]内有一个实数解. 18.解 (1)∵f (x )=23x -1+m 是奇函数,∴f (-x )=-f (x ),∴23-x -1+m =-23x -1-m .∴2·3x1-3x +m =21-3x -m , ∴23x -11-3x+2m =0. ∴-2+2m =0,∴m =1.(2)作出直线y =k 与函数y =|3x-1|的图象,如图.①当k <0时,直线y =k 与函数y =|3x-1|的图象无交点,即方程无解;②当k =0或k ≥1时,直线y =k 与函数y =|3x-1|的图象有唯一的交点,所以方程有一解;③当0<k <1时,直线y =k 与函数y =|3x-1|的图象有两个不同的交点,所以方程有两解.19.解 设甲买n 本书,则乙买(60-n )本(不妨设甲买的书少于或等于乙买的书),则n ≤30,n ∈N *.①当1≤n ≤11且n ∈N *时,49≤60-n ≤59,出版公司赚的钱数f (n )=12n +10(60-n )-5×60=2n +300; ②当12≤n ≤24且n ∈N *时,36≤60-n ≤48, 出版公司赚的钱数f (n )=12n +11(60-n )-5×60=n +360;③当25≤n ≤30且n ∈N *时,30≤60-n ≤35, 出版公司赚的钱数f (n )=11×60-5×60=360. ∴f (n )=⎩⎪⎨⎪⎧2n +300, 1≤n ≤11,n ∈N *,n +360,12≤n ≤24,n ∈N *,360,25≤n ≤30,n ∈N *.∴当1≤n ≤11时,302≤f (n )≤322; 当12≤n ≤24时,372≤f (n )≤384; 当25≤n ≤30时,f (n )=360.故出版公司最少能赚302元,最多能赚384元. 20.解 若实数a 满足条件, 则只需f (-1)f (3)≤0即可.f (-1)f (3)=(1-3a +2+a -1)(9+9a -6+a -1)=4(1-a )(5a +1)≤0,所以a ≤-15或a ≥1.检验:(1)当f (-1)=0时a =1, 所以f (x )=x 2+x .令f (x )=0,即x 2+x =0,得x =0或x =-1. 方程在[-1,3]上有两根,不合题意,故a ≠1. (2)当f (3)=0时a =-15,此时f (x )=x 2-135x -65.令f (x )=0,即x 2-135x -65=0,解得,x =-25或x =3.方程在[-1,3]上有两根,不合题意,故a ≠-15.综上所述,a ∈(-∞,-15)∪(1,+∞).21.解 当a =0时,函数为f (x )=2x -3,其零点x =32不在区间[-1,1]上.当a ≠0时,函数f (x )在区间[-1,1]分为两种情况: ①函数在区间[-1,1]上只有一个零点,此时:⎩⎪⎨⎪⎧Δ=4-8a -3-a ≥0f -1·f 1=a -5a -1≤0或⎩⎪⎨⎪⎧Δ=4-8a -3-a =0-1≤-12a ≤1,解得1≤a ≤5或a =-3-72.②函数在区间[-1,1]上有两个零点,此时⎩⎪⎨⎪⎧Δ>0-1<-12a <1f -1f 1≥0,即⎩⎪⎨⎪⎧8a 2+24a +4>0-1<-12a<1a -5a -1≥0.解得a ≥5或a <-3-72.综上所述,如果函数在区间[-1,1]上有零点,那么实数a 的取值范围为(-∞,-3-72]∪[1,+∞). 22.解 (1)依题意,得y =⎩⎪⎨⎪⎧9+a ,0<x ≤m , ①9+n x -m +a ,x >m .②其中0<a ≤5.(2)∵0<a ≤5,∴9<9+a ≤14.由于该家庭今年一、二月份的水费均大于14元,故用水量4立方米,5立方米都大于最低限量m 立方米.将⎩⎪⎨⎪⎧x =4,y =17和⎩⎪⎨⎪⎧x =5,y =23分别代入②,得⎩⎪⎨⎪⎧17=9+n 4-m +a , ③23=9+n 5-m +a .④③-④,得n =6.代入17=9+n (4-m )+a ,得a =6m -16. 又三月份用水量为2.5立方米,若m <2.5,将⎩⎪⎨⎪⎧x =2.5,y =11代入②,得a =6m -13,这与a =6m -16矛盾.∴m ≥2.5,即该家庭三月份用水量2.5立方米没有超过最低限量.将⎩⎪⎨⎪⎧x =2.5,y =11代入①,得11=9+a ,由⎩⎪⎨⎪⎧a =6m -16,11=9+a ,解得⎩⎪⎨⎪⎧a =2,m =3.∴该家庭今年一、二月份用水量超过最低限量,三月份用水量没有超过最低限量,且m =3,n =6,a =2.。
高中数学必修1第三章检测含答案

第三章《函数的应用》复习测试题(一)一、选择题1.(2012北京)函数的零点个数为( ).A.0B.1C.2D.3考查目的:考查函数零点的概念、函数的单调性和数形结合思想.答案:B.解析:(方法1):令得,,在平面直角坐标系中分别画出幂函数和指数函数的图象,可知它们只有一个交点,∴函数的零点只有一个.(方法2):∵函数在上单调递增,且,∴函数的零点只有一个.答案选B.2.(2010天津)函数的零点所在的一个区间是( ).A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)考查目的:考查函数零点的存在性定理.答案:B解析:∵,,∴答案选B.3.(2009福建)若函数的零点与的零点之差的绝对值不超过0.25,则可以是( ).A. B.C. D.考查目的:考查函数零点的概念和零点存在性定理.答案:A.解析:的零点为,的零点为,的零点为,的零点为.下面估算的零点. ∵,,∴的零点.依题意,函数的零点与的零点之差的绝对值不超过0.25,∴只有的零点符合题意,故答案选A.4.在研制某种新型材料过程中,实验人员获得了下列一组实验数据,现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是( ).1.95 3.00 3.94 5.10 6.120.97 1.59 1.98 2.35 2.61A. B. C.D .考查目的:考查几类不同增长类型函数模型与实际问题的拟合程度.答案:D.解析:通过检验可知,只有函数较为接近,故答案选D.5.已知函数,,的零点分别为,,则的大小关系是( ).A. B.C. D.考查目的:考查函数零点的定义,指数函数、对数函数、幂函数、一次函数的图象,以及数形结合思想.答案:C.解析:由已知得,,在同一平面直角坐标系中,画出函数的图象,由图象可知,,故答案选C.6.(2010陕西)某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数与该班人数之间的函数关系用取整函数(表示不大于的最大整数)可以表示为( ).A. B. C.D.考查目的:考查函数的建模及其实际应用,意在考查分析问题与解决问题的能力.答案:B.解析:(方法1):当除以的余数0,1,2,3,4,5,6时,由题设知,且易验证,此时.当除以10的余数为7,8,9时,由题设知,易验证,此时.综上得,必有,故选B.(方法2):依题意知:若,则,由此检验知选项C,D错误.若,则,由此检验知选项A错误.故由排除法知,本题答案应选B.二、填空题7.(2009浙江)某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的电网销售电价表如下:高峰时间段用电价格表低谷时间段用电价格表高峰月用电量(单位:千瓦时)高峰电价(单位:元/千瓦时)低谷月用电量(单位:千瓦时)低谷电价(单位:元/千瓦时)50及以下的部分0.56850及以下的部分0.288超过50至200的部分0.598超过50至200的部分0.318超过200的部分0.668超过200的部分0.388若某家庭5月份的高峰时间段用电量为千瓦时,低谷时间段用电量为千瓦时,则按这种计费方式,该家庭本月应付的电费为元(用数字作答).考查目的:考查分段函数在解决实际问题中的应用.答案:.解析:该家庭本月应付电费由两部分构成:高峰部分为,低谷部分为,这两部分电费之和为(元).8.(2009山东)若函数有两个零点,则实数的取值范围是__________.考查目的:考查函数零点的定义,指数函数与一次函数的图象,数形结合的思想.答案:.解析:设函数和函数,则函数有两个零点,就是函数的图象与函数的图象有两个交点.由图象可知,当时,两个函数的图象只有一个交点,不符合题意;当时,∵函数的图象过点(0,1),而直线所过的点一定在点(0,1)的上方,∴两个函数的图象一定有两个交点,∴实数的取值范围是.9.某电脑公司2012年的各项经营收入中,经营电脑配件的收入为400万元,占全年经营总收入的40%.该公司预计2014年经营总收入要达到1690万元,且计划从2012年到2014年,每年经营总收入的年增长率相同,则2013年预计经营总收入为________万元.考查目的:考查增长率模型在实际问题中的应用和读题审题能力.答案:1300.解析:设年平均增长率为,则,∴,∴2013年预计经营总收入为×=1300(万元).10.(2010全国I理15改编)若函数有四个零点,则实数的取值范围是 .考查目的:考查函数零点的定义,函数的图象与性质、不等式的解法,和数形结合思想.答案:.解析:在平面直角坐标系内,先画函数的图象.当时,,图象的顶点为,与轴交于点(0,-1);当时,,图象的顶点为,与轴交于点(0,-1).是一条与轴平行的直线.当时,直线与函数的图象有4个交点,即当,函数有四个零点.11.为了预防流感,某段时间学校对教室用药熏消毒法进行消毒.设药物开始释放后第小时教室内每立方米空气中的含药量为毫克.已知药物释放过程中,教室内每立方米空气中的含药量(毫克)与时间(小时)成正比.药物释放完毕后,与的函数关系式为(为常数).函数图象如图所示.则从药物释放开始,每立方米空气中的含药量(毫克)与时间(小时)之间的函数关系式为 .考查目的:考查待定系数法求指数函数、一次函数解析式的方法,以及阅读理解能力和分类讨论思想.答案:.解析:函数图象由一条线段与一段指数函数图象组成,它们的交点为(0.1,1).当时,由(毫克)与时间(小时)成正比设,∴,解得,∴.当时,将(0.1,1)代入得,∴,,∴函数关系式为.。
高一数学必修1《第三章 函数的应用》单元测试题(含答案)

高一数学必修1《第三章 函数的应用》单元测试题(满分150分 时间 120分钟)班级:__________ 姓名:__________ 成绩:__________第Ⅰ卷(选择题,共50分)一、选择题 (每题5分,共50分) 1. 函数223y x x =--的零点是( )A .1,3-B .3,1-C .1,2D .不存在2. 方程1lg x x -=必有一个根的区间是( )A .(0.1,0.2)B .(0.2,0.3)C .(0.3,0.4)D .(0.4,0.5)3.下列函数中增长速度最快的是( )A.1100xy e =B .y=100ln xC .y=100xD .y=1002x ⋅4.已知函数2212341,2,21,2,x y y x y x y x==--=-=其中能用二分法求出零点的函数个数是( )A .1B .2C .3D .45. 若函数()f x 唯一的零点一定在三个区间(2,16)2824、(,)、(,)内,那么下列命题中正确的是( )A .函数()f x 在区间(2,3)内有零点B .函数()f x 在区间(2,3(3,4))或内有零点C .函数()f x 在区间(3,16)内有零点D .函数()f x 在区间(4,16)内无零点6. 如图表示人的体重与年龄的关系,则( )A .体重随年龄的增长而增加B .25岁之后体重不变C .体重增加最快的是15~25岁D .体重增加最快的是15岁之前7. 世界人口已超过60亿,若按千分之一的年增长率计算,则两年增长的人口约为( )A .120万B .1100万C .1200万D .12000万8. 已知函数()24f x mx =+,若在[]2,1-上存在0x 使0()0f x =,则实数m 的取值范围是( )A .5,42⎡⎤-⎢⎥⎣⎦B.(][),21,-∞-+∞C. []1,2-D. []2,1-9. 若商品进价每件40元,当售价为50元/件时,一个月能卖出500件,通过市场调查发现,若每件商品的单价每提高1元,则商品一个月的销售量会减少10件。
高中数学必修1第3章《函数的应用》单元测试

高中数学必修1第3章《函数的应用》单元测试建议用时实践用时总分值实践得分120分钟150分一、选择题〔本大题共12小题,每题5分,共60分.在每题给出的四个选项中,只要一项为哪一项契合标题要求的〕1.以下图中函数图象与x轴均有交点,其中不能用二分法求函数零点的是〔〕2.假定函数y=f(x)在区间[a,b ]上的图象为时断时续的一条曲线,那么以下说法正确的选项是〔〕A.假定f (a)f(b)>0,不存在实数c∈(a,b)使得f(c)=0B.假定f(a)f(b)<0,存在且只存在一个实数c∈(a ,b)使得f(c)=0C.假定f(a)f(b)>0,有能够存在实数c∈(a,b)使得f(c)=0D.假定f(a)f(b)<0,有能够不存在实数c∈(a ,b)使得f(c)=03.如图,表示某人的体重与年龄的关系,那么( )A.体重随年龄的增长而添加B.25岁之后体重不变C.体重添加最快的是15岁至25岁D.体重添加最快的是15岁之前4.不论m为何值,函数f(x)=mx+m2的零点有( )A.2个B.1个C.0个D.不确定5.以下给出的四个函数f(x)的图象中能使函数y=f(x)1没有零点的是( )6.图中的图象所表示的函数的解析式为( )A.y=|x1|(0≤x≤2)B.y=|x1|(0≤x≤2)C.y=|x 1|(0≤x≤2)D.y=1|x1|(0≤x≤2)7.在以下区间内,函数+x+5有零点的区间是〔〕A. B.C. D.8.方程5x+m=0的两个实根都大于1,那么实数m的取值范围是〔〕A.m<4B.m<C.4<m<D.m∈R9.以下函数中,随着x的增大,其增大速度最快的是( )A.y=B.y=1 000ln xC.y=D.y=1 000·10.假定函数f(x)=x a(a>0且a≠1)有两个零点,那么实数a的取值范围是( )A.{a|a>1}B.{a|a≥2}C.{a|0<a<1}D.{a|1<a<2}11.设方程|3|=a的解的个数为m,那么m不能够等于( )A.1B.2C.3D.412.某市的一家报刊摊点,从报社买进一种晚报的价钱是每份0.20元,卖出的价钱是每份0.30元,卖不掉的报纸可以以每份0.05元的价钱退报答社.在一个月(按30天计算)里,有20天每天卖出量可达400份,其他10天每天只能卖出250份,但每天从报社买进的份数必需相反,为使每月所获利润最大,这个摊主应每天从报社买进( )份晚报.A.250B.400C.300D.350二、填空题〔本大题共4小题,每题4分,共16分.把答案填在题中横线上〕13.函数f(x)=+ax+a1的两个零点一个大于2,一个小于2,那么实数a的取值范围是.14.1992年底,世界人口已到达54.8亿,假定世界人口的年平均增长率为x,2021年底世界人口数为y亿,那么y与x之间的函数关系式为.15.方程的实数根的个数是.16.某商场对顾客实行购物优惠活动,规则一次购物:①如不超越200元,那么不予优惠;②如超越200元但不超越500元,按标价给予9折优惠;③如超越500元,其中500元按第②条给予优惠,超越500元的局部,给予8折优惠.某人两次去购物,区分付款168元和423元,假定他只去一次购置异样的商品,那么应付款元.三、解答题〔共74分,解容许写出文字说明,证明进程或演算步骤〕17.〔12分〕设函数f(x)=+(b8)x a ab的两个零点区分是3和2;(1)求f(x);(2)当函数f(x)的定义域是[0,1]时,求函数f(x)的值域.18.(12分)为了维护先生的视力,课桌椅的高度都是按一定的关系配套设计的,研讨说明:假定课桌的高度为y cm,椅子的高度为x cm,那么y应是x的一次函数,下表列出两套契合条件的课桌椅的高度:第一套第二套椅子高度x(cm) 40.0 37.0课桌高度y(cm) 75.0 70.2(1)请你确定y与x的函数关系式(不用写出x的取值范围).(2)现有一把高42.0 cm的椅子和一张高78.2 cm的课桌,它们能否配套?为什么?19.〔12分〕某租赁公司拥有汽车100辆.当每辆车的月租金为3 000元时,可全部租出.当每辆车的月租金每添加50元时,未租出的车将会添加一辆.租出的车每辆每月需求维护费150元,未租出的车每辆每月需求维护费50元.(1)当每辆车的月租金定为3 600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?20.〔12分〕函数+3x6在区间内有零点,用二分法求方程+3x6=0在区间内的一个实数解的近似值〔准确度0.1〕.21.(13分)设与区分是实系数方程+bx+c=0和+bx+c=0的一个实数根,且,≠0,≠0,求证:方程+bx+c=0有且仅有一实数根介于与之间.22.(13分)某地西红柿从2月1号起末尾上市,经过市场调查,失掉西红柿种植本钱Q(单位:元/100 kg)与上市时间t(距2月1日的天数,单位:天)的数据如下表:时间t50 110 250本钱Q150 108 150描画西红柿种植本钱Q与上市时间t的变化关系:Q=at+b,Q=+bt+c,Q=a·,Q =a·;(2)应用你选取的函数,求西红柿种植本钱Q最低时的上市天数及最低种植本钱.第3章函数的运用〔人教实验A版必修1〕答题纸得分:一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案二、填空题13. 14. 15. 16.三、解答题17.18.19.20.21.22.第3章函数的运用〔人教实验A版必修1〕参考答案1.B 解析:B选项中,在零点的两侧函数值同号,∴不能用二分法求函数的零点.2.C 解析:如图,可知选项C正确.3.D 解析:∵整个函数不是增函数,∴A错;函数在[25,50]上为增函数,故B错;函数在[0,15]上比[15,25]上增长快,故C错,D正确.4.A 解析:令f(x)=0,∵Δ=4(m2)=+4>0,∴方程mx+m2=0有两个不相等的实根,∴f(x)有两个零点.5.C 解析:把y=f(x)的图象向下平移一个单位后,只要C图中的图象满足y=f(x)1与x轴无交点.6.B 解析:取特殊值x=1,由图象知y=f(1)=,据此否认A,D.再取x=0,由图象知y=f(0)=0,据此否认C,故正确选项是B.7.B 解析:f(3)=43<0,f(2)=13<0,f(1)=1>0,f(0)=f(1)=5>0,由f(2)f(1)<0,知函数f(x)在区间〔2,1〕内有零点.8.C 解析:设5x m,那么对称轴为x=,且抛物线启齿向上,所以方程5x m=0的两个实根都大于1⇔即解得4<m<.9.A 解析:增大速度最快的应为指数型函数,又知e≈2.718>2,应选A.10.A 解析:设函数y=(a>0,且a≠1)和函数y=x+a,那么函数f(x)=x a(a>0且a≠1)有两个零点,就是函数y=(a>0,且a≠1)与函数y=x+a的图象有两个交点,由图象可知当0<a<1时两函数图象只要一个交点,不契合;当a>1时,由于函数y=(a>1)的图象过点(0,1),而直线y=x+a所过的点(0,a)一定在点(0,1)的上方,所以函数(a>1)与y=x a的图象一定有两个交点.所以实数a的取值范围是{a|a>1}.11.A 解析:在同一坐标系中区分画出函数=|3|和=a的图象.如下图.可知方程解的个数为0,2,3或4,不能够为1.12.B 解析:假定设每天从报社买进x(250≤x≤400,x∈N)份晚报,那么每月共可销售(20x+10×250)份,每份可获利润0.10元,退报答社10(x250)份,每份盈余0.15元,树立月利润函数f(x),再求f(x)的最大值,可得一个月的最大利润.设每天从报社买进x份晚报,每月取得的总利润为y元,那么依题意,得y=0.10(20x+10×250)0.15×10(x250)=0.5x+625,x∈[250,400].∵函数y=0.5x+625在[250,400]上单调递增,∴当x=400时,=825.即摊主每天从报社买进400份晚报时,每月所取得的利润最大,最大利润为825元.13.(∞,1) 解析:函数f(x)=+ax+a1的两个零点一个大于2,一个小于2,即f(2)<0,可求得实数a的取值范围是(∞,1).14.y=解析:1年后,世界人口数为54.8(1+x);2年后,世界人口数为54.8(1+x)(1+x)=;3年后,世界人口数为(1+x)=;…;19年后,即2021年底,世界人口数为y=.15.2 解析:如图,由于函数与函数的图象有2个交点,所以方程有2个实数根.16.560.4 解析:设消费金额为x元,应付款为y元,由题意可知,y=当200<x≤500时,180<y≤450;当x>500时,y>450.由于168<180,所以第一次购物的消费金额为168元.由于180<423<450,所以第二次购物的消费金额为=470(元).所以两次的消费金额为x=168+470=638>500,所以假定他只去一次购置异样的商品,那么应付款y=0.8×(638-500)+0.9×500=560.4(元).17.解:(1)∵f(x)的两个零点区分是-3和2,∴函数图象过点(-3,0),(2,0),∴有9a-3(b-8)-a-ab=0,①4a+2(b-8)-a-ab=0,②①②得b=a+8.③③代入②得4a+2a-a-a(a+8)=0,即+3a=0.∵a≠0,∴a=-3,∴b=a+8=5.∴f(x)=--3x+18.(2)由(1)得f(x)=--3x+18=-3+18,其图象启齿向下,对称轴是直线x=-.∴函数f(x)在[0,1]上为减函数.∴=f(1)=12,=f(0)=18,∴函数f(x)的值域是[12,18].18.解:(1)依题意,由于课桌高度y是椅子高度x的一次函数,故可设y=ax+b〔a≠0〕,将给出的契合条件的两套课桌椅的高度代入上述函数关系式,得解得所以y与x的函数关系式是y=1.6x+11.(2)配套.理由:将x=42.0代入(1)中的函数关系式得y=1.6×42.0+11=78.2,因此给出的这套课桌椅是配套的.19.解:(1)当每辆车的月租金定为3 600元时,未租出的车辆数为=12,所以这时可租出88辆车.(2)设每辆车的月租金定为x元,那么租赁公司的月收益为f(x)=(x-150)-×50.整理得f(x)=-+162x-21 000=-(x-4 2+307 050.所以,当x=4 050时,f(x)最大,最大值为f(4 050)=307 050.即当每辆车的月租金定为4 050元时,租赁公司的月收益最大,最大月收益为307 050元.20.解:f(1)=-1<0,f(2)=4>0,由f(1)f(2)<0,知函数+3x-6在内有零点,方程+3x-6=0在内有解.取的中点1.5,f(1.5)≈1.328 43>0.又f(1)<0,由f(1)·f(1.5)<0,知方程+3x-6=0在内有解.如此下去,失掉方程实数解所在的区间的表如下:左端点右端点第1次 1 2第2次 1 1.5第3次 1 1.25第4次 1.125 1.25第5次 1.187 5 1.25由于|1.25-1.187 5|<0.1,所以在区间[1,2]内,+3x-6=0的一个近似解可以为1.25.21.证明:设f(x)=+bx+c,∵+c=0,+c=0,即+c=,+c=,∴=·=.∵,∴a≠0.又≠0,≠0,∴<0,即<0,故方程f(x)=0在与之间有实数根.假定在与之间有两个实数根,那么必有>0,矛盾,故方程+bx+c=0有且仅有一实数根介于与之间.22.解:(1)依据表中数据,表述西红柿种植本钱Q与上市时间t的变化关系的函数不是单调函数,这与函数Q=at+b,Q=a·,Q=a·均具有单调性不符,所以,在a≠0的前提下,可选取二次函数Q =+bt+c停止描画.〔2〕把表格提供的三对数据代入+bt+c失掉解得所以,西红柿种植本钱Q与上市时间t的函数关系是Q=t+.当t==150天时,西红柿种植本钱Q最低为Q=×150+=100(元/100 kg).。
高一年级数学必修一函数应用题及答案

高一年级数学必修一函数运用题及答案【导语】心无旁骛,全力以赴,争分夺秒,坚强拼搏脚踏实地,不骄不躁,长风破浪,直济沧海,我们,注定成功!作者高一频道为大家推荐《高一年级数学必修一函数运用题及答案》期望对你的学习有帮助!一、挑选题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设U=R,A={x|x>0},B={x|x>1},则A∩?UB=()A{x|0≤x<1}B.{x|0C.{x|x1}【解析】?UB={x|x≤1},∴A∩?UB={x|0【答案】B2.若函数y=f(x)是函数y=ax(a>0,且a≠1)的反函数,且f(2)=1,则f(x)=()A.log2xB.12xC.log12xD.2x-2【解析】f(x)=logax,∵f(2)=1,∴loga2=1,∴a=2.∴f(x)=log2x,故选A.【答案】A3.下列函数中,与函数y=1x有相同定义域的是()A.f(x)=lnxB.f(x)=1xC.f(x)=|x|D.f(x)=ex【解析】∵y=1x的定义域为(0,+∞).故选A.【答案】A4.已知函数f(x)满足:当x≥4时,f(x)=12x;当x<4时,f(x)=f(x+1).则f(3)=()A.18B.8C.116D.16【解析】f(3)=f(4)=(12)4=116.【答案】C5.函数y=-x2+8x-16在区间[3,5]上()A.没有零点B.有一个零点C.有两个零点D.有无数个零点【解析】∵y=-x2+8x-16=-(x-4)2,∴函数在[3,5]上只有一个零点4.【答案】B6.函数y=log12(x2+6x+13)的值域是()A.RB.[8,+∞)C.(-∞,-2]D.[-3,+∞)【解析】设u=x2+6x+13=(x+3)2+4≥4y=log12u在[4,+∞)上是减函数,∴y≤log124=-2,∴函数值域为(-∞,-2],故选C.【答案】C7.定义在R上的偶函数f(x)的部分图象如图所示,则在(-2,0)上,下列函数中与f(x)的单调性不同的是()A.y=x2+1B.y=|x|+1C.y=2x+1,x≥0x3+1,x<0D.y=ex,x≥0e-x,x<0【解析】∵f(x)为偶函数,由图象知f(x)在(-2,0)上为减函数,而y=x3+1在(-∞,0)上为增函数.故选C.【答案】C8.设函数y=x3与y=12x-2的图象的交点为(x0,y0),则x0所在的区间是()A.(0,1)B.(1,2)C(2,3)D.(3,4)【解析】由函数图象知,故选B.【答案】B9.函数f(x)=x2+(3a+1)x+2a在(-∞,4)上为减函数,则实数a的取值范畴是()A.a≤-3B.a≤3C.a≤5D.a=-3【解析】函数f(x)的对称轴为x=-3a+12,要使函数在(-∞,4)上为减函数,只须使(-∞,4)⊆(-∞,-3a+12)即-3a+12≥4,∴a≤-3,故选A.【答案】A10.某新品牌电视投放市场后第1个月销售100台,第2个月销售200台,第3个月销售400台,第4个月销售790台,则下列函数模型中能较好反应销量y与投放市场的月数x之间的关系的是()A.y=100xB.y=50x2-50x+100C.y=50×2xD.y=100log2x+100【解析】对C,当x=1时,y=100;当x=2时,y=200;当x=3时,y=400;当x=4时,y=800,与第4个月销售790台比较接近.故选C.【答案】C11.设log32=a,则log38-2log36可表示为()A.a-2B.3a-(1+a)2C.5a-2D.1+3a-a2【解析】log38-2log36=log323-2log3(2×3)=3log32-2(log32+log33)=3a-2(a+1)=a-2.故选A.【答案】A12.已知f(x)是偶函数,它在[0,+∞)上是减函数.若f(lgx)>f(1),则x的取值范畴是()A.110,1B.0,110∪(1,+∞)C.110,10D.(0,1)∪(10,+∞)【解析】由已知偶函数f(x)在[0,+∞)上递减,则f(x)在(-∞,0)上递增,∴f(lgx)>f(1)⇔0≤lgx<1,或lgx<0-lgx<1⇔1≤x<10,或0或110∴x的取值范畴是110,10.故选C.【答案】C二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上)13.已知全集U={2,3,a2-a-1},A={2,3},若?UA={1},则实数a的值是________.【答案】-1或214.已知集合A={x|log2x≤2},B=(-∞,a),若A⊆B,则实数a的取值范畴是(c,+∞),其中c=________.【解析】A={x|0【答案】415.函数f(x)=23x2-2x的单调递减区间是________.【解析】该函数是复合函数,可利用判定复合函数单调性的方法来求解,由于函数y=23u是关于u的减函数,所之内函数u=x2-2x的递增区间就是函数f(x)的递减区间.令u=x2-2x,其递增区间为[1,+∞),根据函数y=23u是定义域上的减函数知,函数f(x)的减区间就是[1,+∞).【答案】[1,+∞)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 函数的应用
一、选择题
1.函数f (x )=6x 2-5x -1的零点是( ).
A .31或21
B .1或-61
C .2或3
D .1或-6
2.函数f (x )=x 4-2x +1的一个零点是( ).
A .-1
B .0
C .1
D .2
3.下列四个函数的图象中,在区间(0,+∞)上有零点的是(
).
① ② ③ ④ A .①② B .①③④ C .②④ D .①④
4.下列判断正确的是( ).
A .二次函数一定有零点
B .奇函数一定有零点
C .偶函数一定有零点
D .以上说法均不正确 5.下列各函数的图象与x 轴均有交点,但不宜用二分法求零点近似值的是(
).
A B C D
6.用二分法求函数f (x )=x 3+x 2-2x -1的一个正零点,可选作计算的初始区间的是( ).
A .[-1,1]
B .[0,1]
C .[1,2]
D .[2,3]
7.函数y =log a x (a >0,a ≠1)有( )个零点.
A .1
B .2
C .3
D .不能确定
(第3题)
8.方程x3 +ax2-(a2+1)x = 0的根的个数是().
A.1 B.2 C.3 D.不能确定
9.若2是函数f(x)= x2+ax-6的一个零点,则实数a的值为().
A.-1 B.1 C.-3 D.3
10.某水果批发市场规定:批发水果不少于100千克时,批发价为每千克2.5元,小王携带现金3000元到市场采购水果,并以批发价买进水果x千克,小王付款后剩余现金为y元,则x与y之间的函数关系为().A.y=3 000-2.5x,(100≤x≤1 200) B.y=3 000-2.5x,(100<x<1 200)
C.y=3 000-100x,(100<x<1 200) D.y=3 000-100x,(100≤x≤1 200)
二、填空题
11.函数f(x)=x3-x的零点是__________________.
12.若函数f(x)=ax2+2x-1一定有零点,则实数a的取值范围是___________.
13.已知函数f(x)=2mx+4在区间[-2,1]上存在零点,则实数m的取值范围是______.
14.用二分法求函数f(x)=x3-2x-5的一个零点时,若取区间[2,3]作为计算的初始区间,则下一个区间应取为.
15.已知函数f(x)=ax2+bx+c的两个零点是-1和2,且f(5)<0,则此函数的单调递增区间为.
16. 某卡车在同一时间段里的速度v(km/h)与耗油量Q(kg/h)之间有近似的函数关系式Q=0.002 5v2-0.175v+
4.27,则车速为km/h时,卡车的油耗量最少.
三、解答题
17.若二次函数f(x)=-x2+2ax+4a+1有一个零点小于-1,一个零点大于3,求实数a的取值范围.
18. 设f(x)和g(x)的图象在[a,b]上是连续不断的,且f(a)<g(a),f(b)>g(b),试证明:在(a,b)内至少存在一点x0,使f(x0)=g(x0).
19.若一次函数f(x)=kx+1-3k在区间[1,2]内有零点,求实数k的取值范围.
20. 说明函数f(x)=x3-3x+1在区间(1,2)内必有零点,并用二分法求出一个零点的近似值(误差不超过0.01).
第三章 函数的应用
参考答案
一、选择题
1.B 解析:令f (x )=6x 2-5x -1=0,得x 1=1,x 2=-6
1. 2.C 解析:将-1,0,1,2分别代入到f (x )=x 4-2x +1中,只有f (1)=0,故答案选C .
3.D
解析:函数有零点,即存在自变量x 0,使得f (x 0)=0,反映在图象上就是与x 轴有交点.本题要求在区间(0,+∞)上有零点,即交点在x 轴的正半轴上.
4.D 解析:二次函数、奇函数、偶函数都有可能无零点,故以上说法均不正确.
5.B
解析:因为在零点附近的函数值都为正值,而二分法是通过零点附近函数值异号进行求解的.
6.C
解析:∵f (1)=-1<0,f (2)=7>0,∴函数f (x )=x 3+x 2-2x -1的一个正零点一定在区间[1,2]里.
7.A 解析:0<a <1时,1个;a >1时,1个.
8.C 解析:令x 3+ax 2-(a 2+1)x =0,可求出三个根.
9.B 解析:由f (2)=0得a =1.
10.A 解析:B 选项函数的定义域有误,C ,D 选项函数的解析式不对.
二、填空题
11.0,-1,1. 解析:令f (x )=x 3-x =0,可求得.
12.a ≥-1. 解析:若函数f (x )=ax 2+2x -1一定有零点,则方程ax 2+2x -1=0一定有实根, 故a =0或a ≠0且方程的判别式大于等于零.
13.(-∞,-2]∪[1,+∞).
解析:因为函数f (x )=2mx +4在区间[-2,1]上存在零点,其图象是一条线段,所以f (-2)f (1)≤0,可求实数m 的取值范围是(-∞,-2]∪[1,+∞).
14.[2,2.5].
解析:若取区间[2,3]作为计算的初始区间,则下一个区间应取为[2,2.5]或[2.5,3],由于f (2)f (2.5)<0,故取[2,2.5].
15.函数的单调递增区间为 (-∞,2
1). 解析:∵f (-1)=0,f (2)=0,f (5)<0,∴a <0,
a b =-1∴-a b 2=21,函数的单调递增区间为 (-∞,21). 16.35.
解析:Q =0.002 5y 2-0.175y +4.27在x =35处取得最小值.
三、解答题
17.解:因为二次函数f (x )=-x 2+2ax +4a +1的图象开口向下,且在区间(―∞,
―1),(3,+∞)
内各有一个零点,所以 , 解得a >54. 18.解:设F (x )=f (x )-g (x ),则F (x )的图象在[a ,b ]上是连续不断的.
因为f (a )<g (a ),f (b )>g (b ),所以F (a )·F (b )<0.
因此F (x )在(a ,b )内至少存在一个零点,设为x 0.即F (x 0)=0,也即f (x 0)=g (x 0).
19.当 f (1)·f (2)≤0时函数f (x )在区间[1,2]内有零点,解得k ∈1,12⎡⎤⎢⎥⎣⎦,所以实数k 的取值范围为1,12⎡⎤⎢⎥⎣⎦
. 20.由于f (x )=x 3-3x +1在区间[1,2]上的图象是连续不间断的,且f (1)·f (2)=-3<0,所以函数f (x )在区间(1,2)内必有零点.
取区间[1,2]作为计算的初始区间,用二分法逐次计算,列表如下:
由上表可知x 6=1.539 062 5可作为所求函数的误差不超过0.01的一个零点的近似值.
f (-1)>0 f (3)>0。