高锰钢形变过程中加工硬化机理的研究

合集下载

高锰钢的加工硬化

高锰钢的加工硬化

浅谈高锰钢的加工硬化
加工硬化是高锰钢的重要特征。

铸态高锰钢经水韧处理后形成单一的奥氏体组织,该组织硬度仅为170~230HB。

但是经过形变后奥氏体高锰钢的形变层内表现出的加工硬化现象,变形层的硬度可以达到500~800HB。

铸件的硬化层与冲击载荷的大小和形态、组织状态、化学成分、塑性性能、强度性能、形变速度等因素有关。

硬化层具有很高的硬度和良好的韧性,这种性能使硬化层具有高的抗冲击疲劳性能和高的抗磨料削损和形变磨损。

在表层硬化层被磨耗的同时外部冲击载荷又使硬化层连续不断地向钢的内部发展。

当高锰钢组分和外部载荷条件确定后,钢表面硬化层的硬度变化规律就确定,且这个规律不受表层磨损的影响而一直延续下去。

高锰钢在外载荷作用下产生的这种形变强化,通常称之为加工硬化。

该加工硬化最大的特点是在强冲击磨料磨损条件下,钢的表面通过形变强化具有很高的耐磨性。

实践中,越靠近表层,硬度分布急剧升高;越靠近基体内部,硬度分布趋于平缓。

硬化层下面仍是软韧的奥氏体组织。

这种硬度分布反映了钢表层的塑性变形程度,钢表层塑性变形量的分布与硬度分布有近似的规律,形变程度越高,硬度越高。

钢的表面这种塑性形变能够较好地吸收外部冲击载荷产生的冲击功。

从高锰钢加工硬化后的显微组织看,硬化层最外层的显微组织发生了很大变化,晶粒成为扁平状,滑移线数量很多,且不同的晶粒滑移线有不同的方向,从表层向内部发展,随变形程度的降低,晶粒变形程度减小,滑移线也减小。

高锰钢形变过程中加工硬化机理的研究

高锰钢形变过程中加工硬化机理的研究
第4 3 卷 第 1 2 期 2 0 1 6年 1 2月





报 (自 然 科 学 版 )
Vo1 .4 3, No .1 2
De c .2 0 1 6
J o u r n a l o f Hu n a n Un i v e r s i t y ( Na t u r a l S c i e n c e s )
高锰钢属于fcc结构晶体中的滑移系较多在变形初期晶粒内部的滑移系大量启动位错则通过滑移累积重排湮灭等方式在基体中形成大量平直的位错墙和位错胞2随着变形的增大位错不断增殖位错单个或多个连续分布或塞积于晶界处大量塞积的位错群引起应力集中当局部的切应力达到孪晶生成的临界切应力时高锰钢开始以孪生的形式进行塑性变形
t he mi c r o s t r uc t ur e e v o l ut i on a n d wo r k ha r d e n i ng me c ha n i s m o f ZGM nl 3 Cr 2 Ha d f i e l d s t e e l we r e a n a l y z e d by o pt i c a l mi c r o s c op e,v i c ke r s mi c r o — ha r d ne s s ma c hi n e, t r a ns mi s s i o n e l e c t r o n mi c r o s c o py a nd X- r a y d i f — f r a c t i o n.The t e s t r e s ul t s s ho w t h a t a l a r ge n umbe r of de f o r ma t i o n ba nd s a p pe a r e d i n t he g r a i n s o f c o m— pr e s s e d hi g h ma ng a ne s e s t e e l s .The d e f or ma t i on ba nds i n t e r s e c t e d,t a n gl e d a nd i s ol a t e d wi t h e a c h o t he r

高锰钢的性能特点及强化原理

高锰钢的性能特点及强化原理

《材料冶金学》专题之一高锰钢的性能特点及强化原理1概述自Hadfield 1882年发明高锰钢以来,至今已有100多年的历史。

高锰钢一般是指含碳量为0 9%~1 3%,含锰量为11 0%~14 0%的铸钢,即ZGMn13。

此材料在1000~1100℃之间为单一奥氏体组织,为保持此组织,需高温淬火,即在1100~1050℃间的温度内立即水淬至常温。

经过处理后的材料具备很好的韧性,受冲击载荷时发生表面硬化,其具有很高的耐磨性,故称之为耐磨钢。

因此高锰钢被广泛应用于机械制造、冶金、矿山、建材、电力和铁路等部门所使用的金属耐磨体,如挖掘机斗齿、球磨机衬板、破碎壁、轧臼壁、拖拉机履带板、风扇磨冲击板、破碎机颚板、铁道路岔等。

但由于此材料加工硬化快,不易切削加工,一般只限于铸造。

2高锰钢的性能特点2.1高锰钢的机械性能高锰钢的铸态组织是由奥氏体、碳化物、珠光体和通常存在的少量磷共晶等所组成。

碳化物数量多时会在晶界上以网状出现,钢的性能很脆。

这种低塑性、低韧性的钢在铸态下是无法使用的。

但通过固溶处理(即水韧处理)后,在强冲击工况下它变成一种高强度、高塑性、韧性好、特别耐磨的材料。

其性能对比如表1:σb (Mpa)σ0.2(Mpa)δ(%)αKJ/cm2HB铸态性能343.23―392.27 294.20―490.330.5―59.80―29.42200―300水韧处理性能617.82―1274.86343.23―470.7215―85196.13―294.20180―225表1:高锰钢在铸态下和水韧处理后性能对比以上是高锰钢在常温下的各种机械性能,但具有奥氏体组织的高锰钢在加热时会发生组织转变,性能会发生很大的变化。

当温度超过125℃时,在奥氏体中开始有碳化物析出。

随着温度的提高析出量增加,钢的性能变脆,塑、韧性下降。

图1是高锰钢经1050℃水韧处理后加热温度和延伸率的关系;图2是化学成分为 C1.12%, Mn13.56%, Si0.63%, S0.012%,P0.092%, Ti0.06%的高锰钢,经水韧处理后加热到不同温度,保温5小时水冷后测得的冲击韧性。

高锰钢爆炸硬化技术研究

高锰钢爆炸硬化技术研究

高锰钢爆炸硬化技术研究
道岔是铁路轨道结构的关键部件,是使列车从一股轨道转到另一股轨道所必须的线路设备。

随着列车运行速度的日益提高,道岔主要部件磨损严重,针对这一现状,急需寻求一种新的生产和加工工艺,用于提高道岔材料的耐磨性能。

多年来人们一直设想如果能在高锰钢铸件使用之前在钢的表面形成一个具有一定硬度和深度的硬化层,则高锰钢铸件的耐磨性必然可以提高。

高锰钢变形后硬度很高而且要求硬化层比较厚,用一般的生产加工硬化的方法是无法形成的。

而爆炸硬化却能在极短的时间之内以巨大的能量和压力作用到钢的表面上,使其硬化,达到使用要求。

本文通过对高锰钢材料进行爆炸硬化处理,然后对其组织和性能进行分析,提出了高锰钢材料爆炸硬化的微观机制。

对同种炸药相同药量分两次爆炸和一次爆炸的效果进行比较,发现采用二次爆炸比一次爆炸无论表面强度还是硬化深度都有明显改进。

同时对硬化前、后高锰钢的撞击磨损性能进行了测试。

实验表明:在低硬度磨料(玻璃砂)撞击磨损时,爆炸硬化使高锰钢的撞击耐磨性提高20%~38%。

在高硬度磨料(鹅卵石)撞击磨损时,在撞击功小于1.7J的条件下,爆炸硬化使高锰钢的撞击耐磨性提高43~56%。

在撞击功大于1.7J的条件下,爆炸硬化则使高锰钢的撞击耐磨性降低。

爆炸硬化使高锰钢表层硬化和撞击韧性降低是撞击耐磨性发生变化的主要原因。

爆炸硬化高锰钢适用于低硬度磨料的撞击磨损及高硬度磨料的低撞击功撞击磨损的工况条件。

高锰钢热变形行为研究

高锰钢热变形行为研究
中图 分 类 号 : T G 1 4 2 . 7 2 文献标志码 : A
Re s e a r c h o n t h e Th e r ma l De f o r ma t i o n Be h a v i o r o f Hi g h Ma n g a n e s e S t e e l
Z G Mn l 3高 锰 钢 具 有 加 工 硬 化 的 重 要 特 征 ,
作 为 一种 传统 的耐 磨 材 料 , 以其 优 异 的耐磨 损 性 能广 泛应 用 于冶 金 、 矿 山、 建材 、 铁路 、 电力 、 煤 炭 等机 械 装 备 中 』 。然 而, 高 锰 钢 铸 件 凝 固 收 缩 大, 散热性差 , 铸 造 过 程 中极 易 出现 裂 纹缺 陷 , 严 重 影 响产 品质 量和 生产 效率 。承受 高 冲击载 荷 的 高 锰钢 铸 件往 往 因 裂 纹 造成 非 正 常失 效 , 导致 产 品寿命 降低 。 因此 , 研 究 高 锰 钢 铸 件 裂 纹产 生 的
《 大 型铸锻件》
HEAV Y C AS T I NG AND F 0 RGI NG
No. 5 S e p t e mb e r 2 0 1 3
高锰 钢 热 变 形 行 为研 究
王 殉 董 治 中 陈席 国 刘 晨 曦
( 1 . 中国一 重天津重型装备工程研究有 限公 司 , 天津 3 0 0 4 5 7 ; 2 . 中国一重能源装备材 料科 学研究所 , 天津 3 0 0 4 5 7 )
ma n g a n e s e s t e e l( ma s s f r a c t i o n ,% )
c s j Mn P S C r Mo V T i
Wa ng Xun,Do ng Zh i z ho ng,Che n Xi g uo, Li u Ch e n x i

Mn13高锰钢抗磨损机理

Mn13高锰钢抗磨损机理

Mn13高锰钢抗磨损机理
(1)形变诱发马氏体说
高锰钢在表面脱碳或在高应力作用下也可能发生马氏体转变。

(2)孪晶说
高锰钢的锤击变形主要通过孪晶进行,孪晶片分割奥氏体基体及孪晶界阻碍位错运动是加工硬化的主要原因。

(3)层错说
高锰钢即使在-196℃压缩变形至断裂,仍保持f.c.c 奥氏体结构。

其变形痕迹是堆垛层错,从而认为层错是加工硬化的主要原因
(4)动态应变时效说
造成高锰钢加工硬化的主要原因是动态应变时效。

(5)综合作用说
高锰钢的加工硬化是下述多种因素综合作用的结果:①高位错密度区强化;②动态应变时效强化;③形变孪晶强化;④形变诱发马氏体强化。

这几种机理都起作用,但根据应力、应变条件及合金物化性能的不同,其中可能一种或几种因素起主要作用。

Mn13钢板具有良好塑韧性,易于加工成型,表面经冲击后,由于围观组织变化,表面硬度迅猛升高,从而表现出优异的耐磨性能。

随着表面的逐渐磨损,内部组织逐渐发生转变,使钢板表面持续拥有良好抗耐磨性能。

上海频开实业有限公司位于国内现有规模较大的钢材市场——乐从钢铁世界,是涟钢战略客户,主营产品有耐磨钢、高强度钢板、工程机械用钢、汽车大梁钢、冷轧高强车厢板、耐候钢、耐酸钢和中高碳钢等特殊钢,公司在上海、武汉、娄底、佛山均有库存,常备万吨库存,品种规格全,可定期货,是集原材料供应、加工、配送于一体的现代化企业。

高锰钢爆炸硬化技术在工程中的应用

高锰钢爆炸硬化技术在工程中的应用

几十年来 , 国内外 的学者对高锰 钢爆炸 硬化机理
的研究做了大量的工作 。 目前 , 对 于高锰钢爆炸硬化
的宏 观机理 已达成 一致 共识 。 即: 当炸药在 高锰 钢表
面爆炸后 , 爆炸形成的冲击波向工件内传播 , 从而在 工件内部形成激波, 在此激波作用下 , 工件表面下一 定 范围 内发生 塑形变形 或结 构变 化 , 因此 , 在宏 观上
作者简 介 : 葛贵伟 ( 1 9 8 3 一 ) , 男, 工程 师 , 学士 , 2 0 0 5年
毕业 于安 徽理 工大 学弹药工程 与爆 炸技 术专 业 ,现在 中煤
国际工程 集 团沈 阳设计 研究 院民爆工程设计 所工作 。
E蟊瑟 墓誊
露天采矿 投木 2 0 1 3 年 第8 期
市场潜 力 , 在 当前 建设 节约 型、 环保 型社 会 中意 义十 分重要 。
2 高锰钢 爆炸 硬化 机理
爆 炸硬化 是在爆 炸加 工领 域 中应用 而 产生 的新
型加工工艺 ,是利用炸药爆炸瞬间产生的高能量 冲 击波作用于待爆工件 ,使高锰钢工件的表面和一定 深度范围内产生硬化效果 , 进而改善和提高工件 的 机械性能和耐磨性 , 延长工件的使用寿命 。目前 , 该 工艺 已广泛应 用 于高锰 钢矿 山耐 磨件 、 铁路 辙叉 、 采
金船 挖斗斗唇 等 易磨损 工件 的硬 化处理 上 。 自1 9 5 5年 , 美 国人 N o r m a n A l e x a n d e r Me l e o d提 出采 用爆炸 预硬 化法 以来 ,经过半 个多世纪 的发 展 , 高锰钢爆炸硬化理 论和硬化 技术逐 渐趋于成熟 , 应用 越来 越广泛 。我 国对爆炸 硬化技术 的研究始 于 2 0 世 纪6 0 年代初期 , 铁道部门对铁路辙叉进行 了爆炸硬化 试验 研究 ; 8 0年代 , 在 中科 院力 学 所 、 铁 道科 学研 究

浅论高锰钢现状及今后发展(一)

浅论高锰钢现状及今后发展(一)

浅论高锰钢现状及今后发展(一)论文关键词]加工硬化机理常见问题现状发展应用论文摘要]本文通过分析加工硬化机理、高锰钢生产中的常见问题等方面系统论述了高锰钢的现状,从生产工艺方面论述了高锰钢今后发展的情况,并进一步对高锰钢的应用进行了阐述。

高锰钢俗称“耐磨钢”,被广泛的应用于各个行业的许多耐磨件上。

随着对磨损机理研究的深入发展,人们对高锰钢的特性也了解的更透彻。

一、高锰钢加工硬化机理高锰钢原始硬度很低,而加工硬化能力很强,在使用中硬度提高,形变速度越快,硬化效果显著,硬度也越高,目前强化机理有以下几种:1.位错强化机制:高锰钢是大量Mn原子置换铁原子,显著降低层错能,因而易于形变,使位错密度增高,形成堆垛层错和形变亚结构,呈现加工硬化现象。

2.形变孪晶机制:高锰钢拉伸后,硬化区出现层状孪晶,硬度达HV460。

经重锤锤击后出现层状孪晶及位错缠结达HV500。

爆炸硬化时出现复合孪晶,硬度提高,硬化层加厚。

3.形变马氏体机制:从热力学角度讲,合金快速冷至Ms点以下可获得马氏体,而在Ms点以下存在Md点,在Ms——Md之间因应力作用可产生形变马氏体。

一般Ms点低于200℃。

Mn量为12%时,Ms点为-230℃以下,因此室温下一般变形的高锰钢不会产生形变诱发马氏体。

如果钢中碳量降至0.8%时,在室温下也没能发现形变马氏体,而在-196℃低温下可出现δ.θ马氏体,改变高锰钢中的含锰量,将锰量降至4%,室温形变后有ε.δ马氏体产生,常规成分高锰钢固溶后经50%的变形量形变,硬度已达到较高数值,变值量增至35%时,发现有少量(约1.4%)δ马氏体,其间硬度变化与δ马氏体量的增加速度不一致,这样较大变形量的试验,也间接证明硬化主要原因不是由于产生了δ马氏体。

以前关于发现马氏体的报导,可能是高锰钢在空气炉中高温加热,造成表面碳、锰降低,或是加热不足,局部贫碳,促使形变马氏体出现。

根据这个机理,现在已有将高锰钢进行表面控制脱碳,使得在水韧处理后产生马氏体,用以强化高锰钢,提高耐磨性的报导。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高锰钢形变过程中加工硬化机理的研究∗张福全;何翠;周惦武【摘要】采用Gleeble-3500试验机对ZGMn13Cr2高锰钢进行0.1 s-1应变速率下的室温压缩实验,应变量分别为5%,30%和50%.利用金相显微镜、维氏显微硬度机、XRD 和TEM等方法,研究了压缩变形量对 ZGMn13Cr2显微组织衍变及加工硬化机制的影响.结果表明:高锰钢压缩变形后晶粒内出现大量变形带,变形带相互交叉、缠结、割截.压缩变形量为5%时,高密度位错相互缠结呈位错胞或者位错墙,压缩变形量为30%时,基体内出现形变孪晶,随着变形量的进一步增大,孪晶的密度和体积分数增大,水韧态高锰钢在压缩变形量为50%的条件下,其显微硬度与初始态相比提高了125%,达到 HV560.8.XRD 结果显示,压缩变形后基体组织为奥氏体和少量的碳化物,未发现相变诱发马氏体组织.随着变形量的增大,高锰钢加工硬化机理由位错强化机制向形变孪晶强化为主、位错+少量层错强化机制为辅的机制转变.%Compression test of ZGMn13Cr2 Hadfield steel was carried out by Gleeble-3500 thermal sim-ulator at the deformation temperature of 298 K under a constant loading strain rate of 0.1 s-1 and with the compressive deformation of 5%,30%,and 50%,respectively.The effects of compressive deformations on the microstructure evolution and work hardening mechanism of ZGMn13Cr2 Hadfield steel were analyzed by optical microscope,vickers micro-hardness machine,transmission electron microscopy and X-ray dif-fraction.The test results show that a large number of deformation bands appeared in the grains of com-pressed high manganese steels.The deformation bands intersected,tangled and isolated with each other. A great deal of high density dislocation was entangledinto dislocation cells or dislocation walls with the compression amount of 5%.Deformation twins appeared in the matrix when the compression amount was30%.With the increasing of compressive deformation,the amount and volume fraction of the twins in-creased gradually.When the compression amount was 50%,the micro-hardness of water-quenched high manganese steel increased by 125% compared with the initial state,showing HV560.8.Meanwhile,XRD results show that the matrix structure remained austenite and with a bit of carbide,but no deformation-in-duced martensites were founded in these deformed samples.With the increasing of compressive deforma-tion,work hardening mechanisms of Hadfield steel changed from dislocation strengthening into mainly rel-ying on deformation twin supplemented by dislocation and stacking fault mechanisms.【期刊名称】《湖南大学学报(自然科学版)》【年(卷),期】2016(043)012【总页数】6页(P11-16)【关键词】高锰钢;加工硬化机理;压缩变形量;组织;性能【作者】张福全;何翠;周惦武【作者单位】湖南大学材料科学与工程学院,湖南长沙 410082;湖南大学材料科学与工程学院,湖南长沙 410082;湖南大学汽车车身先进设计制造国家重点实验室,湖南长沙 410082【正文语种】中文【中图分类】TG145高锰钢因具有高强度、高韧性、高耐磨性、良好的加工硬化能力而广泛地应用于矿山机械、铁路、冶金、电力等承受冲击载荷的设备中.近年来为提高高锰钢铸件在实际应用中的加工硬化能力和耐磨性,研究者在合金化、表面预硬化等方向做出了大量的努力.如许云华等[1]、冯晓勇[2]利用高速重击的方式获取表面纳米化晶层,提出了纳米晶强化机制.胡晓艳[3]利用爆炸硬化技术获得了表层含高密度位错和孪晶等微观缺陷的加工硬化层.但是,关于高锰钢的加工硬化机制,多年来并没有统一的说法,除了形变诱发马氏体相变硬化说[4]被大多数学者否定之外,还有孪晶硬化说[5-8]、位错硬化说[9]、Fe-Mn-C原子团硬化说[10]、综合硬化说[11]、纳米晶与非晶相镶嵌硬化说[12]等.目前针对高锰钢的研究主要在低应变速率(10-2 s-1以下)[13]、小能量多次冲击[14]的工况下进行,这与高锰钢承受较高能量和高应变速率的实际工况不符.本文则采用Gleeble-3500热模拟机对高锰钢在较高应变速率、较大变形量条件下进行压缩实验,探究其加工硬化规律及机制,为实际应用中充分发挥高锰钢的耐磨性和加工硬化能力提供理论依据.实验材料为ZGMn13Cr2,其主要化学成分见表1.采用中频炉熔炼,树脂石英砂造型,浇注标准Y形试块.为获得碳化物分布均匀、综合性能优良的奥氏体组织,试块在真空管式炉内(GSL1600)加热至650 ℃保温1.5 h,再以相同的升温速率升至1 080 ℃保温1.5 h后进行水韧处理,经线切割加工成Ф6 mm×9 mm的热模拟标准试样.热模拟压缩实验在Gleeble-3500型试验机上进行,压缩过程中抽真空.试验采用中轴压缩的方式,为减少摩擦力,试样与压头之间添加润滑油,为防止润滑油污染压头,压头和试样之间垫钽片,变形过程全部由微机处理系统控制并自动采集有关数据,最后以表格形式输出载荷-行程和真应力-真应变等数据.热模拟压缩实验方案如下:变形温度为298 K,应变速率为0.1 s-1,变形量分别为5%, 30%和50%.利用OM, XRD(RigakuD/max2550V)及TEM(F20)对经不同应变量变形后的试样进行微观组织结构表征,利用HV-1000显微维氏硬度计测量高锰钢经压缩后的硬度.金相样品的制备过程:试样机械磨平抛光后,用4%硝酸和盐酸酒精反复擦拭腐蚀80~90 s;TEM样品的制备过程:机械抛光研磨至70~80 m后,冲成Φ3 mm薄片,再减薄至40 m,液氮冷却至-30 ℃以下,采用3%HClO4+97%CH3COOH溶液进行电解双喷,双喷电压为75 V,电流为45 mA.2.1 真应力-真应变曲线与加工硬化率曲线高的加工硬化能力是高锰钢在实际应用过程中耐冲击耐磨损的重要原因,通过真应力-真应变曲线所获得的加工硬化率(θ=dσdε)曲线,可以很好地反映高锰钢压缩变形过程中内部位错、层错、孪晶等相关的微观缺陷的变化特征[15].图1a为室温下高锰钢在Gleeble-3500机上以0.1 s-1恒应变速率压缩50%后获取的真应力-真应变曲线,图1b为对真应力-应变曲线求一阶导数获得的加工硬化率-真应变曲线,图1c为根据Hutchinson和Ridley[9]在压缩过程中建立的纯位错密度模型拟合出来的加工硬化率曲线,相关函数如下:,ρdis=1.7×1016ε,.将式(2)代入式(1)后求导可得出式(3).其中α为常数;G是剪切模量;b是柏氏矢量.相关文献资料显示[9],α=0.25,G=70 GPa,b=2.64×10-1 nm.从图1a可看出应力随着应变量的增大而增大,曲线可分为3个阶段:0<ε≤5%时为弹性变形阶段,流变应力几乎呈线性迅速增加;5%<ε≤30%为直线硬化阶段,流变应力增加的趋势有所放缓;30%<ε≤50%为抛物线硬化阶段,流变应力增加的趋势进一步减缓.从图1b可看出加工硬化率曲线随着应变的增加先快速递减,在约为5%处递增,随着变形的继续,加工硬化率曲线出现了一个平台.对比曲线b与曲线c可以看出在应变量大于5%时,实验测得的加工硬化率曲线较纯位错模型拟合出来的加工硬化率曲线有一个明显的增值,这表明在压缩过程中基体硬化机理发生了变化,高锰钢内部强化机制并非为单一的位错强化机制.经后续的TEM和XRD可以证明由位错强化机制变成位错+层错+孪晶强化机制.2.2 XRD物相分析图2所示是应变速率为0.1 s-1,压缩变形量分别为5%, 30%和50%的XRD衍射图谱,图中显示压缩变形后物相仍为奥氏体和少量碳化物,并未检测到ε-马氏体.随着压缩量的增加,(111)γ衍射峰强度异常增加,而(311)γ和(200)衍射峰强度减小,说明高锰钢晶粒内部发生偏转,产生大量的(111)γ织构;各衍射峰的宽度增加,这是因为高锰钢层错能较低,约为23 mJ/m2[16],压缩变形后层错增加,生成形变孪晶,使晶粒碎化,孪晶的生成以及内应力的增大共同造成了衍射峰加宽这一现象.2.3 压缩量对微观组织的影响2.3.1 金相组织图3是应变速率为0.1 s-1,压缩变形量分别为5%, 30%和50%时高锰钢的显微组织图片.在外部轴向压缩应力的作用下,基体内部出现大量相互交叉、阻滞和割截的变形带.变形量为5%时变形带大多呈平直状,间距较宽(如图3(a)所示).变形量为30%时,变形带密度增大,自身宽度变宽,出现折截状台阶(如图3(b)所示).变形量为50%时,变形带的间距缩短,痕迹加深,密度进一步增大,台阶状变形带明显增加(如图3(c)所示),相互交叉、阻滞和割截的变形带,将基体分割成细小的区域,使得高锰钢的硬度增大,高锰钢加工硬化能力加强.由于光学显微镜下无法清晰地辨别变形带为滑移线还是孪晶,为了更进一步地了解加工硬化的深层次原因和机制,必须对其微观晶体缺陷进行表征.2.3.2 透射电镜组织图4所示为室温下应变速率为0.1 s-1,压缩变形量分别为5%, 30%和50%时高锰钢的透射形貌及特征电子衍射花样.图4(a)为压缩变形量为5%时高锰钢的透射电镜形貌,从图中可看出高密度位错相互缠结呈位错胞或者位错墙;图4(b)(c)(d)是压缩变形量为30%时透射电镜形貌的明暗场及其衍射斑点,从图中可看出基体内出现了形变孪晶和少量层错;图4(e)(f)(g)是压缩变形量为50%时透射电镜形貌的明暗场及其衍射斑点,从图中可看出孪晶衍射斑点强度增大,其密度和体积分数增大.由不同压缩变形量的透射照片可还原静态压缩过程中高锰钢内部微观晶体缺陷的变化情况:高锰钢属于FCC结构,晶体中的滑移系较多,在变形初期晶粒内部的滑移系大量启动,位错则通过滑移、累积、重排、湮灭等方式在基体中形成大量平直的位错墙和位错胞[2],随着变形的增大,位错不断增殖,位错单个或多个连续分布或塞积于晶界处,大量塞积的位错群引起应力集中,当局部的切应力达到孪晶生成的临界切应力时,高锰钢开始以孪生的形式进行塑性变形.随着变形量的继续增大,孪晶体积分数不断增大,位错密度也有所增大,局部区域孪晶中间出现少量的层错,孪晶及层错形成了位错难以逾越的壁垒,这将导致位错运动的阻力增大.综上所述,随着变形量的增大,高锰钢在压缩变形过程中加工硬化机制发生了改变,由位错强化机制逐渐向位错+少量层错+形变孪晶机制转变.2.4 压缩变形量对加工硬化能力的影响硬度是衡量材料软硬程度的一种指标,可通过显微硬度来衡量高锰钢承受静态压缩载荷后样品加工硬化的程度.图5所示是应变速率为0.1 s-1,压缩变形量分别为5%, 30%和50%时的显微硬度变化曲线,硬度值均由5个点求平均值得到.从图中可知经压缩变形后高锰钢显微硬度随变形量的增加近似呈线性增长,水韧态高锰钢在压缩变形量为50%的条件下,其显微硬度与初始态的相比提高了125%,达到HV560.8,由此可知高锰钢在变形量为50%的条件下加工硬化能力得到充分发挥.硬化能力受变形量的影响较大,这与高锰钢在不同压缩变形量时的微观硬化机理不同有关:在变形初期,对应的强化机制为位错强化,所以高锰钢硬度增值较小,加工硬化并没有得到充分发挥.随着压缩变形的继续进行,晶体内应力不断增大,孪晶和层错不断形成,其强化机制为位错+少量层错+孪晶,孪晶和层错对位错的阻滞作用更强,导致一定孪晶内部会形成多系孪晶,孪晶系增多与孪晶重复交割强度加大使得碎化晶粒的尺寸进一步减少,起到细化晶粒的作用,所以材料的硬度不断增加.1)ZGMn13Cr2高锰钢在恒应变速率等温压缩时,流变应力随应变的增大而增加,0<ε≤0.05时为弹性变形阶段,流变应力几乎呈线性迅速增加;0.05<ε≤0.30时为直线硬化阶段,流变应力增加的趋势有所放缓;0.30<ε≤0.50时为抛物线硬化阶段.2)应变速率为0.1 s-1时,压缩量在0%~50%的形变范围内基体为奥氏体和少量碳化物,未发现相变诱发马氏体组织.水韧态高锰钢在压缩变形量为50%的条件下,其显微硬度与初始态的相比提高了125%,达到HV560.8.3)压缩变形量为5%时,基体内部位错密度较高,形成了大量平直的位错墙和位错胞,对应的强化机制为位错强化;压缩变形量为30%时,基体内出现形变孪晶;压缩变形量为50%时,孪晶的密度和体积分数进一步增大,强化机制以形变孪晶强化为主,位错+少量层错为辅.【相关文献】[1] 许云华,陈渝眉,熊建龙,等.冲击载荷下应变诱导高锰钢表层组织纳米化机制[J].金属学报,2001,37(2):165-170.XU Yun-hua, CHEN Yu-mei, XIONG Jian-long,et al. Mechanism of strain-induced nanocrystallization of Hadfield steel under high energy impact load[J]. Acta Metallrugica Sinica, 2001,37(2):165-170. (In Chinese)[2] 冯晓勇.高速重击条件下高锰钢表面纳米晶的制备及组织性能研究[D].秦皇岛:燕山大学材料科学与工程学院,2015:12-19.FENG Xiao-yong. Investigation on the nanocrystallization microstructure and properties of Hadfield steel induced by high speed pounding[D]. Qinhuangdao: College of Materials Science and Engineering, Yanshan University, 2015:12-19.(In Chinese)[3] 胡晓艳.高锰钢爆炸硬化专用炸药与硬化机理的研究[D].合肥:中国科学技术大学工程科学学院,2014:76-79.HU Xiao-yan. Explosive and mechanism of explosion hardening of high manganesesteel[D]. Hefei: School of Engineering Science,University of Science and Technology of China, 2014:76-79. (In Chinese)[4] 张维娜,刘振宇,王国栋.高锰TRIP钢的形变诱导马氏体相变及加工硬化行为[J].金属学报,2010, 46(10):1230-1236.ZHANG Wei-na, LIU Zhen-yu, WANG Guo-dong. Martensitic transformation induced by deformation and work-hardening behavior of high manganese trip steel[J]. Acta Metallrugica Sinica, 2010, 46(10):1230-1236. (In Chinese)[5] IDRISSI H, RENARD K, RYELANDT L, et al. On the mechanism of twin formation in Fe-Mn-C TWIP steels[J]. Acta Materialia, 2010, 58(7):2464-2476.[6] EFSTATHIOU C, SEHITOGLU H. Strain hardening and heterogeneous deformation during twinning in Hadfield steel[J]. Acta Materialia, 2010, 58(5):1479-1488.[7] WANG T S, HOU R J, LV B, et al. Microstructure evolution and deformation mechanism change in 0.98C-8.3Mn-0.04N steel during compressive deformation[J]. Materials Science & Engineering A, 2007, 465(1):68-71.[8] IDRISSI H, RENARD K, SCHRYVERS D, et al. On the relationship between the twin internal structure and the work-hardening rate of TWIP steels[J]. Scripta Materialia, 2010, 63(10):961-964.[9] HUTCHINSON B, RIDLEY N. On dislocation accumulation and work hardening in Hadfield steel[J]. Scripta Materialia, 2006, 55(4):299-302.[10]IGLESIAS C, SOLRZANO G, SCHULZ B. Effect of low nitrogen content on work hardening and microstructural evolution in Hadfield steel[J]. Materials Characterization, 2009, 60(9):971-979.[11]KARAMAN I, SEHITOGLU H, GALL K, et al. Deformation of single crystal Hadfield steel by twinning and slip[J]. Acta Materialia, 2000, 48(6):1345-1359.[12]张增志.耐磨高锰钢[M].北京:冶金工业出版社,2002:111-112.ZHANG Zeng-zhi. Wear-resistant high manganese steel [M].Beijing: Metallurgical Industry Press, 2002:111-112.(In Chinese)[13]BAYRAKTAR E, KHALID F A, LEVAILLANG C. Deformation and fracture behaviour of high manganese austenitic steel[J]. Journal of Materials ProcessingTechnology,2004,147:145-154.[14]祖方遒,李小蕴,刘兰俊,等.不同相对冲击功下高锰钢组织与加工硬化机制的研究[J].材料热处理学报,2006,27(2):71-74.ZU Fang-qiu, LI Xiao-yun, LIU Lan-jun, et al. Research on microstructure and work hardening mechanism steel by simulating actual working condition[J]. Transactions of Materials and Heat Treatment, 2006,27(2):71-74. (In Chinese)[15]项建英,宋仁伯,侯东坡,等.316L不锈钢加工硬化机制及孪生行为[J].材料科学与工艺,2011,19(4):128-133.XIANG Jian-ying, SONG Ren-bo, HOU Dong-po, et al. Mechanism of work hardening and twinning for 316L stainless steel[J]. Materials Science and Technology,2011,19(4):128-133.(In Chinese)[16]LEE W S, CHEN T H. Plastic deformation and fracture characteristics of Hadfield steel subjected to high-velocity impact loading[J]. Journal of Mechanical Engineering Science, 2002, 216(10):971-982.。

相关文档
最新文档