2023-2024学年北师大版数学七年级上册2.11 有理数的混合运算 导学案(无答案)
2024-2025学年度北师版七上数学第二章有理数及其运算-回顾与思考课件

.
2024
2025
(方法二)倒数比较法:
2024
1
1
2025
因为
=1+
>1+
=
,
2023
2023
2024
2024
2023
2024
所以
<
.
2024
2025
返回目录
数学 七年级上册 BS版
【点拨】比较大小常用的方法有:(1)数轴比较法.(2)法则
比较法:正数大于0,0大于负数,正数大于负数;两个负数,
1
3
【解析】分数有5%,-2.3, ,3.1415926,- ;负数有
6
4
3
9
-11,-2.3,- ,-9;整数有-11,0, ,2024,-9;非负
4
3
1
9
数有5%, ,3.1415926,0, ,2024.
6
3
1
3
故答案为5%,-2.3, ,3.1415926,- ;-11,-2.3,
6
4
3
9
1
返回目录
数学 七年级上册 BS版
要点六 数轴与绝对值的综合运用
我们知道,在数轴上,点 M , N 分别表示数 m , n ,则点
M , N 之间的距离为| m - n |.若点 A , B , C , D 在数轴上分
2
别表示数 a , b , c , d ,且| a - c |=| b - c |= | d - a |
得
负 ,并把绝对值相乘.任何数与0相乘,积仍为 0 .
返回目录
数学 七年级上册 BS版
(4)除法法则:不为零的两个有理数相除,同号得 正 ,异
有理数的混合运算第二课时用计算器进行运算课件 2024-2025学年北师大版七年级数学上册

运算键
与其他键配合执行第二功能
示例
28+42.5
-7.2-10
按键顺序
2
8
+
+/- 7
46×(- 0.25)
4
3.6÷1.2
3
232
2
6
3
4
2
2
-
1
结果
5
=
70.5
0
=
-17.2
-11.5
×
+/- 0
2
5
6
÷
2
=
x2
=
1
(或 2
3
yx
=
3
2
=)
529
例1 用计算器计算:
2
(1)
(3.2 4.5) 3
(2)解:根据(1)中规律,得355×355=126 025.
温故知新
课堂导学
核心素养分层练
PART
03
核心素养分层练
让学习变的简单
1.用计算器计算,按键顺序是3,x█,3,=,显示的结果是( A )
A.27
B.9
C.6
D.3
2.用四舍五入法,把数4.803精确到百分位,得到的近似数是( B )
行0.8×103s所走的路程约是多少?
解:8×106×(0.8)×103=6.4×109(m).
答:该卫星运行0.8×103 s所走的路程约是6.4×109 m.
6.随着城市化进程的加快,耕地面积逐年减少.某地区目前有耕地面积60
万公顷,如果耕地面积以每年7.5%的速度减少,那么经过8年,该地区
的耕地面积还有多少?(结果精确到0.01万公顷)
2.11.1 有理数的乘除混合运算(含解析) 北师大版数学 七年级上册

2.11.1 有理数的乘除混合运算(含解析)北师大版数学七年级上册2.11.1 有理数的乘除混合运算北师大版数学七年级上册学校:______姓名:______班级:______考号:______一、单选题1.下列计算结果不正确的是( )A. B.C. D.2.将式子()()中的除法转化为乘法运算,正确的是()A.()()B.()()C.()()D.()()3.与运算结果相同的是( )A. B. C. D.4.某届世界杯的小组比赛规则四个球队进行单循环比赛(每两队赛一场),胜一场得分,平一场得分,负一场得分某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是( )A.甲B.甲与丁C.丙D.丙与丁二、填空题5.计算:.6.如图,按下面的程序计算:输入,则输出的答案是.7.古诗有云:“人间四月芳菲尽,山寺桃花始盛开.”若山寺海拔比山脚高米,按高度每升高米气温下降计算,山寺气温比山脚低.8.下列计算:①;②;③;④.其中正确的有个.三、解答题21.计算:(1);(2);(3)22.阅读后回答问题.计算.解:原式①②.③(1)上述的解法是否正确?答:.若有错误,错在哪一步?答:(填序号).错误的原因是.(2)请写出这个计算题正确的计算过程.23.小丽有张写着不同数字的卡片(如图),请你按要求抽取卡片,完成下列各题:(1)从中取出张卡片,如何抽取才能使这张卡片上的数字先让两个数相乘再与第三个数相除的结果最大?最大值是多少?(2)从中取出张卡片,如何抽取才能使这张卡片上的数字先让两个数相除再与第三个数相乘的结果最小?最小值是多少?24.一天,甲、乙利用温度差测量某山峰的高度,甲在山顶测得的温度是乙同一时刻在山脚测得的温度是已知该地区高度每增加气温大约降低那么这个山峰的高度大约是多少米?参考答案1.【答案】B【解析】故项计算结果不正确.2.【答案】B【解析】【分析】本题是有理数的乘除混合运算,比较简单,知道除法法则是关键:除以一个数等于乘以这个数的倒数.根据有理数的除法法则进行计算即可.【解答】解:∵除以一个数等于乘以一个数的倒数,∵()()()(),故选.3.【答案】B【解析】项项项项故选4.【答案】B【解析】个队一共要比场比赛,每个队都要进行场比赛,各队的总得分恰好是四个连续奇数,甲、乙、丙、丁四队的得分情况只能是所以,甲队胜场,平场,负场乙队胜场,平场,负场丙队胜场,平场,负场丁队胜场,平场,负场与乙打平的球队是甲与丁,故选10.【答案】;11.【答案】【解析】把代入,得.12.【答案】【解析】.13.【答案】21.【答案】(1);(2);(3).22.【答案】(1)不正确;①;运算顺序不对或者是同级运算中,没有按照从左到右的顺序进行(2)原式.23.【答案】(1)解:抽取,,,最大值是.(2)抽取,,,最小值是.24.【答案】解:答:这个山峰的高度大约是。
第二章 有理数及其运算 复习课 课件 2024-—2025学年北师大版数学七年级上册

解:(1)100×3+10-6-8=296(个), 所以前三天共生产296个. (2)18-(-12)=18+12=30(个), 所以产量最多的一天比产量最少的一天多生产30个. (3)这一周多生产的总个数是10-6-8+15-12+18-9=8(个), 10×700+12×8=7096(元). 答:该厂工人这一周的工资总额是7096元.
解:若在数轴上表示这两数的点位于原点的两侧,则这两个 数到原点的距离分别是3和6,所以这两个数是-3, 6或6,3.若在数轴上表示这两数的点位于原点的同侧,则这两 个数到原点的距离分别是9和18,所以这两个数是-18,-9或 18,9.
·导学建议· 本章所涉及的概念较多,相互之间联系紧密,所以要特别注 意概念的巩固.像第3题这种答案有两种情况的题目学生易出错, 尽量让学生用画图的方法反复体会,形象直观地理解、记忆.
解:(1)正整数;正分数. (2)如图所示:
正确理解有理数有关的概念
例2 若a、b互为相反数,c、d互为倒数,|m|=2,求a4+mb+m-3cd 的值.
解:因为a、b互为相反数, 所以a+b=0. 因为c、d互为倒数, 所以cd=1. 因为|m|=2, 所以m=±2. 所以,原式=0+2-3=-1或原式=0-2-3=-5.
变式训练
去年10月初,由于受台风影响,某地区的水位发生了变化,该 区10月6日的水位是2.83米,由于各种原因,水位一度超过警戒线, 下表是该区10月7日至12日的水位变化情况(单位:米).
日期 7 8 9 10 11
12
水位 +0.41 +0.09 -0.04 +0.06 -0.45
七年级数学上册_2.11有理数的混合运算导学案(无答案)_北师大版

2.11有理数的混合运算
导学目标
1.进一步掌握有理数的运算法则和运算律;
2.使学生能够熟练地按有理数运算顺序进行混合运算;
3.注意培养学生的运算能力.
导学重点 有理数的混合运算.
导学难点
准确地掌握有理数的运算顺序和运算中的符号问题.
导学过程
链接: 说一说我们学过的有理数的运算律:(用字母表示)
加法交换律: ;
加法结合律: ;
乘法交换律: ;
乘法结合律: ;
乘法分配律: .
知新:
前面我们已经学习了有理数的加、减、乘、除、乘方等运算,若在一个算式里,含有以上的混合运算,按怎样的顺序进行运算?
1.先 ,再 ,最后 ;
2.同级运算从 到 按顺序运算;
3.若有括号,先小再中最后大,依次计算.
例1 计算:18-6 ÷(-2)×(13-
) 例2计算:225(3)()39⎡⎤-⨯-+-⎢⎥⎣⎦
随堂练习
计算:(1) 8+2(3)-×(-2) (2) 100÷2(2)--(-2)÷2()3
-
(3)(-4)÷34-
(3)⨯- (4)1()3-÷21()3--4×31()2
-
附加题: 计算(1) -1-{(-3)3-[3+32×(-121)]÷(-2)}
(2)
(-5)-(-5)×101÷101×(-5)。
北师大版数学七年级上册2.11有理数的混合运算优秀教学案例

3.教师对学生的学习过程进行评价,关注他们的成长,给予积极的反馈,提高他们的学习动力。
4.通过课后作业的布置,让学生在实践中运用所学知识,巩固混合运算的方法。
5.定期进行单元测试,了解学生对混合运算的掌握情况,为下一步教学提供依据。
四、教学内容与过程
2.问题导向的教学策略:本案例中,教师以一系列具有层次性的问题引导学生探讨有理数混合运算的规则,激发学生的思考。通过提问、引导、鼓励学生提出疑问等方式,教师充分发挥了学生的主体作用,培养了他们的问题意识。
3.小组合作的教学模式:教师组织学生进行小组讨论,分享思路和方法,培养了他们的团队协作精神。在小组合作中,学生通过沟通、讨论和合作,共同探讨混合运算的规律,提高了沟通能力。
4.教育学生树立克服困难的信心,使他们具备面对数学问题时的积极心态。
三、教学策略
(一)情景创设
1.生活情境:以购物场景为例,设计一道涉及有理数混合运算的问题,让学生在解决实际问题的过程中,自然地引入混合运算的学习。
2.故事情境:通过讲述一个小故事,引导学生在故事中发现有理数混合运算的问题,激发他们的学习兴趣。
3.游戏情境:设计一个有趣的数学游戏,让学生在游戏中自然而然地接触到有理数混合运算,提高他们的学习积极性。
(二)问题导向
1.设计一系列具有层次性的问题,引导学生由浅入深地探讨有理数混合运算的规则。
2.通过提问,激发学生的思考,引导他们发现混合运算中的规律和陷阱。
3.鼓励学生提出疑问,充分尊重他们的好奇心,培养他们的问题意识。
在案例背景中,我了解到学生已经掌握了有理数的基本概念和运算规则,但对于混合运算的顺序和法则理解不够深入,容易在实际运算中出现错误。因此,我在教学设计中注重引导学生通过实际例子来探讨和总结混合运算的规律,提高他们的实际运算能力。同时,我也注意运用人性化的语言和教学方法,激发学生的学习兴趣,让他们在轻松愉快的氛围中学习数学。
北师大版数学七年级上册2.11《有理数的混合运算》教学设计

北师大版数学七年级上册2.11《有理数的混合运算》教学设计一. 教材分析《有理数的混合运算》是北师大版数学七年级上册第2章“有理数的运算”中的一个知识点。
本节课主要让学生掌握有理数加法、减法、乘法、除法混合运算的法则,能正确进行混合运算,并培养学生的运算能力和逻辑思维能力。
二. 学情分析学生在学习本节课之前,已经掌握了有理数的加法、减法、乘法、除法运算,但对混合运算法则的理解和应用还不够熟练。
因此,在教学过程中,需要引导学生通过观察、分析、归纳总结出混合运算的法则,并通过大量的练习加以巩固。
三. 教学目标1.知识与技能目标:使学生掌握有理数加法、减法、乘法、除法混合运算的法则,能正确进行混合运算。
2.过程与方法目标:通过观察、分析、归纳总结出混合运算的法则,培养学生的运算能力和逻辑思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:有理数加法、减法、乘法、除法混合运算的法则。
2.难点:混合运算过程中,如何正确进行运算顺序的判断和调整。
五. 教学方法采用“问题驱动”的教学方法,引导学生通过观察、分析、归纳总结出混合运算的法则,并通过大量的练习加以巩固。
同时,运用小组合作学习的方式,培养学生的团队合作精神。
六. 教学准备1.教师准备:精通教材,了解学生,设计教学过程和练习题目。
2.学生准备:预习教材,了解有理数加法、减法、乘法、除法运算。
3.教学工具:黑板、粉笔、多媒体教学设备。
七. 教学过程1.导入(5分钟)教师通过提问方式复习旧知识,引导学生回顾有理数的加法、减法、乘法、除法运算。
然后提出本节课的主题:有理数的混合运算。
2.呈现(10分钟)教师通过多媒体展示混合运算的例子,引导学生观察、分析,发现混合运算的规律。
同时,教师在黑板上板书混合运算的法则。
3.操练(10分钟)教师布置练习题目,让学生独立完成。
学生在完成后,教师选取部分题目进行讲解和分析,巩固所学知识。
有理数混合运算的四种考法—2023-2024学年七年级数学上册(北师大版)(解析版)

有理数混合运算的四种考法类型一、含乘方与绝对值的混合运算【答案】3000−【分析】先计算乘方,再进行加减运算.【详解】解:()()33222313 1.26103−⎛⎫⎛⎫−⨯+−−⨯− ⎪ ⎪⎝⎭⎝⎭36271=93625100027⎛⎫⎛⎫−⨯+−−−⨯ ⎪ ⎪⎝⎭⎝⎭324274=2510003−−+ 34961=3000−【点睛】本题考查含乘方的有理数的混合运算,解题的关键是掌握运算法则并正确计算.【答案】【分析】按照先计算乘方,再计算乘除法,最后计算加减法的运算顺序求解即可.【详解】解:原式8156952⎛⎫⎛⎫=−⨯−−−÷− ⎪ ⎪⎝⎭⎝⎭ ()8692=−−⨯−8618=−+20=.【点睛】本题主要考查了含乘方的有理数混合计算,熟知相关计算法则是解题的关键.【答案】【分析】根据有理数的乘方运算可进行求解.【详解】解:原式185189=−+−⨯852=−+−=5−.【点睛】本题主要考查含乘方的有理数混合运算,熟练掌握有理数的乘方运算是解题的关键.【答案】【分析】先算乘方和绝对值,再算乘除,最后算加减,按这个运算顺序计算即可. 【详解】解:24211224125%323⎛⎫⎛⎫−÷+−⨯+ ⎪ ⎪⎝⎭⎝⎭6491516()9234=÷+−⨯+ 936451624=⨯−+953442=+−7322=−2=.【点睛】本题考查了含乘方的有理数的混合运算,掌握有理数的混合运算顺序和运算法则是解题的关键.【分析】根据有理数的混合运算法则进行计算即可. 【详解】解:()3221322334⎛⎫⎡⎤−+⨯+−−÷− ⎪⎣⎦⎝⎭ ()296343=−+⨯−+⨯9412=−−+1=−.【点睛】本题考查了有理数的混合运算,熟练掌握有理数的混合运算法则是解题的关键.【答案】94−【分析】先根据平方运算、绝对值运算、()1n−计算,再由有理数加减运算法则求解即可得到答案.【详解】解:()202322531594⎛⎫−⨯−+−−+− ⎪⎝⎭2591594=−⨯−−−52154=−−−−52154⎛⎫=−+++ ⎪⎝⎭194=−. 【点睛】本题考查有理数加减混合运算,涉及平方运算、绝对值运算、()1n−计算,熟练掌握相关运算法则是解决问题的关键. 类型二、简便运算问题【答案】(1)2495−;(2)25【分析】(1)将244925改写为15025⎛⎫− ⎪⎝⎭,再用乘法分配律进行计算即可; (2)将0.125改写为18,再根据乘法分配律的逆用,进行计算即可. 【详解】(1)解:原式()150525⎛⎫=−⨯− ⎪⎝⎭()()1505525=⨯−−⨯−12505=−+42495=−;(2)解:原式()1111752550888=⨯+−⨯+⨯ ()117525508=⨯−+ 12008=⨯25=.【点睛】本题主要考查了有理数的简便运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则,加法运算律和乘法运算律在有理数范围依然适用.【分析】根据有理数的混合运算法则,通过有理数的简便计算即可求出答案. 【详解】解:原式()13724()(24)(24)248=−⨯−+−⨯−−⨯121821=−+ 15=故答案为:15.【点睛】本题考查了用有理数的乘法分配律的简便运算解出答案.是否能熟练掌握分配律的简便计算是解这题的技巧.【答案】(1)2495;(2)3【分析】(1)根据题意24244954952525⎛⎫⨯=⨯ ⎪⎝⎭+,再根据乘法分配律2424495245255⎛⎫⨯= ⎪⎝⎭++即可解答;(2)先将1118999824142894289⎛⎫⎛⎫⎛⎫⎛⎫−−⨯−=−−⨯− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,再利用乘法分配律即可解答. 【详解】(1)解:2449525⨯2449525⎛⎫=⨯ ⎪⎝⎭+ 24495525=⨯⨯+242455=+42495=;(2)解:11182414289⎛⎫⎛⎫−−⨯− ⎪ ⎪⎝⎭⎝⎭ 99984289⎛⎫⎛⎫=−−⨯− ⎪ ⎪⎝⎭⎝⎭241=−++3=.【点睛】本题考查了有理数的混合运算法则,有理数乘法的分配律,熟记有理数乘法的分配律是解题的关键.【分析】先将除法转换成乘法,然后根据利用乘法分配律计算即可.【详解】解:3571491236⎛⎫⎛⎫−−+÷− ⎪ ⎪⎝⎭⎝⎭ ()357364912⎛⎫=−−+⨯− ⎪⎝⎭272021=+−26=.【点睛】本题考查有理数的混合运算,熟练掌握运算法则及运算律是解题关键.【答案】(1) (2)28− (3)133112−(4)29− 【详解】(1)()()()()783.851313 6.150.790.791515−⨯−+−⨯−+⨯+⨯()()()7813 3.85 6.150.791515⎛⎫⎡⎤=−⨯−+−+⨯+ ⎪⎣⎦⎝⎭()()13100.791=−⨯−+⨯1300.79=+ 130.79=(2)1121111361965765353577⎛⎫⎛⎫⎛⎫−⨯+−⨯+−÷+÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 112111111361967635357575⎛⎫⎛⎫⎛⎫=−⨯+−⨯+−⨯+⨯⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 121111361967633775⎡⎤⎛⎫⎛⎫⎛⎫=−+−+−+⨯⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ ()()1201205⎡⎤=−+−⨯⎣⎦()11405=−⨯28=−(3)()71913672⨯−()1923672⎛⎫=−⨯− ⎪⎝⎭()()192363672=⨯−−⨯−133122=−+133112=−(4)1314261413⎛⎫⨯− ⎪⎝⎭1314261413⎛⎫⎛⎫=+⨯− ⎪ ⎪⎝⎭⎝⎭ 14131426131413⎛⎫⎛⎫=⨯−+⨯− ⎪ ⎪⎝⎭⎝⎭281=−−29=−【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘除,后算加减;同级运算,按从左到右的顺序计算.如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行.有时也可以根据运算定律改变运算的顺序.类型三、实际应用【分析】(1)将0.9 加上10月1,2,3的变化量可求解;(2)分别计算每天的游客数量即可求解;(3)将每天的变化量的绝对值相加可求解总游客数.【详解】解:(1)0.9+3.1+1.78-0.58=5.2(万人),故10月3日的人数为5.2万人;故答案为5.2;(2)10月1日游客人数为:0.9+3.1=4(万人);10月2日游客人数为:4+1.78=5.78(万人);10月3日游客人数为:5.78-0.58=5.2(万人);10月4日游客人数为:5.2-0.8=4.4(万人);10月5日游客人数为:4.4-1=3.4(万人);10月6日游客人数为:3.4-1.6=1.8(万人);10月7日游客人数为:1.8-1.15=0.65(万人);故七天假期里,游客人数最多的是10月2日,达到5.78万人;(3)4+5.78+5.2+4.4+3.4+1.8+0.65=25.23(万人),答:大同云冈石窟风景区在这七天内一共接待了25.23万游客.【点睛】本题主要考查有理数的加减法混合运算,读懂题意是解题的关键.【答案】(1);;(2)元;(3)每日计件工资更多,理由见解析.【分析】(1)用表中周三数据加上计划平均每天生产量,即得周三玩具生产量;表中每天增减产量相加的和,再加上周规定生产量即得周实际生产量.(2)把表中每天增减产量正的之和乘以3,负的之和乘以2,把它们相加的和再加上周实际生产量乘以5,即得小明妈妈这一周的工资总额.(3)先计算出实行每周计件工资制情况下小明妈妈的周工资与(2)中计算的实行每日计件工资制下小明妈妈的周工资相比较可得——每日计件工资更多.−=【详解】(1)30426∴小明妈妈星期三生产玩具26个,++−+−+++−+++(10)(12)(4)(8)(1)(6)0=−−+−+=101248167∴+=(个),2107217故本周实际生产玩具217个,故答案为:26,217.⨯+++⨯+++⨯−=(元)(2)2175(1086)3(1241)(2)1123答:小明妈妈这一周的工资总额是1123元⨯+⨯=元,(3)2175731106每周计件一周得1106元,>,所以每日计件工资更多.因为11231106【点睛】本题考查有理数加减混合运算的实际应用.其关键是审清题意,弄准确其中正负数及0的含义,才能列出正确算式.坐出租车.【分析】(1)由题意可知: 3<4.1<10,所以车费=3千米以内的收费+超过3千米的部分×2;(2)由于14.9>13,所以应付车费由三部分组成,即3千米以内的收费十超过起步里程的部分10千米×2 +超过起步里程13千米的里程数×3;(3) 车费=基础车费+超过起步里程10千米的车费+超过13千米的车费,再比较应付车费和他所带的钱数.【详解】解:(1) 不足1千米以1千米计算,4.1≈5,又3千米以内(含3千米) 收费11元,超过3千米的部分每千米收费2元,故车费为:11+ (5-3) ×2=15(元),∴小明乘坐出租车行驶4.1千米应付车费15元;(2)不足1千米以1千米计算,14.9≈15,又3千米以内(含3千米)收费11元,超过3千米的部分每千米收费2元,超过起步里程10千米以上的部分加收50%,即每千米3元,故车费为:11+10×2+ (15-13) ×3=37 (元),∴小明乘坐出租车行驶14.9千米应付车费37元;(3)∵不足1千米以1千米计算,13.1千米≈14千米,∴小明应付的车费是: 11+10×2+3 (14-13) ×3= 34元,∵小明带了31元钱,应付34元,34>31,∴小明带的钱不够,∵11+10×2=31,∴小明可以乘坐13千米的车,13.1-13=0.1(千米),答:小明带的钱不够乘坐13.1千米,他至少先走0.1千米再乘坐出租车.【点睛】本题考查有理数的混合运算,在计算时一定要弄清题意,特别是“不足1千米以1千米计算”这句话.类型三四、24点【答案】(1)-6、10、-60;(2)3、10、3;(3)例如:选-6、0、3、4;算式是-6×(0×3-4 或选-6、0、3、10;3×10-6+0或选-6、3、4、10;算式是(10-4)-(-6)×3或4-10×(-6)÷3等等.【详解】试题分析:(1)观察这五个数,要找乘积最小的就要找符号相反且数值最大的数,所以选﹣6和10;(2)2张卡片上数字相除的商最大就要找符号相同,且分母越小越好,分子越大越好,所以就要选10和3,且3为分母;(3)从中取出4张卡片,用学过的运算方法,使结果为24,这就不唯一,用加减乘除只要答数是24即可,选-6、0、3、4;算式是-6×(0×3-4 或选-6、0、3、10;3×10-6+0或选-6、3、4、10;算式是(10- 4)-(-6)×3或4-10×(-6)÷3等等.试题解析:(1)﹣6×10=-60;我抽取的2张卡片是)-6、10,乘积的最大值为-60;(2)10÷3=103;我抽取的2张卡片是3、10,商的最大值为103;(3)方法不唯一,如:选-6、0、3、4;算式是-6×(0×3-4 或选-6、0、3、10;3×10-6+0或选-6、3、4、10;算式是(10- 4)-(-6)×3或4-10×(-6)÷3等等.考点:1.有理数的混合运算;2.图表型.【答案】(1)②,1−;(2)④⑤,14;(3)①④⑤,144−;(4)或(163)(8)−−÷⨯−等.【分析】(1)根据题意和题目中的卡片,可以解答本题;(2)根据题意和题目中的卡片,可以解答本题;(3)根据题意和题目中的卡片,可以解答本题;(4)根据题意可以写出相应的算式,本题答案不唯一,主要符合题意即可.【详解】(1)因为-1在全部有理数大小排列里居中,所以选②卡片,故答案为:②,-1;(2)由已知可得,当选取卡片6和−8时,差值最大,差的最大值是6−(−8)=14;故答案为:④⑤,最大值是14(3)由已知可得,当选取卡片3、6和−8时,乘积最小,积的最小值是:(−8)×6×3=−144;故答案为:①④⑤,最小值是144−(4)∵[−1−(6÷3)]×(−8)=(−1−2)×(−8)=(−3)×(−8)=24,∴算式[−1−(6÷3)]×(−8)的计算结果为24(答案不唯一).【点睛】本题考查有理数的混合运算,解答本题的关键是明确题意,写出相应的算式,注意第(4)问答案不唯一. 【变式训练2】小强有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,使这2张卡片上数字乘积最大,如何抽取?最大值是多少?(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,如何抽取?最小值是多少?(3)从中取出2张卡片,利用这2张卡片上数字进行某种运算,得到一个最大的数,如何抽取?最大的数是多少?(4)从中取出4张卡片,用学过的运算方法,使结果为24,如何抽取?写出运算式子(一种即可).【答案】(1)抽取4−与6−,积为24(2)抽取6−与3,商为2−(3)抽取6−与4,进行乘方运算得到最大为1296(4)()()644324−⨯⨯−+=(答案不唯一)【分析】(1)要使2张卡片的乘积最大,则取同号的两张卡片,且其绝对值最大的两张,据此可求解;(2)要使2张卡片的商最小,则取异号的两张卡片,且分子的绝对值最大,分母的绝对值最小,据此可求解(3)进行乘方的运算可使相应的值最大,可选取6−与4,据此可求解;(4)利用有理数的相应的运算进行求解,符合题意即可.【详解】(1)抽取4−与6−,则其乘积为:()4624−⨯−=;(2)抽取6−与3,则其商为:632−÷=−;(3)抽取6−与4,则有:()461296−=; (4)()()644324−⨯⨯−+=.【点睛】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握. 课后训练【答案】 【分析】根据有理数的四则混合运算的法则先计算括号里面的,再计算除法即可.【详解】解:原式83424242424⎛⎫=÷−− ⎪⎝⎭12424=÷576=. 【点睛】本题考查了有理数的四则混合运算,注意不要将乘法分配律运用到除法运算中,除法没有分配律,正确运用有理数的运算法则是解答本题的关键.【答案】(1)18(2)88(3)249【分析】(1)先计算乘法再计算除法即可;(2)提公因数即可;(3)改变计算顺序,结合乘法结合律即可. 【详解】(1)解:原式591895=⨯÷118=÷118=(2)解:原式41888855=⨯+⨯418855⎛⎫=⨯+ ⎪⎝⎭88=(3)解:原式2527393927=⎪⨯⨯⎛⎫ ⎝⎭+ 25273927393927=⨯⨯+⨯⨯25273927393927⎛⎫⎛⎫=⨯⨯+⨯⨯ ⎪ ⎪⎝⎭⎝⎭272539=⨯+⨯54195=+249=【点睛】本题考查有理数的混合运算.观察式子形式,合理使用运算法则是解题的关键.【答案】(1)-3;(2)1510−;(3)2−;(4)-1;(5)2;(6)3832− 【分析】(1)根据加法结合律直接求解即可;(2)根据有理数的加法交换律及结合律进行运算即可;(3)根据加法交换律及结合律进行有理数的加减混合运算即可;(4)根据加法交换律及结合律进行有理数的加减混合运算即可;(5)根据乘法交换律及结合律进行运算即可;(6)先对带分数进行拆解,然后根据有理数的乘法分配律进行求解即可.【详解】解:(1)原式123=−−=−(2)原式1113733115742015152220201010⎛⎫⎛⎫⎛⎫=−++−+=+−=− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (3)原式131********22⎛⎫=−+−−=−−=− ⎪⎝⎭ (4)原式571122316622⎛⎫=++−−=−=− ⎪⎝⎭(5)原式()11106122103⎛⎫=−⨯−⨯⨯=⨯= ⎪⎝⎭(6)原式()()11110041282040016383822⎛⎫=−⨯−−−−=−++=− ⎪⎝⎭. 【点睛】本题主要考查有理数的混合运算,熟练掌握利用运算律进行有理数的简便运算是解题的关键.【答案】 【分析】先计算括号内的,并要先计算乘方,再计算乘除,最后计算加减即可.【详解】解:原式()116227896⎡⎤=−−⨯⨯−−−−−⎣⎦1251=−−−27=−.【点睛】本题考查有理数混合运算,熟练掌握有理数混合运算法则是解题的关键.【分析】先计算绝对值,乘方运算和小括号里面的,再进行乘除运算,最后再加减即可.【详解】解:212|9|(3)(12)23⎫⎛−−÷−+−⨯− ⎪⎝⎭199126()()=−÷+−⨯−12=−+1=.【点睛】本题主要考查了有理数的混合运算,熟练掌握有理数混合运算法则且准确的计算是解题的关键. 6.出租车司机李师傅从上午8: 00~9:15在厦大至会展中心的环岛路上营运,共连续运载十批乘客.若规定向东为正,向西为负,李师傅营运十批乘客里程如下:(单位:千米)8,6,3,7,8,4,7,4,3,4+−+−++−−++(1)将最后一批乘客送到目的地时,李师傅距离第一批乘客出发地的位置怎样?距离多少千米?(2)上午8: 00~9:15李师傅开车的平均速度是多少?(3)若出租车的收费标准为:起步价8元(不超过3千米),超过3千米,超过部分每千米2元.则李师傅在上午8: 00~9:15一共收入多少元?【答案】(1)距离第一批乘客出发地的东方,距离是6千米;(2)43.2千米/小时;(3)128元【分析】(1)将所有数据相加得出结果后,即可作出判断;(2)将所有数据的绝对值相加,可得出路程,然后求出时间,根据速度=路程÷时间即可得出答案;(3)分别计算起步价,及超过3公里的收入,然后相加即可.【详解】解:(1)由题意得:向东为“+”,向西为“-”,则将最后一批乘客送到目的地时,李师傅距离第一批乘客出发地的距离为:(+8)+(-6)+(+3)+(-7)+(+8)+(+4)+(-7)+(-4)+(+3)+(+4)=6(千米), 所以,将最后一批乘客送到目的地时,李师傅在距离第一批乘客出发地的东方,距离是6千米;(2)上午8:00~9:15李师傅开车的距离是:|+8|+|-6|+|+3|+|-7|+|+8|+|+4|+|-7|+|-4|+|+3|+|+4|=54(千米),上午8:00~9:15李师傅开车的时间是:1小时15分=1.25小时;所以,上午8:00~9:15李师傅开车的平均速度是:54÷1.25=43.2(千米/小时);(3)一共有10位乘客,则起步费为:8×10=80(元).超过3千米的收费总额为:[(8-3)+(6-3)+(3-3)+(7-3)+(8-3)+(4-3)+(7-3)+(4-3)+(3-3)+(4-3)]×2=48(元).则李师傅在上午8:00~9:15一共收入:80+48=128(元).【点睛】此题考查正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量. 7.红红有5张写着以下数字的卡片,请你按要求抽出卡片,解决下列问题:(1)从中取出2张卡片,使这2张卡片上的数字相乘的积最大,最大值是________.(2)从中取出2张卡片,使这2张卡片上的数字相除的商最小,最小值是________.(3)从中取出0以外的4张卡片,将这4个数字进行加、减、乘、除、乘方、取相反数或取绝对值等混合运算,使结果为24,(注:每个数字只能对用一次,如()342122⨯−−⎡⎦=⎤⎣).请另写出一种符合要求的运算式子.【答案】(1)6(2)2−(3)()()3212−−⨯+(答案不唯一)【分析】(1)根据题意列出算式,找出积最大值即可;(2)根据题意列出算式,找出商最小值即可;(3)利用“24点”游戏规则列出算式即可.【详解】(1)解:根据题意得20123−<<+<+<+,积的最大值为()()326+⨯+=,故答案为:6;(2)解:商的最小值为()()212−÷+=−,故答案为2−;(3)解:()()342122−−⨯+=∵;()232124⎡⎤⎣−−−=⎦等,∴算式可以为:()()3212−−⨯+(答案不唯一).【点睛】此题考查有理数的混合运算,有理数大小比较,解题关键在于掌握各性质和运算法则.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2023-2024学年北师大版数学七年级上册2.11 有理数的混合运算导学案(无答案)
第11课有理数的混合运算
提能训练
★重点练习有理数的混合运算顺序
先算,再算,最后算;如有括号,先算括号里面的.
1.计算:
(1)-÷(-2);
(2)-110-0.5××[12-(-3)2].
2.计算:
(1)-22÷-×48;
(2)×[-10+(-3)2].
★重点练习有理数的混合运算的应用
3.某中学图书馆上周借书记录如下:(超过100册记为正,少于100册记为负).
星期一星期二星期三星期四星期五
+23 0 -17 +6 -12
(1)上星期五借出多少册书?
(2)上星期四比上星期三多借出几册?
(3)上周平均每天借出几册?
4.气象资料表明,高度每增加1 000 m,气温大约下降6 ★.
(1)某山峰高1 700 m,当山脚的温度为18 ★时,求山顶的气温;
(2)为估算某山峰的高度,两名研究人员同时在上午10时测得山脚和山顶的气温分别为9 ★和-3 ★,请估算此山峰的高度.
强化训练
1.计算3-2×(-1)等于()
A.5 B.1
C.-1 D.6
2.要使算式(-1)□3的运算结果最大,则“□”内应填入的运算符号为()
A.+B.-
C.× D.÷
3.下列运算中正确的是()
A.-+=-=-1
B.-7-2×5=-9×5=-45
C.3÷×=3÷1=3
D.-(-3)3=27
4.“★”表示一种运算符号,意义是:a★b=2a-b,那么★(1★3)=() A.-1 B.0
C.1 D.2
5.计算:
(1)-23÷×;
(2)-12+(3-5)2-÷3.
6.用运算律简便计算:
(1)99×(-36);
(2)(-9)×31-(-8)×-(-16)×31.
7.观察下面三行数:
-2,4,-8,16,-32,64,…;①
0, 6,-6,18,-30,66,…;②
-1,2,-4, 8, -16,32,….③
(1)若第①行的第7个数是-128,则第②行的第7个数是,第③行的第7个数是;
(2)取每行数的第10个数,计算这三个数的和.。